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Abstract

Strict frequentism defines probability as the limiting relative frequency in an infinite se-
quence. What if the limit does not exist? We present a broader theory, which is applicable
also to data that exhibit diverging relative frequencies. In doing so, we develop a close con-
nection with the theory of imprecise probability: the cluster points of relative frequencies
yield a coherent upper prevision. We show that a natural frequentist definition of condi-
tional probability recovers the generalized Bayes rule. Finally, we prove constructively
that, for a finite set of elementary events, there exists a sequence for which the cluster
points of relative frequencies coincide with a prespecified set which demonstrates the
naturalness, and arguably completeness, of our theory.

1 Introduction Do other statistical properties, that can not be reduced to stochasticness,
exist? This question did not attract any attention until the applications
of the probability theory concerned only natural sciences. The situation
is definitely [changing], when one studies social phenomena: the
stochasticness gets broken as soon as we [deal] with deliberate activity of
people. — Victor Ivanenko and Valery Labkovsky (1993)

It is now (almost surely) universally acknowledged that probability theory ought to be based on Kol-
mogorov’s (1933) mathematical axiomatization (translated in (Kolmogorov, 1956)).1 However, if prob-
ability is defined in this purely measure-theoretic fashion, what warrants its application to real-world
problems of decision making under uncertainty? To those in the so-called frequentist camp, the justifica-
tion is essentially due to the law of large numbers, which comes in both an empirical and a theoretical
flavour. Our motivation for the present paper comes from questioning both of these.

By the empirical version of the law of large numbers (LLN), we mean not a “law” which can be proven to
hold, but the following hypothesis, which seems to guide many scientific endeavours. Assume we have
obtained data x1, .., xn as the outcomes of some experiment, which has been performed n times under
“statistically identical” conditions. Of course, conditions in the real-world can never truly be identical —

∗This paper is an extended and revised version of Towards a strictly frequentist theory of imprecise probability, Proceedings of
the Thirteenth International Symposium on Imprecise Probability: Theories and Applications, PMLR 215:230-240, 2023.

1An important exception is quantum probability (Gudder, 1979; Khrennikov, 2016).
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otherwise the outcomes would be constant, at least under the assumption of a deterministic universe.
Thus, “identical” in this context must be a weaker notion, that all factors which we have judged as relevant
to the problem at hand have been kept constant over the repetitions.2 The empirical “law” of large
numbers, which Gorban (2017) calls the hypothesis of (perfect) statistical stability then asserts that in the
long-run, relative frequencies of events and sample averages converge. These limits are then conceived
of as the probability of an event and the expectation, respectively. Thus, even if relative frequencies
can fluctuate in the finite data setting, we expect that they stabilize as more and more data is acquired.
Crucially, this hypothesis of perfect statistical stability is not amenable to falsification, since we can never
refute it in the finite data setting. It is a matter of faith to assume convergence of relative frequencies;
confer (King & Kay, 2020).

On the other hand, there is now ample experimental evidence that relative frequencies can fail to stabilize
even under very long observation intervals (Gorban, 2017, Part II). We say that such phenomena display
unstable (diverging) relative frequencies. Rather than refuting the stability hypothesis, which is impos-
sible, we question its adequateness as an idealized modeling assumption: we view convergence as the
idealization of approximate stability in the finite case, whereas divergence idealizes instability. Thus, if
probability is understood as limiting relative frequency, then the applicability of Kolmogorov’s theory to
empirical phenomena is limited to those which are statistically stable; the founder himself remarked:

Generally speaking there is no ground to believe that a random phenomenon should
possess any definite probability (Kolmogorov, 1983).

Building on the works of von Mises & Geiringer (1964), Walley & Fine (1982) and Ivanenko (2010), our goal
is to establish a broader theory, which is also applicable to phenomena which are outside of the scope of
Kolmogorov’s theory by exhibiting unstable relative frequencies.

