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Abstract

Expected risk minimization (ERM) is at the core of many machine learning systems. This
means that the risk inherent in a loss distribution is summarized using a single number –
its average. In this paper, we propose a general approach to construct risk measures which
exhibit a desired tail sensitivity and may replace the expectation operator in ERM. Our
method relies on the specification of a reference distribution with a desired tail behaviour,
which is in a one-to-one correspondence to a coherent upper probability. Any risk measure,
which is compatible with this upper probability, displays a tail sensitivity which is finely
tuned to the reference distribution. As a concrete example, we focus on divergence risk
measures based on f -divergence ambiguity sets, which are a widespread tool used to foster
distributional robustness of machine learning systems. For instance, we show how ambiguity
sets based on the Kullback-Leibler divergence are intimately tied to the class of subexpo-
nential random variables. We elaborate the connection between divergence risk measures
and rearrangement invariant Banach norms.

1 Introduction

A plain language summary of our work and a diagram showing key conceptual elements are in Appendix A.5.

Expected risk minimization is at the core of machine learning systems. This means that the risk inherent
in a loss distribution is summarized using a single number – its average. Yet this does not capture the tail
behaviour of the distribution. Since the expectation is insensitive to such behaviour, two distributions may
have the same expectation, although they exhibit very different tails. In the context of machine learning,
this can be problematic: extreme losses correspond to extremely bad predictions, or, for instance in the
context of reinforcement learning, even lead to disastrous consequences. In many settings, there appear to
be legitimate motivations for sacrificing some average performance in order to avoid rare but extreme losses.
A decision maker with this attitude is said to be risk averse.

Another issue to consider is that the empirical distribution perfectly corresponds to the ‘true’ distribution
only in the limit of infinite data. With finite data, the observed tails could be much lighter than the ‘true’
tail of the loss distribution, since extreme events are by definition infrequently observed. This suggests that
a cautious approach is to pretend that the tail is heavier than actually observed. This approach has been
studied under the research theme of distributional robustness, where expected risk minimization has been
replaced by the distributionally robust f -divergence risk measure objective:

R(X) := sup{EQ[X] : df (Q, P ) ≤ ε}, (1)
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where X is the random loss variable, the Q are probability measures and the f -divergence with divergence
function f is defined as

df (Q, P ) :=
∫

Ω
f

(
dQ

dP

)
dP,

if Q is absolutely continuous with respect to P . Here, the decision maker takes a worst-case attitude with
respect to a set of probability measures, which are contained in an f -divergence ball of radius ϵ, centered
at the base distribution P . These probability measures are said to constitute an ambiguity set. A decision
maker, who takes a worst-case stance towards an ambiguity set, is ambiguity averse. In practice, we take
P to be the empirical distribution, that is, the training data. Intuitively, the function f controls how much
reweighting dQ

dP is allowed. As a consequence, we guard against possibly different tail behaviour of the ‘true’
distribution.

The goal of this paper is to construct tail-sensitive coherent risk measures (Section 3.4), where the tail
sensitivity can be controlled by the machine learning engineer. Such risk measures are then potential re-
placements for the expectation in ERM and can model both risk and ambiguity aversion, depending on the
decision maker’s intention. For instance, the f -divergence risk measure R in (1) is a coherent risk measure,
and we demonstrate how the function f corresponds exactly to a choice of tail sensitivity. Consequently, the
choice of f determines the structure of the divergence ball, that is, the tail behaviour of the reweightings it
contains. Due to their popularity as a means to achieve distributional robustness in machine learning, we
focus on f -divergence risk measures. However, we also explicate its relation to other coherent risk measures
with the same fundamental function, which corresponds (to some extent) to the same tail sensitivity. To
investigate these relations, we view coherent risk measures from the perspective of rearrangement invariant
Banach norms.

For each class of specified tail behaviour (for instance, exponential tails, Gaussian tails etc.), subject to a
suitable equivalence relation, we show how the following objects can be derived:

• An f -divergence risk measure as in (1), which can be employed to replace the expectation in the
risk minimization loop.

• A Lorentz and Marcinkiewicz norm and related coherent risk measures, which are further such
replacement candidates.

• A utility-based shortfall risk measure, which is a convex risk measure, with potential applications for
instance in reinforcement learning.

The main guiding thread is the family of Orlicz norms, which offer fine-grained control over tail risk via
the specification of a convex function. The class of such functions is approximately as rich as the class of
f -divergences. The f -divergence risk measure (1) then arises as the natural extension of what we call an
Orlicz regret measure. The theory of Orlicz spaces is well-developed, and not only underlies divergence risk
measures but also offers a general approach to obtaining concentration inequalities and maximal inequalities
(Edgar & Sucheston, 1992), but it appears that the machine learning community is not aware of this link
and thus cannot exploit the rich mathematical literature on the subject.

1.1 Related Work

We weave together ideas from different literatures, from coherent risk measures (Artzner et al., 1999; Pflug
& Römisch, 2007) and rearrangement invariant Banach spaces (Krĕın et al., 1982; Bennett & Sharpley, 1988;
Rubshtein et al., 2016) to distributional robustness (Rahimian & Mehrotra, 2022).

Our goal is to construct risk measures which are sensitive to the heaviness of the tails. The importance of
heavy-tailed phenomena has been popularized by Taleb (2007) and they have been studied generally by Nair
et al. (2022) and Resnick (2007). In terms of applications, heavy-tailed phenomena have been investigated in
economics (Nordhaus, 2012; Ibragimov et al., 2015), earth sciences (Cavanaugh et al., 2015; Merz et al., 2022),
neuroscience (Roberts et al., 2015) and many other areas. Within machine learning, Gurbuzbalaban et al.
(2021) have identified heavy tails in the iterates of stochastic gradient descent. Empirical risk minimization
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in the context of a heavy-tailed loss distribution has been studied by Brownlees et al. (2015) and Hsu &
Sabato (2016). Vladimirova et al. (2019) have demonstrated the heavy-tailed nature of prior distributions
in Bayesian deep learning.

We are inspired by the work of Dommel & Pichler (2021), themselves building on Ahmadi-Javid (2012)
and Ahmadi-Javid & Pichler (2017), who connected f -divergence risk measures to Orlicz norms. Ambiguity
sets based on f -divergences have received much attention in the machine learning literature so far, see for
instance (Ben-Tal & Nemirovski, 1999), (Bayraksan & Love, 2015), (Namkoong & Duchi, 2016), (Shapiro,
2017), (Namkoong & Duchi, 2017), (Hu et al., 2018) and (Duchi et al., 2021). In mathematical finance,
the special case of the coherent entropic risk measure, which corresponds to the choice of Kullback-Leibler
divergence for df in (1), was studied by Föllmer & Knispel (2011). Closely related is the convex entropic risk
measure, an empirical variant of which has been proposed by Li et al. (2021) in machine learning. Standard
material on Orlicz spaces can be found in (Krasnoselskii & Rutickii, 1961), (Bennett & Sharpley, 1988),
(Edgar & Sucheston, 1992), (Kosmol & Müller-Wichards, 2011), (Pick et al., 2013) and (Rubshtein et al.,
2016).

1.2 Contributions

We define the Orlicz regret measure, which is an asymmetric variant of an Orlicz norm, and show that
its natural extension yields the f -divergence risk measure. We embed the Orlicz regret measure and the
divergence risk measure in the mathematical framework of rearrangement invariant Banach function spaces
and study their fundamental functions. Subsequently we explicate how the fundamental function is, via its
one-to-one relation to the envelope function, intricately linked to the tail sensitivity of a risk measure. We
show how one can therefore construct a corresponding Marcinkiewicz norm, Orlicz norm (hence, a divergence
risk measure) and a Lorentz norm, which share this tail sensitivity. We illuminate the connections and
(non)-equivalences between these norms. Overall, we do not attempt to establish that one among these
three families of norms is ‘superior’, but rather to analyze their relations and implications. Finally, we link
our approach to tail sensitivity to Orlicz deviation inequalities, of which many well-known concentration
inequalities are special cases.

1.3 Use in Machine Learning

In a supervised learning problem, we may wish to replace the expectation operator in ERM by a risk measure:

arg min
f∈F

E[ℓ(f(X), Y )] −→ arg min
f∈F

R(ℓ(f(X), Y ))

for some risk measure R, a function f from some hypothesis space F , a loss function ℓ, input X and ground
truth labels Y . Similarly, in reinforcement learning problems, a risk measure may replace the expectation
operator in the maximization of expected discounted sum of returns. Correspondingly, in empirical risk
minimization, the risk measure can be applied to the empirical loss distribution.

Possible motivations for replacing the expectation with a risk measure are manifold: in machine learning,
risk measures have been employed to express a risk-averse attitude (Tamar et al., 2015; Dabney et al., 2018;
Singh et al., 2020; Urpí et al., 2021; Vijayan & Prashanth, 2022) or to achieve distributional robustness
(Namkoong & Duchi, 2016; Duchi et al., 2021; Zhang et al., 2021). Moreover, consider the case where the
individual losses correspond to individual humans: in this context, it has been argued that risk measures
can promote subgroup fairness (Hashimoto et al., 2018; Williamson & Menon, 2019).

We restrict ourselves to theoretical analysis as there is ample experimental evidence for the suitability of risk
measures in different settings in the aforementioned works. In addition, Chouzenoux et al. (2019) and Fröhlich
& Williamson (2022) provide general treatments on risk measures in machine learning, including experimental
evidence. Our focus is therefore on drawing connections and deepening our theoretical understanding. For
aspects regarding practical computation see Section 8.

A question remains: which risk measure to choose in a given problem setting? The focus of this paper is to
give the reader guidance and intuition to answer this question for themselves, relative to the problem at hand.
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Specifically, our focus is the tail sensitivity of risk measures. In the previously mentioned problem settings –
aiming for risk aversion, distributional robustness or fairness – the tail behaviour of the loss random variable
deserves special attention. For instance, a tail event in a fairness context is an individual who receives an
extreme loss. Our goal is therefore tailoring to the tails instead of pandering to the masses1.

1.4 Notation and Assumptions

Throughout, we assume an atomless probability space (Ω, F , P ), where P is the Lebesgue measure and we
take Ω = [0, 1]. We denote the set of probability measures Q which are absolutely continuous with respect
to P as Q. Let M denote the class of Lebesgue measurable functions from Ω to the reals R, i.e. random
variables; however, we have no regard for non-measurable functions throughout and thus often drop writing
X ∈ M. By writing P-a.e. we mean “almost everywhere with respect to the measure P“. We denote by Lp

the Lebesgue spaces, i.e. the set of functions with finite p-th moment:

||X||p :=


(∫ 1

0 |X|p dP
) 1

p 1 ≤ p < ∞
ess sup(X) p = ∞,

Lp := {X ∈ M : ||X||p < ∞},

where ess sup(X) := inf {λ ≥ 0 : P ({ω ∈ Ω : |X(ω)| > λ}) = 0}. We write R+ = [0, ∞) for the nonnegative
real line with 0 included and R− = (−∞, 0). By X+ := max(0, X) we denote the positive part of a random
variable. We write Radon-Nikodym derivatives as dQ

dP . For a random variable X with cumulative distribution
function FX(x) := P ({ω ∈ Ω : X(ω) ≤ x}), we define the quantile function F −1

X as the generalized inverse
of the distribution function: F −1

X (q) := sup{λ ≥ 0 : FX(λ) < q}. For expectations EP [X] with respect to
the base measure P , we often drop the subscript and simply write E[X]. We write indicator functions as χA

and convex indicator functions as iA:

χA(ω) :=
{

1 ω ∈ A

0 ω /∈ A,
iA(ω) :=

{
0 ω ∈ A

∞ ω /∈ A
.

By an increasing function we mean a non-decreasing function; similarly, a decreasing function is non-
increasing. We write ϕ(0+) for the right-hand limit given by limx↓0 ϕ(x) = ϕ(0+). When defining a function
f : R+ → R ∪ {∞}, we abuse notation and implicitly take this to imply that f(x) = ∞ for x < 0. The
convex conjugate of a function f : R → R ∪ {∞} is the function g : R → R ∪ {∞}:

g(y) := sup
x∈R

xy − f(x).

Throughout, f and g will denote a conjugate pair of divergence functions (Definition 3.1) and Φ and Ψ will
denote a conjugate pair of Young functions (Definition 2.1).

2 Orlicz Norms and Spaces

The motivation behind Orlicz norms is to measure the size of a function in a way which is sensitive to tail
behaviour. Often they are introduced as generalizations of Lp spaces. As a first example, the variance indeed
is sensitive to tails and therefore does not exist (is infinite) for many random variables.
Definition 2.1. A function Φ : R+ → R+ ∪{∞} is called Young function if it is left-continuous, increasing,
convex, satisfies Φ(0) = 0 and is nontrivial (not identical to the constant zero or infinity function).

We emphasize that here increasing means non-decreasing. Since Φ is convex, continuity is guaranteed on
the interior of its effective domain and therefore the left-continuity concerns only the point

bΦ := sup{Φ < ∞}.

1That “pandering to the masses” is the opposite of “tailoring to the tails” was suggested to us by Peter Kootsookos.
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Note that it is possible that Φ(x) = 0 for x > 0. We denote the convex conjugate of Φ as Ψ : R+ → R+∪{∞},
that is:

Ψ(y) := sup
x≥0

xy − Φ(x),

where the restriction to the nonnegative half line is a consequence of our assumption that Φ takes on +∞
on the negative half line. If Φ is a Young function, then so is Ψ. In the following, Φ and Ψ will always refer
to a pair of conjugate Young functions.
Definition 2.2. The Luxemburg norm of the random variable X is defined as:

||X||LΦ := inf
{

λ > 0 : EΦ
[

|X|
λ

]
≤ 1
}

∀X ∈ M,

which is the gauge of the set {Z ∈ M : EΦ(|Z|) ≤ 1}.
Definition 2.3. The Orlicz norm of the random variable X is defined as:

||X||OΦ := sup{E[XZ] : Z ∈ L1,E[Ψ(|Z|)] ≤ 1} ∀X ∈ M.

Observe that the conjugate Ψ appears here. Confusingly, the Luxemburg norm (Luxemburg, 1955) is some-
times simply called Orlicz norm in the literature. In fact, these norms are equivalent by a factor of 2:

||X||LΦ ≤ ||X||OΦ ≤ 2||X||LΦ

and thus they are finite for the same set of functions. Therefore it is inconsequential whether one takes the
Luxemburg or Orlicz norm in the following definition.
Definition 2.4. The Orlicz space LΦ is given by:

LΦ := {X ∈ M : ||X||OΦ < ∞}.

For any Young function Φ, the Orlicz space LΦ is a Banach space, i.e. a complete normed vector space. It
is furthermore a Banach lattice, that is, it is monotone in the sense that:

|X| ≤ |Y | P-a.e. =⇒ ||X||OΦ ≤ ||Y ||OΦ .

Important in the following development will be an identical expression for the Orlicz norm, which is also
called the Amemiya norm (Hudzik & Maligranda, 2000):

||X||OΦ = inf
t>0

t

(
1 + EΦ

(
|X|
t

))
. (2)

This representation is the key to compute Orlicz norms in practice.

3 Orlicz Regret Measures

The problem with Orlicz norms in our setting is that, in virtue of satisfying the properties of a norm, they
treat losses and gains in the same way. We follow the machine learning convention that losses correspond to
positive values, hence gains are negative values. Since we aim for an asymmetric setup, we introduce Orlicz
regret measures as the asymmetric variants of Orlicz norms and link them to f -divergence risk measures.

3.1 f-Divergences

First, we define the function class which we consider in the following and their associated f -divergences.
Definition 3.1. A divergence function f is a proper, lower semi-continuous, convex function f : R+ →
R+ ∪ {∞}, which satisfies f(1) = 0, f(0) < ∞ and the supercoercivity condition limx→∞

f(x)
x = ∞.
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The conditions that f(0) < ∞ and limx→∞
f(x)

x = ∞ play an important role. They are non-standard
restrictions that we impose here and will be further discussed.

We denote the convex conjugate of f as g throughout the paper. It has the following properties.
Proposition 3.2. The conjugate g is finite on R, convex and increasing.

Proof. The statement, which relies on the supercoercivity of f , is well known and a proof is included in
Appendix A.1.1.

Definition 3.3. Given a divergence function f , the f -divergence between probability measures Q and P is
defined as:

df (Q, P ) :=
∫

Ω
f

(
dQ

dP

)
dP = EP f

(
dQ

dP

)
,

if Q is absolutely continuous with respect to P , and +∞ otherwise.

A simple shift of perspective, which will be important in the following, is to view dQ
dP (ω) as a single random

variable rather than as a fraction of two densities.

We write F for the set of divergence functions f and FY for the subset of divergence functions f , which
are also valid Young functions. We call elements of FY Young divergence functions. Since we assumed
nonnegativity, the only difference to a Young function is that a general divergence function f might be
positive and decreasing for 0 ≤ x < 1. To a given divergence function f , we can associate a canonical Young
function f̄ by setting:

f̄(x) :=
{

0 0 ≤ x ≤ 1
f(x) x > 1,

as in (Dommel & Pichler, 2021). We write ḡ for the convex conjugate of f̄ . We will see (Proposition 3.11)
that it stands in a close relationship to the original f . For various levels of risk aversion2 ε > 0, we define
the shorthand notation fε(x) = 1

ε f(x) and gε(y) = 1
ε g(εy), which is the convex conjugate of fε. The value

of ε is not of theoretical importance: if f is a divergence function, so is fε.
Example 3.4. A prominent example is the Kullback-Leibler divergence, where fKL(x) := x log(x) − (x − 1).
It can also be obtained as f(x) = x log(x), but the affine shift guarantees nonnegativity without altering the
divergence. We complete its definition implicitly by setting fKL(0) := limx→0 fKL(x) = 1 < ∞. The induced
f -divergence is

dKL(Q, P ) =
∫

Ω
log
(

dQ

dP

)
dQ.

The conjugate of fKL is gKL(y) = exp(y) − 1.
Example 3.5. The χ2 divergence is given by fχ2(x) = (x − 1)2. Then the divergence is

dχ2(Q, P ) =
∫

Ω

(
dQ

dP

)2
dP − 1.

Note that the conjugate of fχ2 is gχ2(y) = max(−2, y) + max(−2, y)2/4, since we take f to be infinite on the
negative half line. In some tables, the reader will find that g(y) = y + y2/4, which is the conjugate if the
effective domain of f(x) = (x − 1)2 is R. The difference is crucial in our asymmetric setting.
Example 3.6. Consider the pathological divergence function

fE(x) := i[0,1](x) =
{

0 0 ≤ x ≤ 1
∞ x > 1.