One attempt to “prove” (or justify) the empirical law of large numbers, which in our view is doomed to
fail, is to invoke the theoretical law of large numbers, which is a purely formal, mathematical statement.
The strong law of large numbers states that if X1, X2, .. is a sequence of independent and identically
distributed (i.i.d.) random variables with finite expectation E[X ] := E[X1] = E[X2] = ·· ·, then the sample
average X̄n := 1

n

∑n
i=1 Xi converges almost surely to the expectation:

P
(

lim
n→∞ X̄n = E[X ]

)
= 1,

where P is the underlying probability measure in the sense of Kolmogorov. To interpret this statement
correctly, some care is needed. It asserts that P assigns measure 1 to the set of sequences for which the
sample mean converges, but not that this happens for all sequences. Thus one would need justification
for identifying “set of measure 0“ with “is negligible” (“certainly does not happen”), which in particular
requires a justification for P . With respect to a different measure, this set might not be negligible at all
(Schnorr, 2007, p. 8); see also (Calude & Zamfirescu, 1999; Seidenfeld et al., 2017) for critical arguments.
Moreover, the examples in (Gorban, 2017, Part II) show that sequences with seemingly non-converging
relative frequencies (fluctuating substantially even for long observation intervals) are not “rare” in practice.
In Appendix D we examine the question of how pathological or normal such sequences are in more depth.

Conceptually, the underlying problem is that the probability measure P , which is used to measure the
event

{
limn→∞ X̄n = E[X ]

}
has no clear meaning. Of course, in the subjectivist spirit, one could interpret

it as assigning a belief in the statement that convergence takes place. But it is unclear what a frequentist
interpretation of P would look like. As La Caze (2016) observed:

2In fact, we do not need that conditions stay exactly constant, but that they change merely in a way which is so benign that
the relative frequencies converge. That is, in the limit we should obtain a stable statistical aggregate.
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Importantly, “almost sure convergence” is also given a frequentist interpretation. Almost
sure convergence is taken to provide a justification for assuming that the relative fre-
quency of an attribute would converge to the probability in actual experiments were the
experiment to be repeated indefinitely [emphasis in original].

But again, it is unclear on what ground P can be given this interpretation and according to Hájek (2009)
this leads to a regress to mysterious “meta-probabilities”. Furthermore, the theoretical LLN requires that P
be countably additive, which is problematic under a frequency interpretation (Hájek, 2009, pp. 229–230).

Given these complications, we opt for a different approach, namely a strictly frequentist one. Reaching
back to Richard von Mises’ (1919) foundational work, a strictly frequentist theory explicitly defines
probability in terms of limiting relative frequencies in a sequence. Importantly, we here do not assume
that the elements of the sequence are random variables with respect to an abstract, countably additive
probability measure. Instead, like von Mises, we actually take the notion of a sequence as the primitive
entity in the theory. As a consequence, countable additivity does not naturally arise in this setting, and
hence we do not subscribe to the frequentist interpretation of the classical strong LLN.

The core motivation for our work is to drop the assumption of perfect statistical stability and instead to
explicitly model the possibility of unstable (diverging) relative frequencies. Rather than merely conceding
that the “probability” might vary over time (Borel, 1963, pp. 27ff.) (which begs the question what such
“probabilities” mean) we follow the approach of Ivanenko (2010), reformulate his construction of a
statistical regularity of a sequence, and discover that it is closely connected to the subjectivist theory
of imprecise probability, more specifically, to the theory of lower and upper previsions. In essence, to
each sequence we can naturally associate a set of probability measures, which constitute the statistical
regularity that describes the cluster points of relative frequencies and consequently also those of sample
averages. Since this works for any sequence and any event, we have thus countered a typical argument
against frequentism, namely that the limit may not exist and hence probability is undefined (Hájek,
2009). On an arbitrary (possibly infinite) set of outcomes, the relative frequencies induce a coherent
upper probability and the sample averages induce a coherent upper prevision in the sense of Walley
(1991). In the convergent case, this reduces to a precise, finitely additive probability and a linear prevision,
respectively. Furthermore, we derive in a natural way a conditional upper prevision; remarkably, this
approach recovers the generalized Bayes rule, the arguably most important updating principle in imprecise
probability.