We later observe that the corresponding divergence risk measure in (1) is simply the expectation E.
2For simplicity, we shall use the term “risk aversion level” throughout. However, a divergence risk measure may also capture

the arguably distinct phenomenon of ambiguity aversion.
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Example 3.7 (Shapiro (2017)). Given some α ∈ [0, 1), we slightly modify the previous example as:

fCVarα
:= i[0,1/(1−α)].

The corresponding divergence risk measure in (1) is the conditional value at risk CVarα, which is the
expectation in the upper (1 − α)-tail:

CVarα(X) := 1
1 − α

∫ 1

α

F −1
X (q) dq.

For continuous FX , this can be written in the more suggestive form (“tail-conditional expectation”):

CVarα(X) = E
[
X|X ≥ F −1

X (α)
]

.

In the machine learning community, CVarα has recently received significant attention, see for instance
(Takeda & Sugiyama, 2008), (Fan et al., 2017) and (Curi et al., 2020).

3.2 Definition and Functional Properties

We now define the Orlicz regret measure, which has similar properties to a norm, yet is fundamentally
asymmetric in that it treats losses and gains differently. We will find that it has a very close relation to the
divergence risk measure in (1).
Definition 3.8. Given a divergence function f ∈ F with conjugate g, the Orlicz regret measure of X ∈ M
is defined as:

Vg(X) := inf
t>0

t

(
1 + Eg

(
X

t

))
.

Intuitively, it is g here that plays the role of the Young function of an Orlicz norm. In contrast to the Orlicz
norm in (2), there is no use of an absolute value here; hence the behaviour of g on R− (R+) determines the
treatment of gains (losses).
Proposition 3.9. For any divergence function f ∈ F, the regret Vg has the following properties ∀X, Y ∈ M:

V1. Vg(λX) = λVg(X) ∀λ ∈ R+ (positive homogeneity)

V2. Vg(X + Y ) ≤ Vg(X) + Vg(Y ) (subadditivity)

V3. X ≤ Y P-a.e. =⇒ Vg(X) ≤ Vg(Y ) (monotonicity)

V4. Vg(X) ≥ E[X] (aversity)

V5. If X ≥ 0, then Vg(X) = 0 if and only if X = 0. (nonnegative point-separating)

Proof. The proof is included in Appendix A.1.2.

It will prove convenient to define Orlicz regret measures for varying levels of risk aversion ε. By a simple
scaling, this parameter can be hidden in the function itself. Thus we can express the regret either by hiding
the dependence on ε or by making it explicit.
Proposition 3.10. With fε(x) = 1

ε f(x) and its conjugate gε(y) = 1
ε g(εy), we have

Vgε(X) = inf
t>0

t

(
1 + Egε

(
X

t

))
= inf

t̃>0
t̃

(
ε + Eg

(
X

t̃

))
.

Proof. See Appendix A.1.3.

Recall that ḡ is the convex conjugate of f̄ , where f̄ is the Young function canonically associated to f .
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Proposition 3.11. Let f ∈ F a divergence function with conjugate g. Then it holds that ḡ : R → R+ ∪{∞},
defined as:

ḡ(y) :=
{

0 y ≤ 0
g(y) y > 0,

is the conjugate of f̄ and it is a valid Young function when restricted to the domain R+.

Proof. The proof is in Appendix A.1.4.

We use || · ||Oḡ to denote the Orlicz norm, where the Young function is the restriction of g to the nonnegative
domain R+. A coherent regret measure (we define the term generally in Section 3.4) canonically induces a
norm (Pichler, 2013).
Proposition 3.12. Let f ∈ F a divergence function. Then setting

||X||Vg
:= Vg(|X|)

defines a norm on the space Vg := {X ∈ M : ||X||Vg < ∞}. In fact it holds that ||X||Vg = ||X||Oḡ and
Vg = Lḡ. Furthermore, Vg is finite on the space Vg.

Proof.

||X||Vg = Vg(|X|) = inf
t>0

t

(
1 + Eg

(
|X|
t

))
.

This is the Amemiya expression of the Orlicz norm with Young function ḡ, as g is only ever evaluated on
the nonnegative domain. Therefore it holds that ||X||Vg

= ||X||Oḡ . The finiteness of Vg on Vg, that is,
X ∈ Vg =⇒ Vg(X) < ∞, follows from (Pichler, 2013, Prop. 5), essentially from monotonicity of Vg.

Corollary 3.13. Let f ∈ F a divergence function. Then the norms || · ||Vg
and || · ||Vḡ

are identical.

This is due to the inherent asymmetry in our story: we care about loss tails, that is, right tails. Consider the
meaning of f( dQ

dP ): the behaviour of f(x) for 0 ≤ x < 1 concerns the situation where Q underestimates with
respect to the base measure. In contrast, f(x) for x ≥ 1 specifies the penalty that overestimation incurs.
Due to the absolute value, the Orlicz norm is based only on the treatment of losses. Since Vg and Vḡ treat
losses the same way, the potentially different behaviour for 0 ≤ x < 1 disappears in the norm-perspective.
To capture this desired view, we have imposed the constraint that f(0) < ∞: underestimation may only be
punished “finitely”, hence we can (up to equivalence) neglect underestimation in our approach.

Furthermore, the chosen risk aversion level of the regret measure is not essential, as the resulting norms are
equivalent for any choice of risk aversion level.
Proposition 3.14. For any risk aversion level, the norms induced by the regret measures are equivalent.
Let 0 < ε1 < ε2. We have

||X||Vgε1
≤ ||X||Vgε2

≤ ε2

ε1
||X||Vgε1

∀X ∈ M.

Proof. The proof is in Appendix A.1.5.

Remark 3.15. Vg is indeed the largest vector space, on which Vg is finite. However, this does not mean
that X /∈ Vg =⇒ Vg(X) = ∞. This is due to the gain-loss asymmetry: an X with a heavy left tail might
have Vg(X) < ∞, but Vg(|X|) = ∞ and therefore X /∈ V. Since we are concerned with right tails, this subtle
distinction is inconsequential and we can focus on the natural domain Vg.
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3.3 Envelope Representation

Due to subadditivity and positive homogeneity, the Orlicz regret measure Vg possesses an envelope repre-
sentation (or dual representation). This insightful representation will, in our case, illuminate the nature of
an underlying tail reweighting mechanism in Section 4. As a prelude to the full dual representation, we first
consider nonnegative random variables. We denote by Lḡ

+ the cone of nonnegative random variables in an
Orlicz space Lḡ.
Proposition 3.16. Let f ∈ F a divergence function and ḡ be the conjugate of the associated Young divergence
function f̄ . For nonnegative X, we have:

Vg(X) = sup
{
E[XZ] : Z ∈ Lf̄ , Z ≥ 0,E[f̄(Z)] ≤ 1

}
∀X ∈ Lḡ

+.

Proof. From Proposition 3.12, we know that for nonnegative X, we have Vg(X) = ||X||Oḡ . Then the statement
is simply the definition of the Orlicz norm ||X||Oḡ .

The general envelope representation is similar.
Proposition 3.17. Let f ∈ F a divergence function. Then the following envelope representation holds

Vg(X) = sup{E[XZ] : Z ∈ Lf̄ , Z ≥ 0,E[f(Z)] ≤ 1} ∀X ∈ Lḡ.

Proof. The proof is in Appendix A.1.6.

We refer to the Z over which the supremum ranges as dual variables. While the dual variables are from Lf̄ ,
the primal random variables, for which Vg is finite, are from Lḡ. To understand the meaning of envelope
representations more generally, we turn to the general theory of coherent regret and risk measures.

3.4 Coherent Regret and Risk Measures

The framework of coherent risk measures (Artzner et al., 1999; Delbaen, 2002; Föllmer & Weber, 2015) aims
to provide tail-sensitive risk control. The goal is to summarize the risk inherent in a financial position,
conceptualized as a probability distribution over losses and gains. Here, there is a fundamental asymmetry:
exceeding the expected loss is worse than the converse, hence the focus is on the right tail of the distribution.

In the search for possible replacements of the expectation as the tool to measure the risk of a distribution,
the question of which properties a suitable replacement must satisfy arises. Artzner et al. (1999) proposed
the following influential axioms for coherent risk measures3: ∀X, Y

C1. R(λX) = λR(X) ∀λ ∈ R+ (positive homogeneity)

C2. R(X + Y ) ≤ R(X) + R(Y ) (subadditivity)

C3. X ≤ Y P-a.e. =⇒ R(X) ≤ R(Y ) (monotonicity)

C4. R(X + c) = R(X) + c ∀c ∈ R (translation equivariance)

These axioms can be motivated from a financial viewpoint, but also from broader considerations regarding
decision making under uncertainty; closely related are the works of Gilboa & Schmeidler (1989) in economics
and Walley (1991) in imprecise probability.

The divergence risk measure in (1) satisfies all of these and is therefore a coherent risk measure. In contrast,
the Orlicz regret measure satisfies C1, C2 and C3, but not translation equivariance (C4). The Orlicz regret
measure can be thought of as an “asymmetric norm” (hence not a norm), where translation equivariance

3We translate the axioms to a loss-based orientation. Also, Artzner et al. (1999) worked with finite Ω, hence they stated C3
with the quantification ∀ω ∈ Ω as opposed to P-a.e.
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is undesirable. The class of such functionals has been captured by Rockafellar & Uryasev (2013) as the
coherent regret measures4.

Coherent regret measures and coherent risk measures are directly characterized by their envelope represen-
tations. C1 and C2, together with an appropriate closedness assumption, imply that such an R is a support
function. Let f ∈ F and g its conjugate.
Proposition 3.18 (Biagini & Frittelli (2009, Corollary 28), Arai (2010, Theorem 1)). A proper functional
R : Lḡ → R+ ∪ {∞} which satisfies C1,C2, C3 and is order lower-semicontinuous5 allows the envelope
representation

R(X) = sup
Z∈Z

E[XZ], Z ⊆ Lf̄
+, where Lf̄

+ :=
{

Z ∈ Lf̄ : Z ≥ 0 P-a.e.
}

,

with some set Z, called the envelope of R, of nonnegative random variables.
If R is furthermore translation equivariant (C4), then Z ⊆ {Z ∈ Lf̄

+ : E(Z) = 1}.

Thus the monotonicity of the Orlicz regret measure can be directly observed from its envelope representation.
It is, however, lacking translation equivariance. For the use of coherent regret measures in risk-sensitive
regression, see (Rockafellar & Uryasev, 2013).

3.5 From Regret to Risk

An Orlicz regret measure is in some sense like a norm, but one which distinguishes positive and negative
orientation. However, it lacks the property of translation equivariance, which is desirable for a replacement
of the expectation as an aggregation operator. Yet there is a simple way to canonically construct a coherent
risk measure from a coherent regret measure. In this way, the f -divergence risk measure arises from the
Orlicz regret measure. The f -divergence risk measure is defined as:

Rg,ε(X) := sup {EQ[X] : Q ∈ Q, df (Q, P ) ≤ ε} .

For reasons of consistency, we use the conjugate of f , which is g, in the subscript. Indeed, the conjugate is
the appropriate object here, as the following proposition shows. A dual variable Z which satisfies Z ≥ 0 and
E[Z] = 1 is a valid probability density, hence we introduce

QZ(A) :=
∫

A

Z(ω) dP (ω), (3)

which is guaranteed to be a probability measure.
Proposition 3.19. The divergence risk measure Rg,ε(X) is given by an infimal convolution of the Orlicz
regret measure Vgϵ

. Let X ∈ Lḡ. Then:

Rg,ε(X) = inf
µ∈R

µ + Vgε(X − µ) (4)

= inf
µ∈R,t>0

t

(
1 + µ + Egε

(
X

t
− µ

))
= inf

µ̃∈R,t̃>0
t̃

(
ε + µ̃ + Eg

(
X

t̃
− µ̃

))
. (5)

4Rockafellar & Uryasev (2013) further demanded the aversity condition V (X) > E[X] for X ̸= 0. For consistency, we
weaken aversity to a weak inequality. Then it is in fact a consequence of “rearrangement invariance”, see Proposition 4.3. We
only consider rearrangement invariant coherent regret and risk measures throughout the paper. We remark that Rockafellar &
Uryasev (2013) do not use the term “coherent regret measure” itself, but instead define regular measures of regret; when adding
positive homogeneity, we call it coherent by analogy to coherent risk measures

5See (Biagini & Frittelli, 2009) for this technical property. We also refer to (Cheridito & Li, 2009) for a discussion of risk
measures on Orlicz hearts, which are particularly interesting subspaces of Orlicz spaces.
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Its envelope representation is:

Rg,ε(X) = sup
{

E[XZ] : Z ∈ Lf̄ , Z ≥ 0,E[Z] = 1,Ef(Z) ≤ ε
}

= sup
{
EQZ

[X] : Z ∈ Lf̄ , QZ ∈ Q, df (QZ , P ) ≤ ε
}

= sup
{

EQZ
[X] : Z ∈ Lf̄ , QZ ∈ Q,EQZ

[Y ] ≤ Vgε
(Y ) ∀Y ∈ Lḡ

}
. (6)

Proof. The proof is in Appendix A.1.7.

We typically write Rg with ε = 1 in the following. The infimal convolution in (4) ensures translation
equivariance of the resulting functional. The combination of monotonicity and translation equivariance then
guarantees that the dual variables are legitimate probability measures, that is, Z ≥ 0 and E[Z] = 1 (see for
instance (Fröhlich & Williamson, 2022)). An interesting perspective is also provided by (6): the envelope is
the set of linear risk measures, i.e. expectations, which are Lḡ-pointwise dominated by the regret measure.
In the language of the imprecise probability literature, this process of projecting from Vg to Rg by forming a
supremum over the set of dominated expectations is known as natural extension (Walley, 1991; Troffaes &
De Cooman, 2014). This provides the rationale for interpreting the envelope as an ambiguity set and embeds
the divergence risk measure in the field of imprecise probability.

The infimum-based representation in (5), under various technical assumptions, has been around in the
literature (Ben-Tal & Nemirovski, 1999; Bayraksan & Love, 2015; Shapiro, 2017; Dommel & Pichler, 2021).
However, our derivation from the Orlicz regret measure provides a new perspective and intuition for the
result; we remark that Dommel & Pichler (2021), themselves inspired by Ahmadi-Javid (2012) and Ahmadi-
Javid & Pichler (2017), have investigated the divergence risk measure in the context of Orlicz spaces, but
without reference to an underlying Orlicz regret measure.
Example 3.20 (Bayraksan & Love (2015)). With fCVarα

:= i[0,1/(1−α)] we obtain the well-known infimal
convolution expression of the conditional value at risk:

CVarα(X) = inf
µ∈R

µ + 1
1 − α

E[(X − µ)+],

where the special case α = 0 recovers the expectation.

Similar to the Orlicz regret measure, the divergence risk induces a norm by setting ||X||Rg
:= Rg(|X|), with

the induced space Rg = {X ∈ M : Rg(|X|) < ∞}. Then the following holds:
Proposition 3.21. The norms || · ||Rg

and || · ||Vg
are equivalent. This implies that the spaces Vg and Rg

are identical.

Proof. Since || · ||Vg
= ||X||Oḡ , Theorem 4.5 in (Dommel & Pichler, 2021) is applicable. The authors did

assume finiteness of f , but this is not required in the proof of the statement.

As a consequence, the divergence risk measure is finite on Vg = Rg and this is the largest vector space, on
which it is finite (cf. Remark 3.15).
Corollary 3.22 (Dommel & Pichler (2021)). Let f ∈ F. Then the divergence risk measure is equivalent to
its corresponding Young divergence risk measure, that is, || · ||Rg is equivalent to || · ||Rḡ .

Proof. The statement holds since || · ||Rg and || · ||Vg are equivalent and || · ||Vg = || · ||Vḡ (Corollary 3.13).

Corollary 3.23 (Dommel & Pichler (2021)). Consider fε1 , fε2 ∈ F, that is, variants of the same underlying
divergence function at different risk aversion thresholds. Then || · ||Rgε1

and || · ||Rgε2
are equivalent.

Proof. This readily follows from the equivalence of the underlying Orlicz regret measures.
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4 Rearrangement Invariant Banach Norms and Fundamental Functions

We now embed the Orlicz regret measure and the divergence risk measure in the framework of rearrangement
invariant Banach function spaces, which provides more insight into the envelope representation and allows
us to investigate equivalence relationships of the induced spaces.

A desirable property of a coherent regret or risk measure is rearrangement invariance, which is known as law
invariance in the risk measure literature. The characterizing property is that a rearrangement invariant regret
(risk) measure depends only on the distribution of the random variable, not on the order in which outcomes
are associated with elementary events ω. To capture this notion, we define the distribution function6 µX :
R+ → [0, 1] of a random variable X ∈ M as

µX(λ) := P ({ω ∈ Ω : |X(ω)| > λ}).

For nonnegative random variables, this decreasing (non-increasing) and right-continuous function is just the
survival function 1 − FX . We say that random variables X and Y are equimeasurable if their distribution
functions are the same, that is, µX(λ) = µY (λ) ∀λ ≥ 0. For each X ∈ M, the right-continuous generalized
inverse of its distribution function X∗ : [0, 1] → R+,

X∗(ω) := inf{λ ≥ 0 : µX(λ) ≤ ω},

is equimeasurable with X itself. We call X∗ the decreasing rearrangement of X. In the language of probability
theory, X∗ is just the quantile function backwards: X∗(t) = F −1

|X|(1−t). As an intuition, X∗ is the continuous
analogue of sorting a list of values in decreasing order.

4.1 A Primer on Rearrangement Invariant Spaces

Definition 4.1. A Banach space (X , || · ||) is called rearrangement invariant if (Rubshtein et al., 2016)

R1. If |X| ≤ |Y | and Y ∈ X , then X ∈ X and ||X|| ≤ ||Y ||.

R2. If X and Y are equimeasurable and Y ∈ X , then X ∈ X and ||X|| = ||Y ||.

We call such a norm || · || rearrangement invariant (r.i.).

From their definitions, it is clear that || · ||Vg and || · ||Rg are r.i. norms and therefore Vg and Rg are r.i.
spaces. In general, any coherent regret measure or risk measure, which satisfies R2, induces a legitimate r.i.
norm by taking absolute values.
Example 4.2. The Lebesgue spaces Lp, 1 ≤ p ≤ ∞, are r.i. spaces, which are in particular Orlicz spaces.

Interestingly, any r.i. space is in between L1 and L∞ due to the following embedding theorem.
Proposition 4.3 (Bennett & Sharpley (1988, p. 77)). Let X be any ri space. Then:

L∞ ⊆ X ⊆ L1,

and the norms are in the relationship7:

∥X∥L1 ≤ ∥X∥X ≤ ∥X∥L∞ ∀X ∈ M.

Finally, we need the concept of the associate norm, which is linked to envelope representations.