Furthermore, we demonstrate that (for a finite set of outcomes) the reverse direction works, too: given a
set of probability measures, we can explicitly construct a sequence, which corresponds to this set in the
sense that its relative frequencies have this set of cluster points. Thereby we establish strictly frequentist
semantics for imprecise probability: a subjective decision maker who uses a set of probability measures to
represent their belief can also be understood as assuming an implicit underlying sequence and reasoning
in a frequentist way thereon.

We emphasize that we leave the question of randomness in this broader picture for future research (see
the discussion in Section 6). Note that throughout the paper we work with a loss-based orientation (see
Section 1.2).

1.1 Von Mises — The Frequentist Perspective

Our approach is inspired by Richard von Mises’ (1919) axiomatization of probability theory (refined
and summarized in (von Mises & Geiringer, 1964)). In contrast to the subjectivist camp, von Mises’
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concern was to develop a theory for repetitive events; which gives rise to a theory of probability that is
mathematical, but which can also be used to reason about the physical world.

The calculus of probability, i.e. the theory of probabilities, in so far as they are numerically
representable, is the theory of definite observable phenomena, repetitive or mass events.
Examples are found in games of chance, population statistics, Brownian motion etc. (von
Mises, 1981, p. 102).

Hence, von Mises is not concerned with the probability of single events, which he deems meaningless, but
instead always views an event as part of a larger reference class. Such a reference class is captured by what
he terms a collective, a disorderly sequence which exhibits both global regularity and local irregularity. For
the definition of a collective, we need a possibility setΩ of elementary outcomes ω ∈Ω, together with a
set system of events A ⊆ 2Ω.

Definition 1.1. Consider a tuple
(
Ω,

#–
Ω,A ,S

)
with the following data:

1. a sequence
#–
Ω : N→Ω;

2. a set of selection rules S := {
#–
S j : j ∈J }, where for each j in a countable index set J ,

#–
S j : N→ {0,1}

and
#–
S j (i ) = 1 for infinitely many i ∈N;

3. a non-empty set system A ⊆ 2Ω, where for simplicity we assume |A | <∞.3

This tuple forms a collective if the following two axioms hold.

vM1. The limiting relative frequency for A ∈A ⊆ 2Ω exists:

P (A) := lim
n→∞

1

n

n∑
i=1

χA

(
#–
Ω(i )

)
.4

We call this limit the probability of A.
vM2. For each j ∈J , the selection rule

#–
S j does not change limiting relative frequencies:5

lim
n→∞

∑n
i=1χA

(
#–
Ω(i )

)
· #–

S j (i )∑n
i=1

#–
S j (i )

= P (A) ∀A ∈A .

Here, we view
#–
Ω as a sequence of elementary outcomes ω ∈Ω, for some possibility space Ω on which

we have a set system of events A . Axiom vM1 explicitly defines the probability of an event in terms of
the limit of its relative frequency. Demanding that this limit exists is non-trivial, since this need not be
the case for an arbitrary sequence. Intuitively, vM1 expresses the hypothesis of statistical stability, which
captures a global regularity of the sequence.

In contrast, vM2 captures a sense of randomness or local irregularity. Note it actually comprises two claims:
1) the limit exists and 2) it is the same as the limit in vM1. It is best understood by viewing a selection
rule

#–
S j : N→ {0,1} as selecting a subsequence of the original sequence

#–
Ω and then demanding that the

limiting relative frequencies thereof coincide with those of the original sequence. Such a selection rule is

3In fact, A does not necessarily has to be finite. Since an infinite domain of probabilities does not contribute a lot to a better
understanding of the frequentist definition at this point, we restrict ourselves to the finite case here. The reader can find details
in (von Mises & Geiringer, 1964).