6This is the standard terminology in the rearrangement invariant Banach space literature; it is not to be confused with the
cumulative distribution function FX .

7Under the assumption that ||1||X = 1, otherwise renorm first with the multiplicative factor 1/||1||X .
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Definition 4.4. Let (X , || · ||X ) a Banach space, where || · ||X satisfies the monotonicity condition R1. Its
associate norm || · ||X ′ is defined as:

||X||X ′ := sup
{∫ 1

0
|X(ω)Z(ω)| dω : ||Z||X ≤ 1, Z ∈ X

}
.

The associate space is X ′ := {X ∈ M : ||X||X ′ < ∞}.

If || · ||X is furthermore an r.i. norm (satisfies R2), then the associate norm can be expressed in terms of
decreasing rearrangements.
Proposition 4.5 (Bennett & Sharpley (1988, p. 60)). Let || · ||X be an r.i. norm. Then its associate norm
is:

||X||X ′ = sup
{∫ 1

0
X∗(ω)Z∗(ω) dω : ||Z||X ≤ 1, Z ∈ X

}
.

This remarkable result asserts that for an r.i. norm, the associate relationship can be understood in terms
of certain admissible quantile reweightings; recall Z∗(ω) = 1 − F −1

|Z| (ω).
Example 4.6 (Bennett & Sharpley (1988, p. 275)). For a pair of conjugate Young functions Φ and Ψ,
consider LΦ with the Luxemburg norm || · ||LΦ. Its associate space is LΨ with the Orlicz norm || · ||Ψ as the
associate norm.
Example 4.7 (Bennett & Sharpley (1988, p. 10)). The Lebesgue spaces Lp: let 1 ≤ p ≤ ∞ and the norm
|| · ||Lp . Its associate space is Lq, where 1/p + 1/q = 1, and the associate norm is || · ||Lq . Note that p = 1 is
paired with q = ∞.

4.2 Fundamental Functions of Orlicz Regrets and Risk Measures

Rearrangement invariant norms have widely varying tail sensitivity. For instance, the L1 norm (expectation)
is tail-insensitive, whereas the L2 norm (variance) is rather tail-sensitive. To “stratify” the space of all
rearrangement invariant norms, Bennett & Sharpley (1988) and Fröhlich & Williamson (2022) emphasize the
importance of the fundamental function, a one-dimensional function, which characterizes indeed fundamental
properties of the norm. For instance, its derivative at the origin can be used to characterize norm equivalences.
Definition 4.8. Let X be an r.i. space with r.i. norm ||·||X . Let At ⊆ Ω be an arbitrary Lebesgue measurable
set with measure P (At) = t. The fundamental function ϕX : [0, 1] → R+ is defined as:

ϕX (t) := ||χAt
||X .

Due to rearrangement invariance, the choice of At is arbitrary. We will also speak of the fundamental
function of a coherent regret (risk) measure, which due to nonnegativity of indicator functions just coincides
with the fundamental function of the induced norm.
Proposition 4.9 (Bennett & Sharpley (1988, p. 67)). For any r.i. space X , ϕX satisfies:

ϕX is increasing.
t 7→ ϕX (t)/t is decreasing.

ϕX is continuous except perhaps at 0 and ϕX (0) = 0.

A function ϕX satisfying these properties is called quasiconcave. Every increasing concave function, which
vanishes only at the origin, is quasiconcave, but a quasiconcave function need not be concave in general.
Example 4.10. The || · ||L1 norm has fundamental function ϕL1(t) = t. In contrast, the || · ||L∞ norm
(supremum) has ϕL∞(t) = χ(0,1], which immediately jumps to 1, hence it is not continuous at 0. It holds
that any fundamental function lies pointwise in between those of L1 and L∞ (cf. also Proposition 4.3).

We denote the fundamental function of the Orlicz regret as ϕVg (t) = Vg(χAt) = ||χAt ||Vg and similarly,
the fundamental function of the divergence risk measure as ϕRg

(t) = Rg(χAt
) = ||χAt

||Rg
. We have that
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ϕRg
(1) = 1 due to translation equivariance of Rg, which implies Rg(c) = c ∀c ∈ R (Rockafellar & Uryasev,

2013). We begin by characterizing the fundamental function of the Orlicz regret measure. We use the fact
that a left-continuous function f possesses a generalized left-continuous inverse f−1(y) := sup{x : f(x) < y}.
Proposition 4.11 (Kosmol & Müller-Wichards (2011)). Let f ∈ F. Then:

ϕVg (t) = tf−1
(

1
t

)
is the fundamental function of the Orlicz regret measure and it is concave.

Proof. The proof is in Appendix A.2.1.

Proposition 4.12. Let f ∈ F. Then ϕVg
and ϕRg

both have the following properties (denote by ϕ either of
them):

FF1. ϕ(0+) := limt↓0 ϕ(t) = 0.

FF2. If f is finite on R+, then ϕ′(0) = limt↓0
ϕ(t)

t = ∞. Otherwise, ϕ′(0) < ∞.

Proof. The proof is in Appendix A.2.2.

These properties have direct consequences for norm equivalence relationships.
Corollary 4.13. Let f ∈ F. Then L∞ ⊊ Vg = Rg, where g is the conjugate of f .

Proof. As the smallest rearrangement invariant space, L∞ ⊆ Vg = Rg holds. But it is indeed a strict subset:
from (Haroske, 2006, Prop. 3.4 iii)) we know that Rg ⊆ L∞ holds if and only if limt↓0

1
ϕ(t) < ∞. But

limt↓0 ϕ(t) = 0 and therefore limt↓0
1

ϕ(t) = ∞.

Corollary 4.14. Let f ∈ F. If f is finite, then Vg = Rg ⊊ L1. In contrast, if f is not finite, then
Vg = Rg = L1.

Proof. As the largest rearrangement invariant space, Vg = Rg ⊂ L1 holds. However, we have from Theorem
31 in (Fröhlich & Williamson, 2022), that all rearrangement invariant norms with ϕ′(0) < ∞ are equivalent to
L1. In contrast, if ϕ′(0) = ∞, the norm cannot be equivalent to L1 (Fröhlich & Williamson, 2022, Corollary
32) and thus Rg ⊊ L1.

These corollaries are well-known in Orlicz space theory, but it is instructive to see how they easily follow
from properties of the fundamental function.

A general formula for the fundamental function ϕRg
of the divergence risk measure seems infeasible8. How-

ever, we observe that in the case of a Young divergence function, it has a simple expression.
Proposition 4.15. Let f ∈ FY . Then the fundamental function of the divergence risk measure is

ϕRg
(t) = min

{
1, tf−1

(
1
t

)}
,

that is, a capped version of the fundamental function of the corresponding regret measure.

Proof. The proof is in Appendix A.2.3.

Example 4.16. For the Young KL divergence, where f̄KL(x) = (x log(x) − x + 1) · χ[1,∞), the fundamental
function is

ϕKL(t) = t(1/t − 1)
W
(

(1/t−1)
e

) ,

8It is easy to write down an equation, but one which is typically difficult to solve.
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Figure 1: The fundamental functions of the Young KL, the Young χ2 and the CVarα=0.2 divergence risk
measures, all with ε = 1. In practice, this will be an extreme choice of ε. The grey dotted line is the identity.
Left: the full fundamental function. Right: the fundamental function for 0 ≤ x ≤ 0.05. Here, the difference
in tail behaviour is better visible: the fundamental function of the Young KL divergence risk measure is
extremely steep near the origin, whereas that of CVarα=0.2 is close to the identity, which corresponds to the
expectation. All of these fundamental functions are continuous at the origin.

where W is the Lambert W function.
Example 4.17. For the Young χ2 divergence, where f̄χ2(x) = (x − 1)2 · χ[1,∞), the fundamental function is

ϕχ2(t) = min
{

1, t +
√

t
}

.

Example 4.18. For CVarα, the fundamental function is ϕCVarα
(t) = min

{
1, t

1−α

}
. For α = 0, ϕE(t) = t.

We illustrate these fundamental functions in Figure 1.

The fundamental function characterizes important aspects of an r.i. norm. Of particular interest is ϕ′(0), as
is exemplified in Corollary 4.14. Furthermore, we have the following result which will be useful in Section 6.
Proposition 4.19. Let ϕ : [0, 1] → R+ be an increasing concave function with ϕ(0) = 0 and ϕ(0+) = 0.
Then there exists an Orlicz norm || · ||OΨ which has ϕ as its fundamental function and a supercoercive Young
function Φ as the conjugate of Ψ.

Proof. The proof is in Appendix A.2.4.

4.3 Equivalences of Orlicz Norms

Through the framework of r.i. Banach spaces, we can associate each divergence risk measure with its natural
space, on which it is finite. However, many non-identical divergence risk measures may induce the same
space. Then, however, they are equivalent. Recall that two r.i. norms || · ||X1 and || · ||X2 are said to be
equivalent if

∃c, c′ > 0 : c · ||X||X1 ≤ ||X||X2 ≤ c′ · ||X||X1 , ∀X ∈ M.

Two r.i. norms are equivalent if and only if their respective spaces coincide (Bennett & Sharpley, 1988, p.
7). As an example, we have seen that the parameter ε does not matter up to equivalence (Corollary 3.23).

Why are we interested in norm (non)-equivalences? Whether two norms are equivalent or not prima facie
seems like a very coarse criterion for considering them similar. After all, the binary equivalence notion does
not tell us how large the multiplicative constants are. Equivalence means that the norms are finite on the
same set of functions: yet in practice, when computing the norm of an empirical loss distribution, we will
never encounter infinities, since all real-world samples are bounded (from L∞). In this way, unbounded tails
are a useful, asymptotic idealization used to model the frequency of extreme events.

In a sense, those divergence risk measures with the same space share the same tail sensitivity; although we
will later argue that sharing the same fundamental function provides a coarser and simpler way to capture
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tail sensitivity. Consider what the risk assessment R(X) = ∞ means: the decision maker considers the tail
risk in X to be unbearable, that is, there is no finite certainty equivalent (gain), which in exchange would
make the risk bearable. For example, irrespective of the choice of ε > 0, a decision maker who uses the KL
divergence risk measure would assess R(X) = ∞ for a random variable X which is not subexponential, (see
Example 5.10) and thus prefer any subexponential random variable over it. Thus, investigating equivalence
relationships between spaces reveals different attitudes towards tail risk. In general, the more tail-sensitive
a risk measure, the smaller the induced space.

We briefly consider equivalence of Orlicz norms, as we require these results in what follows.
Definition 4.20 (Rubshtein et al. (2016, p. 208)). Let g1, g2 be Young functions. We write g1 ≻ g2 when

g2(x) ≤ bg1(ax), ∀x ≥ 0,

for some b > 0, a > 0.

We write ∼ when both g1 ≻ g2 and g2 ≻ g1 holds. We see immediately that f ∼ fε for any ε > 0 if f ∈ FY .
Proposition 4.21 (Rubshtein et al. (2016, p. 209)). Let g1, g2 be Young functions. The following statements
are equivalent:

E1. g1 ≻ g2.

E2. Lg1 ⊆ Lg2 .

E3. ∃c > 0: ϕVg2
(t) ≤ cϕVg1

(t), ∀t ∈ [0, 1].

E4. ∃c > 0: ||X||Vg2
≤ c||X||Vg1

.

Example 4.22. The norm induced by the (Young) χ2 divergence risk measure is equivalent to the L2 norm,
which has fundamental function ϕL2(t) =

√
t. Observe that

√
t ≤ t(1 +

√
1/t) ≤ 2

√
t, ∀t ∈ (0, 1]

and ϕ(t) = t(1 +
√

1/t) is the fundamental function of the χ2 Orlicz regret measure. Therefore, the natural
r.i. space for the χ2 divergence risk measure is that of random variables X for which |X| has a variance.
Example 4.23. CVarα is equivalent to the expectation for all α ∈ [0, 1). As α → 1, it yields L∞, however,
and the risk measure is the essential supremum.
Example 4.24. Let h be a Young function, which need not be divergence function, e.g. h(x) = x2. Then
f(x) := (h(x) − h(1)) · χ[1,∞) is valid Young divergence function which is furthermore equivalent to h. As an
example, h(x) = x2 is equivalent to f(x) = ((x − 1)2) · χ[1,∞), the χ2 Young divergence function.

Proof. Obviously f is a valid Young divergence function. Consider the definition of the Luxemburg norm

||X||Lf = inf
{

λ > 0 : E
(

h

[
|X|
λ

]
− h(1)

)
· χ[1,∞) ≤ 1

}
.

to see that Lh = Lf .

5 Tail-Specific Marcinkiewicz and Lorentz Norms

Our overarching goal is to show how r.i. norms (and hence, coherent risk measures) can be constructed
which exhibit a desired tail sensitivity; thereby yielding natural spaces of “tail classes”, on which the norm is
finite, for instance the space of subexponential random variables. In this section we advance on this idea by
showing how tail sensitivity is connected to the fundamental function and the envelope function. Intuitively,
a desired tail sensitivity is in a very close correspondence with the fundamental function. For each thus
constructed fundamental function, we consider the smallest and largest compatible coherent risk measure.
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In the next section, we derive the corresponding divergence risk measure via the same approach, which is
then situated in between these extremes or coincides with either of them.

In the language of the imprecise probability literature, the fundamental function specifies a coherent upper
probability (Walley, 1991), which is the restriction of the risk measure to indicator functions. In classical
precise probability theory, one can take either the expectation operator or a probability measure as the
primitive notion, since applying an expectation to indicator functions yields a probability and vice versa,
an expectation is uniquely defined via integration. In the more general theory of imprecise probability, this
one-to-one correspondence does not hold anymore: a fundamental function can in general be extended in
multiple ways to a coherent risk measure9. However, the fundamental function still characterizes fundamental
properties of a norm. For the relation of imprecise probability and coherent risk measures we refer to (Vicig,
2008) and (Fröhlich & Williamson, 2022). Our approach is to specify a tail sensitivity via the envelope
function, which is in a one-to-one relationship with the fundamental function. The specification of an
envelope function is a least upper bound on the tail behaviour of the random variables, which are contained
in the space. In some cases, the envelope function is itself in the space; in others it is a natural limit object,
which is “just outside” the space.

Recall that for an r.i. norm, we have the associate relationship:

||X||X = sup
{∫ 1

0
X∗(ω)Z∗(ω) dω : ||Z||X ′ ≤ 1, Z ∈ X ′

}
. (7)

By specifying a set Z := {Z∗ : ||Z||X ′ ≤ 1}, we have fully specified the norm in terms of which quantile
reweightings are admissible. Conversely, any set of nonnegative and decreasing Z∗ leads to a legitimate r.i.
norm (see e.g. Fröhlich & Williamson, 2022, Section 4.7). Thus, an r.i. norm is fully identified by its set
of nonnegative and decreasing functions Z∗ on [0, 1]. However, the fundamental function, which is a far
simpler object than a whole set of Z∗, already stratifies the space of r.i. norms in a useful way regarding tail
sensitivity. To see this more clearly, we need to introduce the concept of envelope functions (Haroske, 2006).
Definition 5.1 (Haroske (2006)). Let X be any r.i. space. Define EX : (0, 1] → R+ ∪ {∞} by:

EX (t) := sup{X∗(t) : ||X||X ≤ 1}.

EX is right-continuous and decreasing, hence E∗
X = EX .

Recall that since X∗(t) = F −1
|X|(1 − t), the tail behaviour is encoded in the behaviour as t ↓ 0.

Proposition 5.2 (Haroske (2006, p. 53)). The envelope function is in a one-to-one relation with the fun-
damental function via

EX (t) = 1
ϕX (t) , ∀t ∈ (0, 1].

Since multiplicative factors do not matter up to norm equivalence, we shall be concerned with equivalence
classes of envelope functions and fundamental functions. That is, similar to E3, we call two envelope functions
equivalent if

∃c, c′ > 0 : c · EX1(t) ≤ EX2(t) ≤ c′ · EX1(t), ∀t ∈ (0, 1].
and likewise for fundamental functions. Intuitively, the envelope function constrains the tail behaviour of
random variables in the space. It is however more instructive to change perspective and consider the associate
space. We need the following technical result.
Proposition 5.3 (Rubshtein et al. (2016, p. 135)). Let X be an r.i. space with fundamental function ϕX .
Then the fundamental function of the associate space X ′ is ϕX ′(t) = t

ϕX (t) .

We may refer to ϕX ′ as the associate fundamental function. Consequently, the envelope function in the
associate space is:

EX ′(t) = 1
ϕX ′(t) = ϕX (t)

t
= sup{Z∗(t) : ||Z||X ′ ≤ 1}.

9In expectational cases, there is only a single extension, see Fröhlich & Williamson (2022, Section 4).
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Thus, the envelope function constrains the tail behaviour of the dual variables Z∗ in (7) and it is the least
such upper bound, the supremum. All in all, we have one-to-one relations between ϕX ,ϕX ′ ,EX and EX ′ ;
which object is easiest to specify depends on motivation and perspective. In what follows, we often write
simply ϕ instead of ϕX for the primal fundamental function to prevent excessive subscripts. Essentially, the
choice of either of these objects is a choice of a coherent upper probability underlying an r.i. norm. Also
observe that

ϕ′(0) = lim
t↓0

ϕX (t)
t

= lim
t↓0

EX ′(t).

The derivative of ϕ at the origin has been used to characterize norm equivalences (see for instance Corollar-
ies 4.13, 4.14 and (Fröhlich & Williamson, 2022, Section 4.9)). Via the envelope function perspective we see
that it corresponds to a constraint on the tail behaviour of the dual variables.

The envelope function naturally suggests the following approach to the construction of tail-sensitive r.i.
norms: specify a constraint on the tail behaviour of dual or primal variables by specifying an envelope
function (EX or EX ′) as the decreasing rearrangement of a reference distribution (e.g. as the decreasing
rearrangement of an arbitrary random variable with exponential distribution); then construct an r.i. norm
with the corresponding fundamental function. For example, when constraining the quantiles of primal
variables X to be bounded from above by the quantiles of an exponential distribution, we will arrive at the
class of subexponential variables and the KL divergence risk measure.

For any concave fundamental function, we may consider the smallest and the largest r.i. norm, with the Orlicz
norm in between. The largest norm is known as the Lorentz norm and the smallest is the Marcinkiewicz
norm.

5.1 The Marcinkiewicz Norm

Assume we have specified a legitimate EX and thus a quasiconcave ϕ(t) = 1/EX (t), since a fundamental
functions must always be quasiconcave (Proposition 4.9). A first (unsuccessful) attempt to define a norm,
which captures this constrained tail behaviour, is to define the following.
Definition 5.4 (Krĕın et al. (1982)). Let ϕ(t) = 1/EX (t) be a quasiconcave fundamental function. We
define the Marcinkiewicz quasi-norm as:

|X|Mϕ
:= sup

0<t≤1
ϕ(t)X∗(t).

This naturally expresses the constraint on the quantile behaviour of X, compared to the reference EX .
Intuitively:

|X|Mϕ
< ∞ ⇐⇒ ∃c : X∗(t) ≤ c · EX (t), t ∈ (0, 1].

Here, EX is the decreasing rearrangement of our reference distribution, e.g. exponential. Unfortunately,
| · |Mϕ

is not a norm, as it does not satisfy the triangle inequality. However, we can define the closely related
Marcinkiewicz norm. By integrating the decreasing rearrangement, we obtain the maximal function (Bennett
& Sharpley, 1988, pp. 52-53):

X∗∗(t) := 1
t

∫ t

0
X∗(ω) dω, t > 0.

Since X∗(t) = F −1
|X|(1 − t), we find that X∗∗(t) = CVar1−t(|X|); thus X∗∗(0) is the essential supremum of

|X| and X∗∗(1) = E[|X|].
Definition 5.5. Given any quasiconcave fundamental function ϕ, the Marcinkiewicz norm || · ||Mϕ

is defined
as:

||X||Mϕ
:= sup

0<t≤1
{ϕ(t)X∗∗(t)}

= sup
0<t≤1

{ϕ(t) CVar1−t(|X|)} .

We denote the Marcinkiewicz space as Mϕ := {X ∈ M : ||X||Mϕ
< ∞}.
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This norm also has fundamental function ϕ. Intuitively, the Marcinkiewicz norm measures the growth of the
CVar’s, but weighted with the fundamental function. In the risk measure community, the Marcinkiewicz norm
has been unknowingly re-discovered by Pichler (2013, Section 5). The difference between | · |Mϕ

and || · ||Mϕ
is

the use of the decreasing rearrangement (backwards quantiles) vs. the maximal function (backwards CVar’s).
Subaddivity of the maximal function yields a legitimate norm in the latter case. However, the quasi-norm
and the norm are in fact equivalent in many cases of interest. Recall that EX = E∗

X , since EX is decreasing,
and the maximal function is E∗∗

X .
Proposition 5.6 (Krĕın et al. (1982)). Let ϕ be quasiconcave. The following are equivalent:

M1. ∀s > 1: sup0<t≤1
ϕX ′ (t/s)

ϕX ′ (t) < 1.

M2. | · |Mϕ
and || · ||Mϕ

are equivalent: ∃K > 0 : |X|Mϕ
≤ ||X||Mϕ

≤ K · |X|Mϕ
.

M3. ||ϕX ′(t)/t||Mϕ
= ||EX ||Mϕ

< ∞.

M4. EX and E∗∗
X are equivalent: ∃K > 0 : EX (t) ≤ E∗∗

X (t) ≤ K · EX (t), ∀t ∈ (0, 1].

M5. Let ϕCVar(t) = 1/E∗∗
X (t). || · ||Mϕ

and || · ||MϕCVar
are equivalent.

Proof. The proof is in Appendix A.3.1.

A necessary, but not sufficient criterion for these conditions to hold is that ϕX ′ be strictly increasing.
Intuitively, the conditions amount to requiring that the CVar’s of the envelope function do not grow too
rapidly.

The Marcinkiewicz norm naturally expresses a tail sensitivity based on CVar’s. If any of the conditions in
Proposition 5.6 are fulfilled, it does not matter up to equivalence whether the approach to specify a tail
sensitivity is based on CVar’s or quantiles of a reference distribution: the same space results.

To summarize, our approach is as follows: specify an envelope function EX as the decreasing rearrangement
of a reference distribution with a desired tail behaviour. This amounts to a choice of a coherent upper
probability in form of the fundamental function ϕX . Then consider the corresponding Marcinkiewicz quasi-
norm, which is typically equivalent to the Marcinkiewicz norm (we later demonstrate that the equivalence
“often” holds). In any case, the Marcinkiewicz norm occupies a special status among all r.i. norms, which
are compatible with a specified fundamental function. To state the result, we need to define its associate
norm, the Lorentz norm.

5.2 The Lorentz Norm

Definition 5.7. Given any concave fundamental function ϕ, the Lorentz norm || · ||Λϕ
is defined as:

||X||Λϕ
:=
∫ 1

0
X∗(ω) dϕ(ω)

= X∗(0)ϕ(0+) +
∫ 1

0
X∗(ω)ϕ′(ω) dω.

We denote the Lorentz space as Λϕ := {X ∈ M : ||X||Λϕ
< ∞}.

The Lorentz norm is fully specified by its concave fundamental function, which indeed is ϕ. It has an intuitive
interpretation: the derivative of the fundamental function is used to reweight the decreasing rearrangement.
Since ϕ is concave, ϕ′ is decreasing and thus more weight is put on worse outcomes. Furthermore, if ϕ is not
continuous at the origin, i.e. ϕ(0+) > 0, then the essential supremum X∗(0) receives the fixed weight ϕ(0+).
We remark that in finance and insurance, the Lorentz norm appears as the norm induced by a spectral risk
measure (Acerbi, 2002), also called a distortion risk measure (Wang, 2000), which plays a major role in
financial risk assessment.
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In fact, the Marcinkiewicz norm || · ||MϕX ′
, where ϕX ′(t) = t/ϕ(t), is the associate norm to the Lorentz norm

Λϕ. The converse associate relation also holds, but with a technical subtlety regarding (quasi)concavity (see
Section 5.3).
Example 5.8. L1 is a Lorentz space with ϕL1(t) = t. Diametrically opposed, L∞ is also a Lorentz space
with ϕL∞(t) = χ(0,1]. In the case of L1 and L∞, the Marcinkiewicz, Orlicz and Lorentz norm are in fact
identical (Fröhlich & Williamson, 2022, Section 4). In contrast, for instance, L2 is not a Lorentz space, but
an Orlicz space.

Given a concave fundamental function, the Marcinkiewicz norm yields the smallest (most optimistic) and
the Lorentz norm the largest (most pessimistic) risk assessment.
Theorem 5.9 (Bennett & Sharpley (1988, p. 72)). Let X be an r.i. space with concave fundamental function
ϕ. Then the following embedding holds:

Λϕ ⊆ X ⊆ Mϕ

and the norms are in the relationship:

||X||Mϕ
≤ ||X||X ≤ ||X||Λϕ

∀X ∈ M.

We offer the following intuition for the result: both the Marcinkiewicz and the Lorentz norm are in a special,
parsimonious one-to-one correspondence to the fundamental function ϕ. Let ϕ be concave and continuous
at the origin. Then the Lorentz norm is defined using only the single dual variable ϕ′, which controls the
reweighting (and it is the only r.i. norm for which a single dual variable suffices). As to the Marcinkiewicz
norm, we have the extremal assessment ||ϕ′||MϕX ′

= 1. In this sense, the Marcinkiewicz norm is exactly
tuned to the associate fundamental function. Thus, the Marcinkiewicz and the Lorentz norm demarcate the
space of r.i. norms, which are compatible with a specified fundamental function.

We build intuition for the use of the Marcinkiewicz and Lorentz norms with the following example of the
spaces Lexp and LlogL. In this example we consider the class of subexponential random variables and its
“dual” tail class, the random variables with finite differential entropy.
Example 5.10 (Bennett & Sharpley (1988, pp. 243-254)). Lexp, LlogL: Consider the envelope function
that expresses subexponential tails. The decreasing rearrangement of an exponential distribution, which is
shifted by 1, is Y ∗(t) = 1 − log(t); the reason for the shift will become clear later. We take this to be the
envelope function EX (t) = 1 − log(t) and define the Marcinkiewicz quasi-norm:

|X|Lexp := sup
0<t≤1

1
1 − log(t)X∗(t).

Note that ϕ(t) = 1/(1 − log(t)) is quasiconcave. In this case, it is easy to verify that condition M1 in
Proposition 5.6 holds, and therefore we may equivalently consider the Marcinkiewicz norm:

||X||Lexp := sup
0<t≤1

1
1 − log(t)X∗∗(t).

Observe that the CVar’s of an exponential distribution (not shifted) are in fact

CV arα(|X|) = 1 − log(1 − α) ∀α ∈ [0, 1).

We call a random variable subexponential if ||X||Lexp < ∞ and denote the space Lexp. It turns out, as we
observe in the next section, that an equivalent approach to capture this tail class is via an Orlicz norm,
which then yields the following definition: a random variable X is subexponential if ∃λ > 0 such that:∫

Ω
exp (λ|X(ω)|) dω = E[exp(λ|X|)] < ∞, (8)

that is, if the moment-generating function of |X| is finite for some λ > 0. This is a typical textbook definition
of subexponential tails (Vershynin, 2018). In this case, we have equivalence of the two definitions of Lexp.
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We will later observe that this is due to the fact that the Marcinkiewicz space here coincides with the Orlicz
space with the same fundamental function.

The space Lexp is in fact the associate space of the Lorentz space LlogL, defined by:

||X||LlogL :=
∫ 1

0
X∗(ω) dϕLlogL(ω), ϕLlogL(t) := t + t log(1/t).

This is a distinguished space: the space LlogL consists of those random variables whose CVar’s are integrable:

||X||LlogL < ∞ ⇐⇒
∫ 1

0
CVarα(|X|) dα < ∞,

which is a very weak condition, hence the space is very “large”. In fact, we have the remarkable embedding
situation:

L∞ ⊊ Lexp ⊊ Lp ⊊ LlogL ⊊ L1, ∀p ∈ (1, ∞).

Thus, Lexp is smaller than any Lp space, whereas its associate LlogL is larger than any Lp space, p ∈ (1, ∞).
This behaviour can be intuited from the fundamental functions as x ↓ 0: the fundamental function of LlogL
is very moderate, while that of Lexp is extremely steep near the origin (see Appendix A.3.2).

Furthermore, LlogL consists of those random variables with finite differential entropy10:

||X||LlogL < ∞ ⇐⇒
∫

Ω
|X(ω)| log(|X(ω)|) dP (ω) < ∞,

which, if X = dQ
dP is a legitimate density, is just the KL divergence of Q to the base measure P . Hence

we observe that the KL divergence risk measure is finite on Lexp (a very “small” space) and the feasible
dual variables are from LlogL (a very “large” space). This means that almost arbitrary tail reweightings are
allowed, which entails an extremely tail-sensitive behaviour of the KL divergence risk measure.

We remark that, confusingly, according to some authors a subexponential random variable is one which has
heavier tails than an exponential random variable. Such terminology appears counter-intuitive to us and
conflicts with the definition of a sub-Gaussian random variable.

5.3 Quasiconcavity and Concavity

The question remains whether any random variable Y is a valid reference distribution as an envelope function,
with the identification ϕ(t) = 1/Y ∗(t) for 0 < t ≤ 1. We always set ϕ(0) = 0. Then ϕ is continuous at 0
if and only if limt↓0 Y ∗(t) is unbounded. Throughout, we shall only consider such Y ∗ (with the instructive
exception of Example 6.5). The critical issue is that ϕ must be quasiconcave. For this, we need that ϕ is
nonnegative and increasing, which is satisfied for any Y , as Y ∗ is nonnegative and decreasing. Also, we
require that t 7→ ϕ(t)/t be decreasing:

ϕ(t)
t

= 1
Y ∗(t) · t

= 1
t/ϕ(t) = 1

ϕX ′(t) ,

which is decreasing if and only if t 7→ Y ∗(t) · t is increasing. Hence, any nonzero Y which ensures that
t 7→ Y ∗(t) · t is increasing yields a legitimate envelope function. Observe that since ϕX ′(t) = Y ∗(t) · t, this is
equivalent to requiring that ϕX ′ be quasiconcave (note that t 7→ ϕX ′(t)/t = Y ∗(t) is decreasing). Therefore
it is also equivalent to requiring that the envelope function of the associate space X ′ is decreasing, which of
course is necessary for any legitimate r.i. norm. We make an observation, which relates to the embedding
theorem.
Proposition 5.11. Assume Y ∗ is differentiable on (0, 1). Then for t 7→ ϕX ′(t) = Y ∗(t) · t to be increasing
it is necessary that Y ∗(t) ≤ Y ∗(1) · 1

t .
10Observe the content in (Bennett & Sharpley, 1988, p. 243-245) and combine it with the equivalence of the Orlicz functions

(x log(x))χ[1,∞) and x log(x) − (x − 1).
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Proof. The proof is in Appendix A.3.3.

Recall that L1 is the largest of all r.i. spaces and has envelope function EL1(t) = 1
t . Since the constraint

Y ∗(1) = 1 (equivalently, ϕ(1) = 1) can be imposed without loss of generality, we see that unsurprisingly, the
envelope function of L1 is the largest of all legitimate envelope functions.

Working with the maximal function is even simpler: by setting ϕCVar(t) = 1/Y ∗∗(t) for any nonnegative and
nonzero Y , the resulting ϕ is guaranteed to be quasiconcave, since t 7→ Y ∗∗(t) · t =

∫ t

0 Y ∗(ω) dω is increasing.
Example 5.12. Taking the exponential distribution, Y ∗(t) = − log(t), fails since t 7→ − log(t) · t is not
increasing on (0, 1]; it violates the condition in Proposition 5.11. However, when shifting the distribution to
have minimum value 1, i.e. Y ∗(t) = 1 − log(t), we get t 7→ (1 − log(t)) · t, which is increasing on (0, 1]. Of
course, such a shift is insignificant for tail behaviour.

With regard to the quasiconcavity vs. concavity distinction, we remark that it is not of essential importance.
For instance, the Lorentz norm requires a concave ϕ in its definition. In this case, one can use the least
concave majorant ϕ̃ of ϕ, since a quasiconcave function ϕ is always equivalent to its least concave majorant ϕ̃:
1
2 ϕ̃ ≤ ϕ ≤ ϕ̃ (Rubshtein et al., 2016, p. 131). In fact, any r.i. space with a quasiconcave fundamental function
can be equivalently renormed to have its least concave majorant as the fundamental function (Bennett &
Sharpley, 1988, p. 71), (Pick et al., 2013, p. 268), so the quasiconcave–concave distinction is not essential.

Finally, we note that even if ϕ is concave, it may be that ϕX ′ is only quasi-concave. The associate relationship
of the Marcinkiewicz and Lorentz space is preserved using the least concave majorant then (Rubshtein et al.,
2016, p. 147).

6 Tail-Specific Divergence Risk Measures

In the previous section, we have constructed Marcinkiewicz and Lorentz norms, which capture a desired tail
behaviour. In this section, we proceed with the construction of tail-specific Orlicz norms, which yield corre-
sponding divergence risk measures. We focus on the construction of Orlicz norms for a specific tail sensitivity;
from this, equivalent Orlicz regret and divergence risk measures can easily be derived (see Example 4.24 and
recall Corollary 3.21).
Remark 6.1 ( Rubshtein et al. (2016, p. 162, p. 209)). Let ϕ and ϕ̃ be equivalent concave fundamental func-
tions. Then Λϕ and Λϕ̃ are equivalent; Mϕ and Mϕ̃ are equivalent; and the Orlicz norms with fundamental
functions ϕ and ϕ̃ are equivalent.

We follow the same logic as in the previous section, beginning with the specification of a fundamental
function or, via its one-to-one correspondence, of an envelope function. In this section, we denote by Φ and
Ψ a conjugate pair of Young functions, which need not be divergence functions. Intuitively, they play the
role of f and g, respectively. The corresponding fundamental functions of the Orlicz spaces are ϕL

Φ(t) and
ϕΨ(t) = t/ϕΦ(t), where we use the L to emphasize that it corresponds to the Luxemburg norm in LΦ. Then:

||X||OΨ = sup
{∫ 1

0
X∗(ω)Z∗(ω) dω : Z ∈ LΦ, Z ≥ 0,E[Φ(Z)] ≤ 1

}
∀X ∈ LΨ.

In fact, the Orlicz norm is the associate norm to the Luxemburg norm, that is:

||X||OΨ = sup
{∫ 1

0
X∗(ω)Z∗(ω) dω : Z ∈ LΦ, Z ≥ 0, ||Z||LΦ ≤ 1

}
∀X ∈ LΨ. (9)

To achieve a desired tail sensitivity, we aim to constrain the tail behaviour of dual variables Z∗ in an Orlicz
norm (a divergence risk measure, respectively). For example, for the LlogL divergence risk measure, we
allow dual variables to be from Lexp. Conversely, for the Lexp (KL) divergence risk measure, we allow dual
variables from LlogL, which merely need to have finite differential entropy. We denote the envelope function
in LΦ of the Luxemburg norm, indexed by the Young function Φ, as:

EL
Φ(t) := sup{Z∗(t) : ||Z||LΦ ≤ 1}.
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By specifying this envelope function based on the decreasing rearrangement of some reference distribution
Y ∗, setting EL

Φ = Y ∗, we have the least upper bound on the tail behaviour of the dual variables in (9) in
terms of Y ∗ and thereby delimit possible quantile reweightings. The more extreme our envelope function,
the higher the reweighting can be. We assume that the envelope function is finite for all t ∈ (0, 1] and
unbounded for t = 0 (otherwise there would be no tails).
Proposition 6.2. Choose EL

Φ : (0, 1] → R+ as the decreasing rearrangement of some reference distribution,
for which EL

Φ(0+) = ∞, ϕΨ(t) := EL
Φ(t) ·t is increasing and concave on (0, 1] and which satisfies ϕΨ(0+) = 0.

We set ϕΨ(0) = 0. Then there exists an Orlicz norm || · ||OΨ which has fundamental function ϕΨ. The
conjugate Young function of Ψ, which is Φ, induces LΦ with envelope function EL

Φ. Furthermore, Φ is finite
and supercoercive and therefore Ψ is finite.

Proof. Let ϕΨ be the fundamental function of || · ||OΨ, that is, ϕΨ(t) = tΦ−1(1/t). Denote by ϕL
Φ(t) = t/ϕΨ(t)

the fundamental function of the Luxemburg norm with Young function Φ. We know that

EL
Φ(t) = 1

ϕL
Φ(t)

= 1
t/ϕΨ(t) = ϕΨ(t)

t
,

by Proposition 5.1 and Proposition 5.3; recall that the Orlicz norm || · ||OΨ is in an associate relationship to
|| · ||LΦ. Therefore:

ϕΨ(t) = tEL
Φ(t) = tΦ−1(1/t), ∀t ∈ (0, 1]

⇔ EL
Φ(1/x) = Φ−1(x), ∀x ∈ [1, ∞).

By specifying a legitimate EL
Φ(t), we thus obtain Φ−1(x) for x ≥ Φ−1(1). Of course, the behaviour of Φ

on 0 ≤ x < Φ−1(1) is immaterial for tail sensitivity. As we have seen before, Orlicz norms have concave
fundamental functions (Proposition 4.11), hence we have to ensure that ϕΨ(t) = EL

Φ(t) · t is a valid concave
fundamental function. Given that we specified some EL

Φ which yields a concave ϕ(t) = EL
Φ(t) · t and thereby

specifies the behaviour of f on x ≥ Φ−1(1), can we always find a compatible Φ, so that Φ is indeed a legitimate
Young function? The answer is affirmative and a constructive approach is in the proof of Proposition 4.19.
For the supercoercivity of Φ, see the proof of FF1 in Proposition 4.12. For the finiteness of Φ, observe that
EL

Φ(0+) = ∞ =⇒ ϕ′
Ψ(0) = ∞ and then see FF2 in Proposition 4.12.

Of course, the primal approach is also feasible, where the envelope of the Orlicz norm in LΨ is specified as
EO

Ψ (t) := sup{Z∗(t) : ||Z||OΨ ≤ 1} = 1/ϕΨ(t), hence we then demand that ϕΨ(t) is concave and ϕΨ(0+) = 0.
If we at least have a quasiconcave ϕ, that is, if t 7→ ϕΨ(t) := EL

Φ(t) · t is increasing, we may take its
equivalent least concave majorant (see Section 5.3). Thus, to achieve a tail sensitivity we merely need that
t 7→ ϕΨ(t) := EL

Φ(t) · t is increasing, since t 7→ ϕΨ(t)/t = EL
Φ(t) = Y ∗(t) is decreasing for any Y .

We have seen that specifying a least upper bound on the tail behaviour of primal or dual variables yields a
corresponding Orlicz space. Assume that we have therefore obtained a Young function Φ and an equivalent
Young divergence function f ∈ F via Example 4.24. To further motivate our approach, observe that if
Z /∈ LΦ, no finite ε will suffice for Z to satisfy the f -divergence constraint in the envelope representation of the
divergence risk measure. The converse direction is more subtle due to the ∆2 condition (see Definition A.6).
Thus, our approach is about the structure of the divergence ball, essentially given by the tail constraint, not
its particular size, which of course is also significant in practical implementations.
Example 6.3. LΨ = LlogL: we choose the dual envelope EL

Φ(t) to be the decreasing rearrangement of
a random variable with exponential distribution, shifted by 1, that is, EL

Φ(t) = 1 − log(t). As desired,
t 7→ ϕΨ(t) = EL

Φ(t) · t is increasing and concave and ϕΨ(0+) = 0. Then EL
Φ(1/x) = 1 − log(1/x) = Φ−1(x),

x ≥ 1. This is satisfied by the Young function

Φ(x) =
{

x 0 ≤ x < 1
exp(x − 1) x ≥ 1,

which is in fact equivalent (in the sense of Section 4.3) to the function Φ(x) = exp(x) − 1. Therefore we
obtain the LlogL Orlicz norm as || · ||OΨ.
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Example 6.4. LΨ = Lexp: assume that we want to construct an Orlicz norm where the primal variables X
are constrained to be subexponential. This can simply be obtained from the previous example by duality.
To provide more intuition, we derive it in another way. When choosing the primal envelope function as
ϕΨ(t) = 1/EO

Ψ (t) = 1/(1 − log(t)) based on a shifted exponential distribution, we face the problem that this
is only quasiconcave. However, we have the equivalence to the concave function t 7→ 1

log(1/t+1) :

1
1 − log(t) ≤ 1

log(1/t + 1) ≤ 2 · 1
1 − log(t) , ∀t ∈ (0, 1].

Setting 1/EO
Ψ (t) = ϕΨ(t) = tΦ−1(1/t) yields an unwieldy form for f involving the Lambert W function

instead of Φ(x) = x log(x) − (x − 1), albeit equivalent. Instead, we consider the Luxemburg norm || · ||LΨ
with envelope function EL

Ψ(t) = 1/ϕL
Ψ(t) and choose EL

Ψ(t) = log(1/t + 1), where the fundamental function
is (Rubshtein et al., 2016, p. 177):

ϕL
Ψ(t) = 1

Ψ−1(1/t) =⇒ Ψ−1(1/t) = log(1/t + 1) = EL
Ψ(t), ∀t ∈ (0, 1].

Thus we find that Ψ(y) = exp(y) − 1 satisfies the equation. Recall that the Luxemburg and Orlicz norms
with the same Young function are equivalent. It follows:

||X||OΨ < ∞ ⇐⇒ ∃λ > 0 : E[exp(λ|X|)] − 1 < ∞,

which is a standard definition of a subexponential random variable (Vershynin, 2018), cf. (8).
Example 6.5. LΨ = L1; Expectation and CVarα: in contrast to the assumption of Proposition 6.2 that
EL

Φ(0+) = ∞, assume we want to allow only bounded quantile reweightings, i.e. dual variables from L∞.
For instance, let EL

Φ(t) = 1, t ∈ (0, 1], so that all quantiles of the dual variables are bounded from above by
1. Therefore 1 = Φ−1(1/t), ∀t ∈ (0, 1], whence it follows up to equivalence that

Φ(x) :=
{

0 0 ≤ x ≤ 1
∞ x > 1,

which is also a divergence function. Let g(x) := Ψ(x) for x ≥ 0 and g(x) := 0 for x < 0, which is the convex
conjugate of Φ. In fact, g(x) = max(0, x). Then ||X||Vg

= E[|X|] and Vg(X) = E[X+]. This is nothing more
but the L1 – L∞ associate relation: the function Φ is the Young function whose Orlicz space is L∞, thus its
associate space is L1.

Similarly, when allowing reweightings up to 1/(1 − α), i.e. EL
Φ(t) = 1/(1 − α), we have Vg(X) = 1

1−αE[X+]
and Rg(X) = CVarα(X) via the infimal convolution in Section 3.5. This does not change the primal space,
which is still L1, whose associate space is L∞. The situation is clarified by the envelope representation

CVarα(X) = sup
{∫ 1

0
X∗(ω)Z∗(ω) dω : E[Z] = 1, 0 ≤ Z ≤ 1/(1 − α)

}
.

Example 6.6. Pareto, χ2: The decreasing rearrangement of a Pareto distribution with shape parameter p

(typically denoted α) is Y ∗(t) = t− 1
p . Set the dual envelope function EL

Φ(t) = t− 1
p . Then Φ(x) = xp. For

instance, p = 2 yields the χ2 divergence risk measure (up to equivalence, see Example 4.22). Of course,
LΦ = Lp and LΨ is then just Lq, where q is the dual exponent. Since 2 is self dual, that is, 1/2 + 1/2 = 1,
we have that the χ2 risk measure is finite on L2. The same procedure naturally works for any 1 < p ≤ ∞,
as t 7→ t− 1

p · t is increasing, giving the space Lp.

An interesting case is p = 1: Then EL
Φ(t) = 1/t, but t 7→ EL

Φ(t) · t is not continuous at 0. Then Φ−1(x) = x
and Φ(x) = x, which is not supercoercive. In fact, Φ(x) = x is the Young function whose Orlicz norm is the
expectation E[| · |]. By duality, we would obtain the essential supremum as || · ||OΨ, where

Ψ(x) =
{

0 0 ≤ x ≤ 1
∞ x > 1.
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Due to involved technical complications, however, we have excluded such norms (risk measures, respectively)
from our framework and assumed supercoercivity. In contrast, as p → ∞, we obtain EL

Φ(t) = 1 and we recover
the expectation (LΨ = L1) as in the previous example 6.5.

A curious phenomenon can be observed: when constraining the quantiles of dual variables by a Pareto
distribution with p = 2, we obtain the space L2. However, the Pareto distribution itself only has a finite
variance when p > 2. Similarly, p = 3 yields the L3 space, but the Pareto distribution only has a Kurtosis
for p > 3 (and so on). This means that the random variable Y whose decreasing rearrangement we used
to construct the Orlicz space via the envelope function EL

Φ = Y ∗ is itself not in the space LΦ, although it
is the least upper bound on the decreasing rearrangements {t 7→ Z∗(t) : ||Z||LΦ ≤ 1} (recall Definition 5.1).
Thus, the envelope function is a natural limit object. For example, we might say informally that the “limit”
of those distributions which have a finite variance is the Pareto p = 2 distribution. An interesting special
case is the pathological p = 1: the Pareto distribution only has an L1 norm (an expectation) for p > 1. In
this way, the extremely heavy-tailed Pareto p = 1 distribution with envelope function t 7→ 1/t is as extreme
as it gets, as the corresponding Orlicz space is the largest of all r.i. spaces (recall Proposition 4.3).

The question of when the reference distribution is itself in the space, i.e. EL
Φ = Y ∗ ∈ LΦ has a surprisingly

simple and insightful answer, which is related to M3 in Proposition 5.6.
Proposition 6.7. Let ϕΨ (resp. ϕΦ) be the fundamental function of LΨ (resp. LΦ) and ϕΨ(t)/t = EL

Φ. Then

||t 7→ ϕΨ(t)/t||LΦ = ||EL
Φ ||LΦ < ∞ if and only if MϕΦ = LΦ.

Proof.

||t 7→ ϕΨ(t)/t||LΦ = ||t 7→ Φ−1(1/t)||LΦ = inf
{

λ > 0 : EΦ
[
t 7→ Φ−1(1/t)

λ

]
≤ 1
}

. (10)

From Pick et al. (2013, p. 412) we have that if the last expression is finite, then MϕΦ = LΦ. Conversely,
assume MϕΦ = LΦ. Then we obtain from M3 in Proposition 5.6 together with the embedding theorem 5.9
that EL

Φ = Y ∗ ∈ LΦ.

To put this into words, the random variable whose decreasing rearrangement (backwards quantiles) we
used to specify the envelope function EL

Φ is itself in the space LΦ if and only if LΦ coincides with its
corresponding Marcinkiewicz space, that is, with the shared fundamental function ϕΦ. On the other hand,
we know from Proposition 5.6 that t 7→ EL

Φ = ϕΨ(t)/t ∈ MϕΦ if and only if the envelope approach based
on quantiles is equivalent to that based on CVar’s; formally, if the Marcinkiewicz quasi-norm | · |MϕΦ

and
the Marcinkiewicz norm || · ||MϕΦ

coincide (we use the “dual” of Proposition 5.6). Due to the embedding
theorem, t 7→ ϕΨ(t)/t ∈ MϕΦ is a necessary, but not sufficient condition for t 7→ ϕΨ(t)/t ∈ LΦ. We clarify
this with some examples.
Example 6.8. LΦ = Lexp : Φ(y) = exp(y) − 1, Φ−1(x) = log(x + 1). Then:

∃λ > 0 : ||t 7→ ϕΨ(t)/t||LΦ ≤
∫ 1

0
exp(λ log(1/x + 1)) − 1 < ∞

is finite, for instance with λ = 1/e. Therefore EL
Φ ∈ Lexp, that is, an exponential distribution is itself in the

space of subexponential random variables.
Example 6.9. LΦ = LlogL: Φ(x) = (x log(x) − x + 1) · χ[1,∞). We have that ϕΨ(t) = 1/(1 − log(t)) up to
equivalence, since LΨ = Lexp. Then condition M1 is (here ϕ = ϕΨ):

∀s > 1 : sup
0<t≤1

1 − log(t)
1 − log(t/s) < 1.

But for any s > 1, we obtain that limt↓0
1−log(t)

1−log(t/s) = 1. Hence, t 7→ ϕΨ(t)/t /∈ LlogL. Consequently, LlogL
does not coincide with the Marcinkiewicz space MϕΦ and moreover the envelope function EL

Φ grows so rapidly
as t ↓ 0 that the Marcinkiewicz quasi-norm does not coincide with the Marcinkiewicz norm.
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Example 6.10. LΦ = Lp: let 1 < p < ∞ and Φ(x) = xp, as in the Pareto example 6.6. Then ||t 7→
ϕΨ(t)/t||LΦ = ∞ is easily checked by using (10). Thus, for instance the χ2 divergence risk measure is not finite
on the Marcinkiewicz space with fundamental function ϕ(t) =

√
t (here LΦ = LΨ = L2). However, we have

that ||t 7→ ϕ(t)/t||MϕΦ
< ∞, that is, the conditions of Proposition 5.6 apply. Therefore the Marcinkiewicz

quasi-norm and the Marcinkiewicz norm are equivalent, but their induced space is strictly larger than the
Orlicz space (the Lp space). In fact, this larger space is known as the “weak Lp space”, which is used in the
theory of interpolation of operators. Thus, we find that the Pareto distribution of parameter p, even if it
does not have a finite Lp norm, is the natural representative and member of the weak Lp space, as it is the
least upper bound on the quantiles of random variables in Lp. For p = 1 and p → ∞, the Marcinkiewicz
and the Orlicz space coincide11.

In summary, in this section we have proposed a way to construct an Orlicz norm with a desired tail sensitivity
based on the specification of the least upper bound on the quantile behaviour of random variables in the
space. Due to the equivalence relation in Example 4.24, this approach can then be used to construct a
corresponding divergence risk measure, where the tail sensitivity is finely tuned to the reference distribution,
which is the envelope function.

6.1 Utility-Based Shortfall Risk

Until now, we have always considered coherent risk measures to encode a specific tail sensitivity. However,
there is another related class, the convex risk measures which have gained much attention recently in financial
risk measurement. A potential problem is that due to positive homogeneity, R(λX) = λR(X), the risk
assessment scales just like the loss variable itself. This might be undesirable due to hazards arising from
very large risks. Thus it may be desirable to construct risk measures which are not positively homogeneous,
so that the risk assessment can grow faster in the presence of large risks. A convex risk measure, which has
received much attention in finance particularly as a tool to measure heavy-tailed risk (Giesecke et al., 2008),
is the utility-based shortfall risk (UBSR) (Föllmer & Schied, 2002). In the context of machine learning it
has not seem widespread use yet; but, for example, Shen et al. (2014) apply it as a tool for risk-sensitive
reinforcement learning. Furthermore, Li et al. (2021) apply a special case of the UBSR12 to practical machine
learning problems and show that it can flexibly tune the impact of individual losses. In Appendix A.4, we
discuss the UBSR, which has been linked to Orlicz norms. We make this connection yet more explicit;
consequently, the insights from the previous section can then be directly applied to construct a utility-based
shortfall risk measure with a specific tail sensitivity. For instance, the choice in Li et al. (2021) corresponds
to a subexponential tail sensitivity.

7 Tail-Specific Orlicz Deviation Inequalities

Few papers in the machine learning literature have made explicit use of Orlicz space theory; see for instance
(Andoni et al., 2018), (Song et al., 2019) and (Chamakh et al., 2020). In contrast, concentration inequalities
are widely used in machine learning in the context of statistical learning. Many concentration inequalities
are in fact merely special cases of a general Orlicz deviation inequality; the standard textbook Boucheron
et al. (2013, p. 45) on concentration inequalities only mentions Orlicz spaces in passing. We refer to (van der
Vaart & Wellner, 1996, Part 2.2) for the general approach; concrete cases of tail sensitivity which have been
studied in the literature are the sub-Gaussian and the sub-Exponential norm (see e.g. (Vershynin, 2018)),
the sub-Weibull norm (Vladimirova et al., 2020), the Bernstein-Orlicz norm (van de Geer & Lederer, 2013),
the Bennett-Orlicz norm (Wellner, 2017) and more (Chamakh et al., 2021). Consequently, all of these give
rise to equivalent divergence risk measures.

We briefly present the Orlicz deviation inequality, since we believe that this general viewpoint may be helpful
to the machine learning community. Furthermore, we show how it naturally fits within our approach to tail
sensitivity based on the envelope function (hence, the fundamental function).

11This is due to the special situation that for L1 and L∞ all r.i. norms are equivalent.
12For positive values of their parameter t, the objective in (Li et al., 2021) is the convex entropic risk measure (Föllmer &

Knispel, 2011) on the empirical distribution. Note that the convex entropic risk measure is a special case of the UBSR (Giesecke
et al., 2008).

26



Published in Transactions on Machine Learning Research (01/2023)

Assume a finite Young function Ψ and X ≥ 0. Then, applying Markov’s inequality to the nonnegative and
increasing function x 7→ Ψ(x/||X||LΨ) yields (van der Vaart & Wellner, 1996, Part 2.2):

P (X ≥ x) ≤ P
(
Ψ(X/||X||LΨ) ≥ Ψ(x/||X||LΨ)

)
, ∀x > 0

≤
E
[
Ψ(X/||X||LΨ)

]
Ψ(x/||X||LΨ)

, ∀x > 0

≤ 1
Ψ(x/||X||LΨ)

, ∀x > 0,

which follows from the definition of the Luxemburg norm. In summary, for a finite Young function Ψ we
obtain:

P (X ≥ x) ≤ 1
Ψ(x/||X||LΨ)

, ∀x > 0. (11)

For each finite Young function Ψ, we therefore obtain a deviation inequality. In fact, we observe that it
bounds the tail behaviour by the distribution function of the envelope function. Recall that the distribution
function is µY (λ) := P ({ω ∈ Ω : |Y (ω)| > λ}) and that its generalized inverse is Y ∗. For simplicity, we shall
assume that µY is continuous and invertible. Of course, µY = µY ∗ holds. Since confusion could arise, we
distinguish the fundamental function of the Orlicz norm ϕO

Φ from the fundamental function of the Luxemburg
norm ϕL

Φ, where the subscript indicates the Young function.
Proposition 7.1 (Rubshtein et al. (2016, p. 177)). The fundamental function of the Luxemburg norm || · ||LΨ
is given by:

ϕL
Ψ(t) = 1

Ψ−1(1/t) = t

ϕO
Φ(t)

, ∀t ∈ (0, 1].

For a given Luxemburg norm, we can directly relate the deviation inequality to the envelope function.
Proposition 7.2. With the envelope function Y ∗(t) := EL

Ψ(t) = 1/ϕL
Ψ(t), where we assume Y ∗(1) = 1

(without loss of generality) and finite Ψ, we obtain the deviation inequality:

P (X ≥ x) ≤ µY ∗(x/||X||LΨ), x ≥ ||X||LΨ, X ≥ 0.

Proof. Just observe that

ϕL
Ψ(t) = 1

Ψ−1(1/t) = 1
EL

Ψ(t)
= 1

Y ∗(t) =⇒ Ψ(x) = 1
µY ∗(x) , ∀x ≥ 1,

and use (11).

To intuit this result, recall that the envelope function constrains the quantile behaviour of random variables
in an Orlicz space. Thus, it is unsurprising that the corresponding distribution function plays an analogous
role. Conversely, we offer the following constructive approach to obtain a deviation inequality with a desired
tail sensivity based on a reference distribution.
Proposition 7.3. Choose EL

Ψ : (0, 1] → R+ as the decreasing rearrangement of some reference distribution,
where EL

Ψ(0+) = ∞, EL
Ψ(1) = 1, and for which t 7→ ϕO

Φ(t) = EL
Ψ(t) · t is increasing and concave on (0, 1] and

which satisfies ϕO
Φ(0+) = 0. We set ϕO

Φ(0) = 0. With the envelope function Y ∗(t) := EL
Ψ(t) = 1/ϕL

Ψ(t), the
following Orlicz deviation inequality holds:

P (X ≥ x) ≤ µY ∗(x/||X||LΨ), x ≥ ||X||LΨ, X ≥ 0.

Proof. We apply the “dual” of Proposition 6.2 and obtain an Orlicz norm || · ||OΦ with fundamental function
ϕO

Φ . Observe that by the associate relationship

ϕO
Φ(t) = t

ϕL
Ψ(t)

= EL
Ψ(t) · t.

The associate of the Orlicz norm || · ||OΦ is the Luxemburg norm || · ||LΨ with envelope EL
Ψ. Also, we get

from Proposition 6.2 that Ψ is a finite Young function and therefore the deviation inequality holds due to
Proposition 7.2.
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Again, if ϕO
Φ(t) := EL

Ψ(t) · t is at least quasiconcave, for which it suffices that ϕO
Φ(t) := EL

Ψ(t) · t is increasing
(cf. Section 5.3), we may use the equivalent least concave majorant in the construction to obtain a deviation
inequality, which is equivalent up to a constant multiplicative factor.
Example 7.4. The sub-Exponential deviation inequality: let EL

Ψ(t) = 1 − log(t) (Example 5.10). Then:

P (X ≥ x) ≤ exp(−x/||X||LΨ + 1), x ≥ ||X||LΨ, X ≥ 0.

where the Young function Ψ(x) = x for x ∈ (0, 1] and Ψ(x) = exp(x − 1) for x ≥ 1 satisfies the equation
Ψ−1(1/t) = EL

Ψ(t) for t ∈ (0, 1].
Example 7.5. The Pareto deviation inequality: let EL

Ψ(t) = t−1/p, 1 < p < ∞. Then Ψ(x) = xp and:

P (X ≥ x) ≤ 1(
x/||X||LΨ

)p , x ≥ ||X||LΨ, X ≥ 0.

For p = 2, this gives Chebyshev’s inequality.

8 Application

We have demonstrated how, given a specific tail-sensitivity in the form of a fundamental function, one can
canonically construct three r.i. norms: the extremal Marcinkiewicz and Lorentz norms, and the Orlicz norm
in between. In some cases, the Orlicz norm is equivalent to one or even both of them. This raises the question
of whether one of these norms is superior. To give some practical advice, we consider corresponding risk
measures and how to compute with them. These are then candidates to replace the expectation in expected
risk minimization, in order to obtain a specified tail sensitivity.

The downside of the Marcinkiewicz norm for such practical use is that it lacks the property of translation
equivariance (C4), even when restricted to nonnegative random variables and constants only. However, Fröh-
lich & Williamson (2022) recently defined an equivalent norm, which is induced by a translation equivariant
risk measure13:
Proposition 8.1. (Fröhlich & Williamson, 2022, Theorem 4.16) Given any concave fundamental function
ϕ, which is continuous at 0, the positive translation equivariant Marcinkiewicz norm is defined as:

||X||T Mϕ
:= sup

0<t<1

1 − ϕ(1 − t)
t

· E[|X|] +
(

1 − 1 − ϕ(1 − t)
t

)
· CVart(|X|).

It holds that || · ||Mϕ
and || · ||T Mϕ

are equivalent. A corresponding coherent risk measure, which induces this
norm, is:

TMϕ(X) := sup
0<t<1

1 − ϕ(1 − t)
t

· E[X] +
(

1 − 1 − ϕ(1 − t)
t

)
· CVart(X).

The || · ||T Mϕ
norm is the smallest r.i. norm with fundamental function ϕ, which is induced by a coherent

risk measure.

Proof. We observe that this norm (risk measure, respectively) is a supremum over convex combinations of
the expectation and CVarα, where the weightings depend on the fundamental function to achieve the desired
tail-sensitivity. The class of risk measures is closed under convex combinations and taking suprema, hence
TMϕ is a legitimate coherent risk measure, which is obviously r.i. by definition. By taking absolute values,
the norm || · ||T Mϕ

is induced. For the remaining statements, see Fröhlich & Williamson (2022, Theorem
4.16).

13An r.i. norm can never be translation equivariant due to absolute homogeneity. Therefore Fröhlich & Williamson (2022)
have defined the related property of positive translation equivariance (PTE) for a norm: a norm is called PTE if ∀X ≥ 0, c ∈ R
such that X + c ≥ 0: ||X + c|| = ||X|| + c. Indeed, the norm in Proposition 8.1 turns out to be the smallest PTE r.i. norm with
a given fundamental function (Fröhlich & Williamson, 2022, Theorem 4.16).
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Thus, the TMϕ risk measure is distinguished in the sense that the induced norm is the smallest of all r.i.
norms which are induced by risk measures of fundamental function ϕ, thereby providing the smallest (most
optimistic) risk assessment.

A spectral risk measure, which induces a Lorentz norm, extends the fundamental function in the most
cautious (pessimistic) possible way. The Lorentz norm || · ||Λϕ

corresponds to the spectral risk measure Rϕ:

Rϕ(X) :=
∫ 1

0
F −1

X (1 − ω) dϕ(ω).

Thus, having specified a desired tail sensitivity, using the coherent risk measures TMϕ and Rϕ are the
extremal choices and they hence provide a maximal “model uncertainty” regarding the choice of risk measure.
Example 8.2. (Fröhlich & Williamson, 2022) Let ϕ(t) = 1 − (1 − t)2. Then consider

Rϕ(X) = MaxVar(X) = EX1,X2∼X [max(X1, X2)]
TMϕ(X) = Dutch(X) = E [max(X,E[X])] ,

where X1, X2 ∼ X means that X1 and X1 are independent and identically distributed. These risk measures
are known as MaxVar14 (Cherny & Madan, 2009) and the Dutch risk measure (Van Heerwaarden & Kaas,
1992).

The Orlicz norm (the Orlicz regret and risk measure, respectively) is situated in between these two ends of
optimism and pessimism. However, we refrain from making a general recommendation as to which of the
three candidates (or even another risk measure with the given fundamental function) to use in practice. We
make some remarks regarding the choice.

• Spectral risk measures are embedded in a rich literature, from economics (Quiggin, 2012), insurance
(Wang, 2000) to philosophy (Buchak, 2013), and can be motivated from various perspectives as a
tool for rational decision making. However, the computation of spectral risk measures is non-trivial.
We refer to (Pandey et al., 2021) for the estimation of spectral risk measures from samples and
to (Holland & Haress, 2022), (Leqi et al., 2022) and (Mehta et al., 2022) for learning schemes,
which may be used in practice to replace ERM with spectral risk measures. Bäuerle & Glauner
(2021) study the minimization of spectral risk measures in the context of Markov decision processes.
Some spectral risk measures, like E, CVarα or convex combinations thereof are easily computed and
optimized; a useful form is that of Example 3.20. To improve the stability of optimizing CVarα in
a batch setting, Curi et al. (2020) have proposed an adaptive sampling method; see also (Soma &
Yoshida, 2020) and (Holland & Haress, 2021).

• The TMϕ risk measure, related to the Marcinkiewicz norm, is perhaps not as intuitive. However, it
is easy to compute in a risk minimization loop. As of now, we see little motivation for employing it
in practice.

• The f -divergence risk measure is situated in between, albeit in many cases equivalent to one of the
above, as we observed in Section 6. Specifically, a highly tail-sensitive divergence risk measure is
typically equivalent to the corresponding Marcinkiewicz norm. An advantage is that a divergence risk
measure naturally comes with a corresponding deviation inequality, as we established in Section 7.
Also, some prominent spectral risk measures like E or CVarα are divergence risk measures. The
infimum-based representation (5) allows practical computation. For instance, when training a neural
network, a single line suffices to implement (5) in a framework such as PyTorch. We also refer to
Chouzenoux et al. (2019) who propose a suitable accelerated projected gradient algorithm.

On the other hand, the utility-based shortfall risk has different use cases such as reinforcement learning, as
it lacks positive homogeneity and is thus not suitable in a standard supervised learning risk minimization

14The name MaxVar is due to our loss-based orientation here; the authors originally called it MinVar due to a sign flip.
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loop. Finally, use cases for the Orlicz regret measure may appear in risk-sensitive regression; we refer to
Rockafellar & Uryasev (2013) and Rockafellar et al. (2008) for regression based on error measures E, which
are based on regret measures V via the unique correspondence E(X) = V (X) −E[X]. For instance, quantile
regression is associated with the CVarα Orlicz regret measure.

9 Conclusion

In this work, we have brought together concepts such as the fundamental function and envelope function
from the theory of r.i. Banach function spaces with the framework of coherent risk measures, in particular
divergence risk measures. As a consequence, we have obtained a general approach to fine-tune the tail
sensitivity of a risk measure, which then functions as a more cautious replacement for the expectation in
ERM, or more generally, can be used to assess the risk inherent in a loss distribution.

We have demonstrated how tail sensitivity is related to the fundamental function. To a first approximation,
those risk measures with the same fundamental function share the same tail sensitivity; on a finer level,
however, it might be the case that the spaces on which different such risk measures are finite do not coincide.
Nonetheless, the fundamental function offers a useful and simple stratification of the space of coherent risk
measures. In this way, the choice of fundamental function indeed appears more fundamental than the exact
choice of risk measure; Marcinkiewicz, Orlicz, Lorentz or a still different one.

Abundant opportunities for future work arise. For instance, a quantitative comparison of the (positive
translation equivariant) Marcinkiewicz, Orlicz and Lorentz norm and their corresponding risk measures on
practical problems has not been conducted yet. Also, estimatability from finite samples is an open problem:
we conjecture that the more tail-sensitive a risk measure, the harder it is to estimate it from finite samples.
For instance, can one obtain convergence rates based on properties of the fundamental function?

Broader Impact Statement

We study risk measures, which add tail sensitivity to empirical risk minimization. As a consequence, the
use of such risk measures emphasizes highly negative outcomes and thus may reduce inequality in the loss
distribution. However, this will certainly not fully remedy the problem of disparate impact that machine
learning systems can have, for instance on individuals. Moreover, the choice of tail sensitivity and risk
measure is an additional ethical choice for the machine learning engineer to make, which must be explicitly
stated and about which disagreement is to be expected.
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A Appendix

A.1 Orlicz Regret Measures

A.1.1 Proof of Proposition 3.2

Proof. The convex conjugate of a (not necessarily convex) function is always convex. To see that g is finite-
valued on R due to the supercoercivity of f (a well-known statement, see (Edgar & Sucheston, 1992; Dommel
& Pichler, 2021; Föllmer & Schied, 2002)), assume by contradiction that there exists a y ∈ R such that

∞ = g(y) = sup
x≥0

xy − f(x).
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Since f is proper, i.e. never takes on −∞, the supremum cannot be attained for some x ∈ R. Therefore we
need to investigate only the limit as x → ∞:

g(y) = lim
x→∞

xy − f(x) = lim
x→∞

x

(
y − f(x)

x

)
.

But since y is fixed, this could only yield ∞ if limx→∞

(
y − f(x)

x

)
≥ 0, which contradicts the supercoercivity

assumption limx→∞
f(x)

x = ∞.

To see that g is increasing (non-decreasing), observe that if y1 ≤ y2, then

g(y1) = sup
z≥0

y1z − f(z) ≤ sup
z≥0

y2z − f(z) = g(y2).

A.1.2 Proof of Proposition 3.9

Proof. V1: Positive homogeneity: let λ > 0.

Vg(λX) = inf
t>0

t

(
1 + Eg

(
λX

t

))
= inf

t̃>0
t̃λ

(
1 + Eg

(
X

t̃

))
, t̃ = t

λ

= λVg(X).

V2: For subadditivity, we present the proof from (Cui et al., 2008) for subadditivity of an Orlicz norm, which
also works in our setting of an Orlicz regret measure. First observe that X 7→ 1 + Eg (X) is convex due to
the convexity of g. We also know that for an arbitrary ϵ > 0 there exist some t1, t2 > 0 so that

1
t1

(1 + Eg(t1X)) ≤ Vg(X) + ϵ

2 ,

1
t2

(1 + Eg(t2Y )) ≤ Vg(Y ) + ϵ

2 .

Let t = t1t2
t1+t2

. Then it holds

Vg(X + Y ) ≤ 1
t
(1 + Eg(t(X + Y )))

= t1 + t2

t1t2

(
1 + Eg

(
t2

t1 + t2
t1X + t1

t1 + t2
t2Y

))
≤ 1

t1
(1 + Eg(t1X)) + 1

t2
(1 + Eg(t2Y )) ≤ Vg(X) + Vg(Y ) + ϵ.

V3: Monotonicity directly follows from monotonicity of g (Lemma 3.2).

V4: We want to show Vg(X) ≥ E[X] ∀X ∈ M. Let f ∈ F be a divergence function, i.e. we have f(1) = 0.
Consequently, we have that

g(y) = sup
x≥0

xy − f(x) ≥ y − f(1) = y ∀y ∈ R.

But then:

E[X] = tE
[

X

t

]
≤ inf

t>0
t + tE

[
X

t

]
≤ inf

t>0
t

(
1 + Eg

(
X

t

))
= Vg(X).
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V5: To see that X = 0 ⇒ Vg(0) = 0, observe that

Vg(0) = inf
t>0

t (1 + Eg (0)) = lim
t→0

t (1 + Eg(0)) = 0,

due to
g(0) = sup

x≥0
0 · z − f(z) < ∞.

Also note that since f(1) = 0, we have g(0) ≥ 0.

For the converse direction, assume Vg(X) = 0 for X ≥ 0. We want to show that it follows that X = 0. By
contradiction, assume X ̸= 0 (P-a.e.). But then since X ≥ 0, we have E[X] > 0. Due to aversity (V4) we
know Vg(X) ≥ E[X], therefore Vg(X) > 0.

A.1.3 Proof of Proposition 3.10

Proof.

Vgε
(X) = inf

t>0
t

(
1 + Egε

(
X

t

))
= inf

t>0
t

(
1 + 1

ε
Eg

(
εX

t

))
t̃= t

ε= inf
t̃>0

t̃ε

(
1 + 1

ε
Eg

(
X

t̃

))
= inf

t̃>0
t̃

(
ε + Eg

(
X

t̃

))
.

A.1.4 Proof of Proposition 3.11

Proof. That ḡ is a valid Young function is obvious since ḡ(0) = 0 and it inherits the properties of g (increasing,
convex etc.) on the nonnegative domain. Recall that f̄ = f · χ[1,∞). Its conjugate is therefore given by

h(y) := sup
x≥0

xy − f̄(x) = max
{

sup
0≤x<1

xy, sup
x≥1

xy − f̄(x)
}

.

For negative y, we have h(y) = 0, since the maximum is attained in the left term with value 0 (here the
supremum is attained at x = 0), since the right term will be negative. Thus h(y) = ḡ(y) = 0 for y < 0. It
remains to show that for positive y we have h(y) = g(y). For this, we show that for positive y, only the
second term of g suffices:

g(y) = max
{

sup
0≤x<1

xy − f(x), sup
x≥1

xy − f(x)
}

= sup
x≥1

xy − f(x), y > 0.

Assume by contradiction that y is positive and the maximum is attained in the first term. Note that
supx≥1 xy − f(x) ≥ y since f(1) = 0. But:

sup
0≤x<1

xy − f(x) ≤ y,

since xy ≤ y and f(x) ≥ 0. Hence the maximum is attained in the second term. Thus we have shown that
ḡ = h and therefore ḡ is the conjugate of f̄ .
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A.1.5 Proof of Proposition 3.14

Proof. The first inequality is obvious. Second,

||X||Vgε2
= inf

t>0
t

(
ε2 + Eg

(
X

t

))
≤ inf

t>0
t

(
ε2 + ε2

ε1
Eg

(
X

t

))
= ε2

ε1
inf
t>0

t

(
ε1 + Eg

(
X

t

))
= ε2

ε1
||X||Vgε1

,

which is true since ε2
ε1

> 1.

A.1.6 Proof of Proposition 3.17

To establish the dual representation

Vg(X) = sup{E[XZ] : Z ∈ Lf̄ , Z ≥ 0,E[f(Z)] ≤ 1} ∀X ∈ Lḡ,

we follow roughly (Kosmol & Müller-Wichards, 2011, pp. 238-239). First note that Vg is finite on Lḡ

(Proposition 3.12). We begin with dual variables Z ∈ L1, but later show that the restriction to Lf̄ is
possible. The crucial point is that the functionals X 7→ E[g(X)] and Z 7→ E[f(Z)] stand in a conjugate
relationship due to the conjugacy of g and f :

E[g(X)] = sup
Z∈L1,Z≥0

E[XZ] − E[f(Z)] (12)

This result is from (Rockafellar, 1968). It follows from the fact that g is a lower semicontinuous proper
convex function with interior points in its domain and therefore, G(ω, x) = g(x) is a normal convex integrand
(Rockafellar, 1968, Lemma 2). The conjugacy then follows from (Rockafellar, 1968, Corollary in Theorem
2). Also note that the restriction to dual variables with Z ≥ 0 is possible due to f(z) = ∞ for z < 0 (this is
essentially due to the monotonicity of Vg

15). Then the Orlicz regret measure can be formulated as

Vg(X) = inf
t>0

t

(
1 + Eg

(
X

t

))
= inf

t>0
t

(
1 + sup

Z∈L1,Z≥0

(
E
[

X

t
Z

]
− E[f(Z)]

))
= inf

t>0
sup

Z∈L1,Z≥0
{E[XZ] − t(E[f(Z)] − 1).

Now consider the dual representation:

DR(X) := sup{E[XZ] : Z ∈ L1, Z ≥ 0,E[f(Z)] ≤ 1} ∀X ∈ L1.

Observe that Z = 1 is an interior point of the constraint set due to the fact that f(1) = 0. We therefore get
strong Lagrangian duality since Slater’s condition holds, as observed for instance by Shapiro (2017):

DR(X) = inf
t>0

sup
Z∈L1,Z≥0

{E[XZ] − t(E[f(Z)] − 1)} = Vg(X),

which establishes the desired equality. Furthermore, it is sufficient to restrict ourselves to dual variables
Z ∈ Lf̄ . Assume by contraposition Z /∈ Lf̄ . Hence ||Z||L

f̄
= ∞. But ||Z||L

f̄
≤ E[f̄(Z)] holds, see Rubshtein

et al. (2016, Proposition 14.2.1). But then E[f̄(Z)] = ∞, and since E[f̄(Z)] ≤ E[f(Z)] such Z is not feasible.

15The following statement is well-known under different technical setups: a regret measure is monotone if and only if all dual
variables are nonnegative. See for instance (Rockafellar & Uryasev, 2013) for the L2 case.
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A.1.7 Proof of Proposition 3.19

Proof. We begin to show that the dual representation holds:

Rg,ε(X) = sup{E[XZ] : Z ∈ Lf̄ , Z ≥ 0,E[Z] = 1,Ef(Z) ≤ ε} ∀X ∈ Lḡ. (13)

Consider how we defined the divergence risk measure in the first place:

Rg,ε(X) := sup
Q:df (Q,P )≤ε

EQ[X].

Here, the supremum is taken over the set of all valid probability measures Q which are absolutely continuous
with respect to P , and further satisfy the f -divergence constraint. The necessary shift in perspective is to
view Q not as a probability measure, but instead take the following route:

QZ(A) =
∫

A

Z(ω) dP (ω), (14)

for the Radon-Nikodym derivative Z (which can be more suggestively written as dQ
dP ). Q is a measure, i.e.

a set function, whereas Z is a random variable. Then observe that

df (Q, P ) ≤ ε ⇐⇒ Ef(Z) ≤ ϵ,

where the expectation is with respect to the base measure P . Furthermore, imposing the constraint that Z
yields a valid probability measure via (14) amounts exactly to requiring that Z ≥ 0 and E[Z] = 1.

Observe that the envelope representation (13) is the envelope representation of the corresponding Orlicz
regret measure, but intersected with the constraint that E[Z] = 1. If we worked on a reflexive Banach space
(where the bidual coincides with the space itself), together with an appropriate closedness condition, we
could use the following result. For instance, consider for a moment the dual pair of L2 and L2 (the exponent
2 has dual exponent 2 since 1/2 + 1/2 = 1).

Denote the support function of the set Q as σQ:

σQ(X) = sup
Q∈Q

⟨X, Q⟩, Q =
{

Q ∈ L2 : ⟨X, Q⟩ ≤ σQ(X) ∀X ∈ L2} ,

and define E1 := {Z ∈ L2 : E[Z] = 1}. The following is well-known (see for instance Fröhlich & Williamson
(2022) for a statement on L2):

Proposition A.1. On L2: let V = σQ be a positively homogeneous, subadditive and monotonic functional,
i.e. a coherent regret measure, and Q be its supported set. Let Q′ := Q∩E1 ̸= ∅. Then R := σQ′ is a coherent
risk measure and R(X) = infc∈R V (X − c) + c.

The proof uses reflexivity of L2. Unfortunately, Orlicz spaces are reflexive if and only if they satisfy the
∆2 condition, which limits the speed of growth of the Young function; see for instance (Kosmol & Müller-
Wichards, 2011, p. 197, p. 234). Since we do not want to assume ∆2 throughout (this would for instance
exclude the KL divergence risk measure), we cannot rely on the statement, but we are guided by it for
intuition.

Our aim is to show that Rg,ε is given by the infimal convolution

Rg,ε(X) = inf
µ∈R

µ + Vgε
(X − µ).

The proof works analogously to A.1.6 and hence (Kosmol & Müller-Wichards, 2011); confer also (Dommel
& Pichler, 2021, Theorem 5.1). Start with the envelope representation

Rg(X) := sup
{
E[XZ] : Z ∈ Lf̄ , Z ≥ 0,E[Z] = 1,E[fε(Z)] ≤ 1

}
∀X ∈ L1.
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Regarding the restriction to Z ∈ Lf̄ , the same remark as in A.1.6 applies. Again, since Z = 1 is an interior
point of the constraint set, observe that by Lagrange duality:

Rg(X) = inf
µ̃∈R,t>0

sup
Z∈L1,Z≥0

{E[XZ] − t(E[fε(Z)] − 1) − µ̃(E[Z] − 1)}

= inf
µ̃∈R,t>0

t

(
1 + µ̃

t
+ sup

Z∈L1,Z≥0
E
[(

X − µ̃

t

)
Z

]
− E[fε(Z)]

)
µ= µ̃

t= inf
µ∈R,t>0

t

(
1 + µ + sup

Z∈L1,Z≥0
E
[(

X

t
− µ

)
Z

]
− E[fε(Z)]

)

= inf
µ∈R,t>0

t

(
1 + µ + Egε

(
X

t
− µ

))
, (15)

where we applied (12) to the conjugacy relation of fε and gε. We started with X ∈ L1, but the subsequent
Proposition 3.21 shows that Rg is finite on Lḡ, which is its natural domain (Pichler, 2013). Henceforth we
restrict X to Lḡ.

Now we explicitly compute the infimal convolution of Vgϵ :

Rg,ε(X) = inf
µ∈R

µ + Vgε
(X − µ)

= inf
µ∈R,t̃>0

µ + t̃

(
ε + Eg

(
X − µ

t̃

))
µ=t̃µ̃= inf

µ̃∈R,t̃>0
t̃µ̃ + t̃

(
ε + Eg

(
X − t̃µ̃

t̃

))
= inf

µ̃∈R,t̃>0
t̃

(
ε + µ̃ + Eg

(
X

t̃
− µ̃

))
,

where we used the form of Vge
with explicit ε (Proposition 3.10). This is the representation obtained by

Dommel & Pichler (2021). But we can also hide ε in the function gε:

Rg,ε(X) = inf
µ̃∈R,t̃>0

t̃

(
ε + µ̃ + Eg

(
X

t̃
− µ̃

))
µ̃=µε= inf

µ∈R,t̃>0
t̃ε

(
1 + µ + 1

ε
Eg

(
X

t̃
− µε

))
t̃= t

ε= inf
µ∈R,t>0

t

(
1 + µ + 1

ε
Eg

(
ε

(
X

t
− µ

)))
= inf

µ∈R,t>0
t

(
1 + µ + Egε

(
X

t
− µ

))
,

which coincides with (15) and therefore we have established that Rg,ε(X) = infµ∈R µ + Vgε
(X − µ).

The “natural extension” representation: Finally, we establish that the following envelope representation also
holds:

Rg,ε(X) = sup
{

EQZ
[X] : QZ ∈ Q,EQZ

[Y ] ≤ Vgε
(Y ) ∀Y ∈ Lḡ

}
∀X ∈ Lḡ.

When one can work with support functions, this representation is easy to show16. However, in our Orlicz
setting we have to prove it. For this, consider the representation (the validity of which we show later):

Rg,ε(X) = sup
{

E[XZ] − α(Z) : Z ∈ Lf̄ , Z ≥ 0,E[Z] = 1
}

∀X ∈ Lḡ, (16)

16Just consider the definition of the supported set of a support function and then use standard results to obtain the constraints
Z ≥ 0 and E[Z] = 1 from monotonicity and translation equivariance, which imply QZ ∈ Q.
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where
α(Z) := sup

{
E[XZ] : X ∈ Lḡ, Rg,ε(X) ≤ 0

}
,

which is the envelope representation of a convex risk measure. Since in our case, we have a coherent risk
measure, it is standard that in fact the “penalty function” α can be taken to be the convex indicator iZ of
the envelope Z, where Z := {Z ∈ Lf̄ : Z ≥ 0,E[Z] = 1,Efε(Z) ≤ 1}. Then:

Rg,ε(X) = sup
{

E[XZ] − iZ(Z) : Z ∈ Lf̄ , Z ≥ 0,E[Z] = 1
}

.

The acceptance set is A = {X ∈ Lḡ : Rg,ε(X) ≤ 0}. We have:

α(Z) = iZ(Z) = sup
{
E[XZ] : X ∈ Lḡ, Rg,ε(X) ≤ 0

}
.

Recall that the convex indicator function is iZ(Z) = 0 if Z ∈ Z and +∞ otherwise. Thus we find that

Z =
{

Z ∈ Lf̄ : Z ≥ 0,E[Z] = 1, 0 = sup{E[XZ] : X ∈ Lḡ, Rg,ε(X) ≤ 0}
}

(17)

=
{

Z ∈ Lf̄ : Z ≥ 0,E[Z] = 1,E[XZ] ≤ 0 ∀X ∈ Lḡ with Rgε(X) ≤ 0
}

,

This follows since Rg,ε(0) = 0, i.e. 0 is always in the acceptance set, hence the inner supremum in (17) can
never be < 0. Further, with similar reasoning as in Bellini & Gianin (2008, Proposition 17):

Z =
{

Z ∈ Lf̄ : Z ≥ 0,E[Z] = 1,E[XZ] ≤ 0 ∀X ∈ Lḡ with Rgε(X) ≤ 0
}

=
{

Z ∈ Lf̄ : Z ≥ 0,E[Z] = 1,E[XZ] ≤ Rgε(X) ∀X ∈ Lḡ
}

=: Z†.

That Z† ⊆ Z is obvious from the definition of Rg,ε. Conversely, we show Z ⊆ Z†. Let Z ∈ Z, i.e. Z ≥ 0,
E[Z] = 1 and E[XZ] ≤ 0 ∀X ∈ Lḡ with Rgε

≤ 0. Then consider Y := X − Rgε
(X) for arbitrary X ∈ Lḡ.

Then Y ∈ Lḡ since an Orlicz space is closed under subtraction of constants (consider the definition of the
Luxemburg norm). Due to translation equivariance, Rgε(Y ) = Rgε(X−Rgε(X)) = Rgε(X)−Rgε(X) = 0 ≤ 0,
hence Y is acceptable and therefore E[Y Z] ≤ 0 by assumption that Z ∈ Z. Then we know that

E[Y Z] ≤ 0 ⇔ E[(X − Rgε
(X))Z] ≤ 0 ⇔ E[XZ] − Rgε

(X) ≤ 0 ⇔ E[XZ] ≤ Rgε
(X),

noting that for a constant c, it holds E[(X − c)Z] = E[XZ] − c since E[Z] = 1. Since X was arbitrary in Lḡ,
we conclude that Z ∈ Z†, and since Z was arbitrary, Z ⊆ Z†. Having established Z = Z†, we continue:

Z = Z† =
{

Z ∈ Lf̄ : Z ≥ 0, E[Z] = 1, E[XZ] ≤ inf
µ∈R

µ + Vgε(X − µ) ∀X ∈ Lḡ

}
=
{

Z ∈ Lf̄ : Z ≥ 0, E[Z] = 1, E[XZ] ≤ µ + Vgε
(X − µ) ∀X ∈ Lḡ, ∀µ ∈ R

}
=
{

Z ∈ Lf̄ : Z ≥ 0, E[Z] = 1, E[XZ] − µ ≤ Vgε
(X − µ) ∀X ∈ Lḡ, ∀µ ∈ R

}
=
{

Z ∈ Lf̄ : Z ≥ 0, E[Z] = 1, E[(X − µ)Z] ≤ Vgε
(X − µ) ∀X ∈ Lḡ, ∀µ ∈ R

}
=
{

Z ∈ Lf̄ : Z ≥ 0, E[Z] = 1, E[Y Z] ≤ Vgε
(Y ) ∀Y ∈ Lḡ

}
,

again noting that E[(X − µ)Z] = E[XZ] − µ since E[Z] = 1. Also, we may substitute Y = X − µ, where
µ = 0.

We still need to establish that the representation in (16) holds. It follows from Arai (2010, Theorem 1);
note that their strictness assumption on the Young function is not needed for this. To apply the result, it
remains to show that Rg,ε has the “order lower-semicontinuous” property (Biagini & Frittelli, 2009). But
this follows from the fact that we have before established the envelope representation (13), which expresses
Rg,ε as a pointwise supremum over a family of order lower-semicontinuous functionals. Thus it is itself order
lower-semicontinuous (Biagini & Frittelli, 2009, Section 3.1); note that all Orlicz Banach lattices are order
separable (Biagini & Frittelli, 2009, Remark 16).
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A.2 Rearrangement Invariant Banach Norms and Fundamental Functions

A.2.1 Proof of Proposition 4.11

Proof. Due to nonnegativity of indicator functions, the fundamental function coincides with the fundamental
function of the Orlicz norm || · ||Oḡ (due to Proposition 3.12). It is known (Kosmol & Müller-Wichards, 2011,
Lemma 7.4.4) that this fundamental function is ϕ(t) = tf̄−1(1/t); since 1/t ≥ 1, the choice of f̄ or f does
not matter; note that we defined f−1(y) := sup{x : f(x) < y}. To intuit the result, we give a non-rigorous
“computation”. Let E be an arbitrary set of measure t:

ϕVg (t) = Vg(χE) = sup
{∫ 1

0
χE(ω)Z∗(ω) dω : Ef(Z) ≤ 1

}
= sup {t · z1 : t · f(z1) + (1 − t) · f(z0) ≤ 1} .

That it is possible to decompose Z∗ into z1 and z0 is intuitive, but requires formal justification. Due to
the nonnegativity of f , clearly z0 = 0 is the best choice. For t · z1 to be as large as possible, we then need
t · f(z1) = 1 (recall the left-continuity of f), hence z1 = f−1(1/t). Thus ϕVg (t) = tf−1 ( 1

t

)
. Noting that( 1

ε f(x)
)−1 = f−1(εx), the fundamental function at different risk aversion levels can be obtained easily.

To see that ϕVg
is concave, note that since f̄ is convex and increasing (non-decreasing), f̄−1 is concave

(Rubshtein et al., 2016, p. 172). Let af̄ := sup{x : f̄(x) = 0}. Note that f̄ is strictly increasing on [af̄ , ∞)
and f̄−1 can only have a jump at 0. Then p 7→ p(−f̄−1(1/p)) is convex, due to the perspective transform
of a convex function being convex in both arguments, whence it follows that p 7→ pf̄−1(1/p) is concave on
(0, 1]. The next proposition, A.2.2 shows that it is furthermore continuous at 0 and therefore concave on
[0, 1].

A.2.2 Proof of Proposition 4.12

Proof. FF1: Consider ϕVg
(t) = tf̄−1 ( 1

t

)
. Hence

lim
t↓0

ϕVg
(t) = lim

t↓0
tf̄−1

(
1
t

)
x=1/t= lim

x→∞

f̄−1(x)
x

.

By the supercoercivity assumption on f (equivalently, on f̄), we have limx→∞
f̄(x)

x = ∞. But then, its
inverse f−1 (resp. f̄−1)) satisfies the mirror property of “anti-supercoercivity”: limx→∞

f̄−1(x)
x = 0. For the

case when f is finite, see (Kosmol & Müller-Wichards, 2011, Lemma 6.1.26). If f is not finite everywhere,
then its inverse is bounded; therefore limx→∞

f̄−1(x)
x = 0.

It is easy to see that this holds also in the other direction. Assume that limt↓0 ϕVg (t) = 0. Then f̄ is
supercoercive.

It remains to establish that the same property holds for ϕRg . This readily follows from the equivalence of
risk and regret: we can apply Theorem 4.22 in Fröhlich & Williamson (2022) and consider the fraction:

K ′′ = lim
t↓0

ϕRg
(t)

ϕVg
(t) .

If ϕVg was continuous at 0, but ϕRg was not, then K ′′ = ∞ and then it follows that the norms would not be
equivalent.

FF2: We need to show that if f is finite then ϕ′(0) = limt↓0
ϕ(t)

t = ∞ and otherwise ϕ′(0) < ∞. We begin
again by considering ϕVg

. From the definition of the difference quotient we get:

ϕ′
Vg

(0) = lim
t↓0

ϕVg
(t)

t
,
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and further

lim
t↓0

ϕVg
(t)

t
= lim

t↓0
f̄−1

(
1
t

)
= lim

x→∞
f̄−1(x).

If f is finite, then so is f̄ and its inverse is unbounded and therefore we obtain ϕ′
Vg

(0) = ∞. If f(x) = ∞ for
some x ∈ R+, then its inverse is bounded; consequently, ϕ′

Vg
(0) < ∞.

We also have ϕ′
Vg

(0) = ∞ ⇔ ϕ′
Rg

(0) = ∞, that is, the fundamental function of the risk measure shares the
same property. This readily follows by applying Fröhlich & Williamson (2022, Corollary 4.27).

A.2.3 Proof of Proposition 4.15

Proof. First, we observe that there exists t0 < 1 such that ϕVg (t0) = t0f−1(1/t0) = 1, unless f is the
pathological divergence function corresponding to the expectation. This is due to f−1(1) > 1 (unless
limx↓1 f(x) = ∞). Since the fundamental function is increasing and continuous, it follows that there exists
t0 < 1 such that ϕVg

(t0) = t0f−1(1/t0) = 1.

Let E be an arbitrary measurable set of measure t. The fundamental function is then:

ϕRg (t) = Rg(χE) = sup
{∫ 1

0
χE(ω)Z∗(ω) dω : Z ≥ 0,E[Z] = 1,Ef(Z) ≤ 1

}
.

Next, observe that for t ≤ t0 the following dual variable f−1(1/t) is feasible:

Z(ω) =
{

1/t ω ∈ E
1−tf−1(1/t)

1−t ω /∈ E.

Since Z ≥ 0, E[Z] = 1 (by construction) and furthermore, noting the left-continuity of f−1:

Ef(Z) = t · f(f−1(1/t)) + (1 − t) · f

(
1 − tf−1(1/t)

1 − t

)
≤ 1.

This holds since if 0 < t < 1 and f−1(1/t) > 1 and tf−1(1/t) ≤ 1 (since t ≤ t0), we have

0 ≤ 1 − tf−1(1/t)
1 − t︸ ︷︷ ︸

=:⋆

≤ 1,

and because f is by assumption a Young divergence, f(⋆) = 0. Thus we have shown that this Z is a
feasible dual variable. With this Z, we obtain that ϕRg

(t) ≥ tf−1(1/t) for t ≤ t0. But this is just the
fundamental function of the corresponding regret measure. Since it holds that Rg(X) ≤ Vg(X) due to the
infimal convolution (this is also clear from the dual representations), we find that ϕRg (t) = tf−1(1/t) for
t ≤ t0.

Due to translation equivariance it holds that ϕRg (t) ≤ 1 ∀t and ϕRg (1) = 1. Thus we obtain the statement
ϕRg

(t) = min{1, tf−1(1/t)}.

Finally, in the special case of the expectation, Rg(X) = E[X], where

f(x) =
{

0 0 ≤ x ≤ 1
∞ x > 1,

we obtain f−1(1/t) = 1 for 0 < t ≤ 1 and hence the formula holds and reduces to ϕE(t) = t.
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A.2.4 Proof of Proposition 4.19

Proof. The fundamental function of an Orlicz norm || · ||OΨ with conjugate Young function Φ is (Kosmol &
Müller-Wichards, 2011, Lemma 7.4.4):

ϕ(t) = tΦ−1(1/t), t ∈ (0, 1].

Due to properties of the perspective transform, it is guaranteed that the resulting Φ−1 is concave and
increasing on [Φ−1(1), ∞): observe that

Φ−1(x) = xϕ(1/x), x ≥ 1.

If ϕ is concave, −ϕ is convex and then its perspective transform (s, x) 7→ x(−ϕ)(s/x) is convex in both
arguments (this is well known). By setting s = 1 we see that x 7→ −Φ−1(x) is convex, hence Φ−1 is concave.

To see that Φ−1 is increasing on [Φ−1(1), ∞), note that t 7→ ϕ(t)/t is decreasing due to quasiconcavity, hence
t 7→ Φ−1(1/t) is decreasing and therefore x 7→ Φ(x) is increasing.

The condition that ϕ is continuous at 0 is indeed necessary for Φ to be supercoercive, cf. A.2.2.

Also, if ϕ′(0) is unbounded, Φ is finite and the behaviour of Φ is fully specified for all x ≥ Φ−1(1). If in contrast
ϕ′(0) < ∞, we have a bounded Φ−1 and can therefore identify the behaviour of Φ for Φ−1(1) ≤ x ≤ bΦ,
where bΦ = sup{Φ < ∞} = ϕ′(0). Thus such Φ is infinite for all x > bΦ.

However, for 0 ≤ x < Φ−1(1), we cannot identify the behaviour of f . Consequently, any left-continuous
increasing convex “completion” of f in this interval will be compatible with the fundamental function. To
see that at least one such choice of f must exist, take ϕ and extend it it to the whole nonnegative domain
by:

ϕ†(t) =
{

ϕ(t) 0 ≤ t ≤ 1
h(t) t > 1,

in such a manner that ϕ† : R+ → R+ is concave; such a ϕ† obviously exists: for instance choose a linear
continuation with slope Φ′(1), shifted by Φ(1), i.e. h(t) = Φ(1) + Φ′(1)(t − 1). Then using the equality

tΦ−1(1/t) = ϕ†(t),

we can construct an Orlicz norm with the desired properties. Repeating the above arguments then yields
that Φ is a legitimate Young function, where we explicitly set Φ(0) = 0.

A.3 Tail-Specific Marcinkiewicz and Lorentz Norms

A.3.1 Proof of Proposition 5.6

Proof. From (Krĕın et al., 1982, Lemma 5.3, Theorem 5.3)17. we know that M1 to M3 are equivalent for
the case of an infinite measure space, i.e. P (Ω) = ∞. First assume that we knew that M1 to M3 are also
equivalent for P (Ω) = 1. Then, M3 =⇒ M4: let ||t 7→ ϕX ′(t)/t||Mϕ

< ∞. Consequently:

||t 7→ ϕX ′(t)/t||Mϕ
= ||EX (t)||Mϕ

= sup
0<t≤1

1
EX (t)E∗∗

X (t) < ∞ =⇒ ∃K : E∗∗
X (t) ≤ K · EX (t)

Also, as a general fact, the decreasing rearrangement is dominated by the maximal function, i.e. EX (t) ≤
E∗∗

X (t), ∀t ∈ (0, 1]. Conversely, if EX and E∗∗
X are equivalent, M5 holds (Rubshtein et al., 2016, p. 162).

Finally, if M5 holds, then M3 obviously holds by definition of || · ||MϕCVar
:

||EX ||Mϕ
≤ K · ||EX ||MϕCVar

= K · sup
0<t≤1

1
E∗∗

X (t)E∗∗
X (t) = 1 < ∞.

17To prevent confusion, we remark that Krĕın et al. (1982) use the symbol Mϕ to denote what in our notation is MϕX ′ ,
that is, we index the Marcinkiewicz norm by its fundamental function, whereas Krĕın et al. (1982) index it by the fundamental
function of its associate space.
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Observing that ϕX ′(t)/t = EX (t), the equivalence of M2 and M3, for the case of both P (Ω) = 1 or P (Ω) = ∞,
can be obtained from Pick et al. (2013, p. 265). In summary, we have shown that the implications form a
circle.

We shall now show that M1 to M3 are also equivalent in the case of P (Ω) = 1. Assume without loss of
generality that ϕX (1) = ϕX ′(1) = 1 (this corresponds to simply rescaling one norm and then using the
associate relation of the fundamental functions). Consider the following extension of ϕX ′ : [0, ∞) → [0, ∞)
to the whole nonnegative domain:

ϕ̃X ′(t) =
{

ϕX ′(t) 0 ≤ t ≤ 1
1 + ϕ′

X ′(1)(t − 1) 1 < t < ∞,

which extends ϕX ′ as a straight line and where the slope is chosen so as to guarantee concavity (assume
without loss of generality that ϕX is concave, otherwise first use the least concave majorant to concavify the
quasi-concave ϕX ′ , thereby preserving equivalence of Marcinkiewicz norms). Let ϕ̃(t) = t/ϕ̃X (t). We now
show the following:

Lemma A.2. | · |Mϕ
and || · ||Mϕ

are equivalent on Ω = [0, 1] if and only if | · |Mϕ̃
and || · ||Mϕ̃

are equivalent
on Ω = [0, ∞).

The Marcinkiewicz norm in the case of P (Ω) = ∞ is defined in the obvious way, as

||X||Mϕ̃
:= sup

0<t<∞

{
ϕ̃(t)X∗∗(t)

}
and X∗ : R+ → R+ and X∗∗ : (0, ∞) → R+ are defined in the obvious way.

Proof of Lemma: First assume that | · |Mϕ̃
and || · ||Mϕ̃

are equivalent on Ω = [0, ∞). Then it is trivial
that | · |Mϕ

and || · ||Mϕ
are equivalent on Ω = [0, 1], by simply extending a random variable X ∈ Mϕ from

Ω = [0, 1] to Ω = [0, ∞) as X∗(t) = 0 for t > 1. For the converse direction, assume that | · |Mϕ
and || · ||Mϕ

are equivalent on Ω = [0, 1]. Then we want to show that | · |Mϕ̃
and || · ||Mϕ̃

are equivalent by demonstrating
that t 7→ ϕ̃X ′(t)/t = 1/ϕ̃(t) ∈ Mϕ̃, which is equivalent to the desired statement due to Pick et al. (2013, p.
265). Then:

||t 7→ ϕ̃X ′(t)/t||Mϕ̃
= sup

0<t<∞
ϕ̃(t)1

t

∫ t

0
1/ϕ̃X ′(ω) dω

!
< ∞.

By assumption, we have that t 7→ ϕX ′(t)/t ∈ Mϕ and therefore only have to investigate t > 1. But:

⋆ := sup
1<t<∞

t

1 + ϕ′
X ′(1)(t − 1)

1
t

(∫ 1

0
1/ϕ(ω) dω +

∫ t

1
1/ϕ̃(ω) dω

)
.

Since t 7→ ϕX ′(t)/t ∈ Mϕ, we have c :=
∫ 1

0 1/ϕ(ω) dω ≤ sup0<t≤1 ϕ(t) 1
t

∫ t

0 1/ϕ(ω) dω < ∞; essentially this
follows from L1 being the largest of all r.i. spaces. Furthermore:

⋆ = sup
1<t<∞

t

1 + ϕ′
X ′(1)(t − 1)

1
t

(
c +

∫ t

1

1 + ϕ′
X ′(1)(ω − 1)

ω
dω

)
= sup

1<t<∞

t

1 + ϕ′
X ′(1)(t − 1)

1
t

(c + ϕ′
X ′(1)t − ϕ′

X ′(1) log(t) − ϕ′
X ′(1) + log(t))

!
< ∞.

To ensure that this is finite, we need to check only the limit as t → ∞:

lim
t→∞

ϕ′
X ′(1)t − ϕ′

X ′(1) log(t) − ϕ′
X ′(1) + log(t)

1 + ϕ′
X ′(1)(t − 1) = 1.

Thus we have that t 7→ ϕ̃X ′(t)/t = 1/ϕ̃ ∈ Mϕ̃, which completes the proof of the lemma. Finally, we need to
show the following:
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Lemma A.3. ∀s > 1: sup0<t≤1
ϕX ′ (t/s)

ϕX ′ (t) < 1 if and only if ∀s > 1: sup0<t<∞
ϕ̃X ′ (t/s)

ϕ̃X ′ (t) < 1.

Proof of Lemma: That the condition on ϕ̃X ′ implies the condition of ϕX ′ is obvious. Conversely, assume the
condition holds for ϕX ′ on Ω = [0, 1]. Then we need to show only that it also holds for ϕ̃X ′ when 1 < t < ∞,
as they coincide for 0 ≤ t ≤ 1. Let s > 1 be arbitrary. For any fixed 1 < t, we obviously have that the
fraction is < 1 and thus need to investigate only the limit as t → ∞. Then:

lim
t→∞

1 + ϕ′
X ′(1)(t/s − 1)

1 + ϕ′
X ′(1)(t − 1) = 1

s
< 1.

Chaining all equivalences together, we obtain that M1 to M5 are equivalent for both finite and infinite
measure spaces.

A.3.2 Fundamental Functions of Lexp and LlogL
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Figure 2: Fundamental functions of Lexp and LlogL.

The fundamental function of Lexp, given by ϕLexp(t) = 1/(1 − log(t)), is only quasiconcave, not concave. In
contrast, the fundamental function ϕLlogL(t) = t + t log(1/t) = t/ϕLexp(t) is concave; see Figure 2.

A.3.3 Proof of Proposition 5.11

Assume Y ∗ is differentiable on (0, 1). Then the condition that ϕX ′(t) = Y ∗(t) · t = F −1
X (1 − t) · t is increasing

becomes
d
dt

(F −1
X (1 − t) · t) > 0 ⇔ d

ds
F −1

X (s) ≤ 1
1 − s

F −1
X (s) ∀s ∈ (0, 1).

We use a Gronwall-type inequality.
Proposition A.4 (adapted from Bainov & Simeonov (2013, Lemma 1.1)). Let f : [0, ∞) be continuous and
differentiable and g : [0, ∞) be continuous; assume f(0) ≤ f0 and

d
ds

f(s) ≤ g(s)f(s), ∀s ≥ 0.

Then:

f(s) ≤ f0 exp
(∫ s

0
g(r) dr

)
∀s ≥ 0.
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Applying this statement with f(s) = F −1
X (s), f0 := F −1

X (0) and g(s) = 1/(1−s) and constraining the domain
yields

F −1
X (s) ≤ F −1

X (0) exp
(∫ s

0

1
1 − r

dr

)
∀s ∈ (0, 1)

⇔ F −1
X (s) ≤ F −1

X (0) exp (− log(1 − s)) ∀s ∈ (0, 1)

⇔ F −1
X (s) ≤ F −1

X (0) 1
1 − s

∀s ∈ (0, 1)

⇔ Y ∗(t) ≤ Y ∗(1)1
t

∀s ∈ (0, 1).

A.4 Utility-Based Shortfall Risk

Definition A.5 (Föllmer & Schied (2002; 2016)). A convex risk measure on some space X is a functional
R : X → R ∪ {∞}, which is monotone (C3), translation equivariant (C4) and convex:

R(αX + (1 − α)Y ) ≤ αR(X) + (1 − α)R(Y ).

Typically, also R(0) = 0 is demanded. Positive homogeneity and subadditivity together imply convexity;
but convexity on its own is a weaker condition. Thus a coherent risk measure is also a convex risk measure.

In this section, we define a loss function ℓ : R → R+ to be a function which is a Young function on R+ and
further satisfies ℓ(x) = 0 for x ≤ 0. Consider the acceptance set:

A = {X : E[ℓ(X)] ≤ x0}.

The intuition is that a decision maker who has a loss function and some decision threshold x0 considers a
loss variable X “acceptable” if E[ℓ(X)] ≤ x0. Subsequently, let x0 = 1. We assumed ℓ(x) = 0 for x ≤ 0,
which is non-standard, but allows for a cleaner connection to Orlicz space theory. Intuitively, this implies
that acceptable random variables are characterized by their losses only, whereas gains (negative values) are
neglected in the acceptance set. This also fits with our overall focus on right tails only. However, the trade-off
between losses and gains naturally arises by enforcing translation equivariance. A convex risk measure, the
UBSR, can be constructed as follows:

UBSRℓ(X) = inf{m ∈ R : X − m ∈ A}.

Hence, UBSRℓ specifies the smallest amount that must be subtracted from the risky position X so as to make
it acceptable. This construction automatically guarantees translation equivariance and since ℓ is increasing
and convex, UBSRℓ is a convex risk measure (Föllmer & Schied, 2002).

To study the envelope representation of UBSRℓ, one must choose a pair of Banach spaces. Föllmer & Schied
(2002) studied the UBSR on L∞, which is an overly conservative choice. In fact, the natural setting is
the framework of Orlicz spaces, as shown by Biagini & Frittelli (2009) and Arai (2011). We denote the
conjugate of ℓ as ℓ∗. Observe that ℓ∗ is also a legitimate Young function18 on R+, which is supercoercive19

and ℓ∗(x) = ∞ for x < 0. To state the envelope representation of UBSRℓ on its natural space, we need to
define the Orlicz class.
Definition A.6. Given a Young function Φ, the Orlicz class P Φ is defined as

P Φ := {X ∈ M : E[Φ(|X|)] < ∞}.

By definition of the Luxemburg norm, we obviously have P Φ ⊆ LΦ. We remark that P Φ need not be a
linear subspace of the Orlicz space LΦ, but it does contain a linear subspace itself, called the Orlicz heart
MΦ. However, if Φ satisfies the ∆2 condition (Kosmol & Müller-Wichards, 2011, p. 197, p. 234), then
in fact MΦ = P Φ = LΦ. Intuitively, such Φ cannot grow too fast. For instance, the rapidly growing
Φ(x) = (exp(x) − 1)χ[1,∞) does not satisfy ∆2.

18For this, our assumption that ℓ(y) = 0 for y ≤ 0 is important, then ℓ∗ is increasing on [0, ∞). Confer (Föllmer & Schied,
2002, Lemma 11).

19Supercoercive means that limy→∞ ℓ∗(y)/y = ∞, cf. Definition 3.1 and see (Föllmer & Schied, 2002).

47



Published in Transactions on Machine Learning Research (01/2023)

Indeed, the UBSR is finite on the Orlicz class P ℓ (consider m = 0); here, understand ℓ as its restriction to
R+, where it is a Young function.
Proposition A.7 (Föllmer & Schied (2002); Biagini & Frittelli (2009)). The following envelope represen-
tation holds for the utility-based shortfall risk measure UBSRℓ : P ℓ → R:

UBSRℓ(X) = sup{E[XZ] − α(Z) : Z ∈ Lℓ∗

+ , Z ≥ 0,E[Z] = 1},

where the penalty function α : Lℓ∗

+ → R is:

α(Z) = sup{E[XZ] : X ∈ Lℓ, X ∈ A} = sup{E[XZ] : X ∈ Lℓ, X ≥ 0,E[ℓ(X)] ≤ 1}. (18)

In fact, we observe that α(Z) = ||Z||Oℓ∗ as Z ≥ 0, i.e. the penalty function is an Orlicz norm, and therefore:

UBSRℓ(X) = sup
{
E[XZ] − inf

t>0
t(1 + E[ℓ∗(Z/t)] : Z ∈ Lℓ∗

, Z ≥ 0,E[Z] = 1
}

. (19)

Proof. We adapt Proposition 32 in (Biagini & Frittelli, 2009) to our loss-based orientation and to the addi-
tional assumption that ℓ(x) = 0 for x ≤ 0. By definition, α(Z) = ||Z||Oℓ∗ is finite on Lℓ∗ , but α(Z) is only
evaluated for Z ≥ 0, hence we take Lℓ∗

+ as its domain to emphasize this. The restriction to X ≥ 0 in (18) is
possible since Z ≥ 0 and ℓ(x) = 0 for x ≤ 0, hence a negative part of X is neglected.

Föllmer & Schied (2002), who established a variant (19) in the L∞ setting, remarked in passing the similarity
to the Amemiya formulation of an Orlicz norm, but did not further go into it.

Among the convex risk measures, the utility-based shortfall risk measure has particularly desirable properties,
such as invariance under randomization (Giesecke et al., 2008) and elicitability (Bellini & Bignozzi, 2015).
Most important in the present context, however, is that since the penalty function is an Orlicz norm, we can
immediately apply our method of Section 6 to achieve a desired tail sensitivity. In contrast to a coherent risk
measure, a convex risk measure considers all alternative probability measures QZ from an entire space, but
they are considered more or less relevant due to the penalty function; note that Z ≥ 0 and E[Z] = 1, hence
the QZ induced via (14) are valid probability measures. If the penalty function only takes on the values 0
and +∞, the risk measure is coherent. In this sense, a convex risk measure acts in a smoother fashion than a
coherent risk measure, where only a subset of probability measures is considered at all. By specifying the tail
sensitivity of the penalty function ||Z||Oℓ∗ , we specify how alternative probability measures, conceptualized
as density ratios with respect to the base measure, are punished for their reweighting in a tail-sensitive way.

In the context of machine learning, the UBSR seems particularly useful to handle tail risk in reinforcement
learning applications, as exemplified by Shen et al. (2014). More generally, any context which calls for a risk
measure without positive homogeneity is a possible application for the UBSR.
Example A.8. (Föllmer & Schied, 2002) Let 1 < p ≤ ∞ and ℓ(x) = ( 1

p xp) · χ[0,∞). Then

ℓ∗(y) =
{

∞ y < 0
( 1

q yq) y ≥ 0,

and
α(Z) = p1/p (E[Zq])1/q

.

Consider p → ∞. Then ℓ∗(y) = i[0,1] and therefore UBSRℓ(X) = E[X], since any Z which has Z(ω) > 1 for
some ω is infinitely punished; this is just the L1 – L∞ associate relationship.
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A.5 Plain Language Summary and Diagram

When training machine learning systems with data, engineers typically try to minimize average prediction
error. Yet the justification for why the average is the best summary of those errors is weak: some errors could
be very high, some very low. When a prediction error corresponds to a human individual (for example when
we predict who gets a loan), this is problematic, as some individuals then suffer a much higher error than
others. In such a situation, we would like to have a summary which also penalizes inequality of prediction
errors. To this end, we can minimize a “risk measure” of the prediction errors. A risk measure is like an
average, but puts more weight on the higher prediction errors. Many researchers have studied risk measures
and proposed many different families of risk measures. But one important aspect, which has not been studied
systematically yet, is how sensitive risk measures react to very large errors. This is called the tail sensitivity
and it is the focus of our work. We study risk measures in a unified framework, which was proposed by
mathematicians. In this framework, we find that there exists a simple way of characterizing how tail sensitive
a risk measure is. An outcome of our work is a method to generate risk measures which have exactly a desired
tail sensitivity. This can be used by a machine learning engineer to flexibly tune the influence of very high
prediction errors.
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Figure 3: Summary of key elements in the paper.
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