4The function χA denotes the indicator gamble for a set A ⊆Ω, i.e. χA(ω) := 1 if ω ∈ A and χA(ω) := 0 otherwise.
5To be precise, a selection rule in the sense of von Mises is a map from the set of finite Ω-valued strings to {0,1}, i.e. a selection

rule is able to “see” all previous elements when deciding whether or not to select the next one. Our formulation is more restrictive
to avoid notational overhead, but when a sequence is fixed, the two formulations are equivalent.
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called admissible, whereas a selection rule which would give rise to different limiting relative frequencies
for at least one A ∈A would be inadmissible. Why do we need axiom vM2? Von Mises calls this the “law
of the excluded gambling system” and it is the key to capture the notion of randomness in his framework.
Intuitively, if a selection rule is inadmissible, an adversary could use this knowledge to strategically offer
a bet on the next outcome and thereby make long-run profit, at the expense of our fictional decision
maker. A random sequence, however, is one for which there does not exist such a betting strategy. It
turns out, that this statement cannot hold in its totality. A sequence cannot be random with respect to
all selection rules except in trivial cases (cf. Kamke’s critique of von Mises’ notion of randomness, nicely
summarized in (van Lambalgen, 1987)). Thus, von Mises explicitly relativizes randomness with respect to
a problem-specific set of selection rules (von Mises & Geiringer, 1964, p. 12).6 A sequence which forms a
collective (“is random with respect to”) one set of selection rules, might not form a collective with respect
to another set.

In our view, the role of the randomness axiom vM2 is similar to the role of more familiar randomness
assumptions like the standard i.i.d. assumption: to empower inference from finite data. In this work,
however, we will be exclusively concerned with the idealized case of infinite data, since our focus is the
axiom (or hypothesis) of statistical stability. In this spirit, we put aside the question of randomness here.

We are motivated by the following question. What happens to von Mises approach when axiom vM1
breaks down? That is, when relative frequencies of at least some events do not converge. Our answer leads
to a confluence with a theory that is thoroughly grounded in the subjectivist camp: the theory of imprecise
probability. In summary, we establish a strictly frequentist theory of imprecise probability.

1.2 Imprecise Probability — The Subjectivist Perspective

We briefly introduce the prima facie unrelated, subjectivist theory of imprecise probability, or more specif-
ically, the theory of lower and upper previsions as put forward by Walley (1991). Orthodox Bayesianism
models belief via the assignment of precise probabilities to propositions, or equivalently, via a linear
expectation functional. In contrast, in Walley’s theory, belief is interval-valued and the linear expectation
is replaced by a pair of a lower and upper expectations. Hence, the theory is strictly more expressive than
orthodox Bayesianism, which can be recovered as a special case.

We assume an underlying possibility setΩ, whereω ∈Ω is an elementary event, which includes all relevant
information. We call a function X : Ω→R, which is bounded, i.e. supω∈Ω |X (ω)| <∞, a gamble and collect
all such functions in the set L∞. The set of gambles L∞ carries a vector space structure with scalar
multiplication (λX )(ω) = λX (ω), λ ∈ R, and addition (X +Y )(ω) = X (ω)+Y (ω). For a constant gamble
c(ω) = c ∀ω we write simply c. Note that Walley’s theory in the general case does not require that a vector
space of gambles is given, but definitions and results simplify significantly in this case.

We interpret a gamble as assigning an uncertain loss X (ω) to each elementary event, that is, in line with
the convention in machine learning, we take positive values to represent loss and negative values to
represent reward.7 We imagine a decision maker who is faced with the question of how to value a gamble
X ; the orthodox answer would be the expectation E[X ] with respect to a subjective probability measure.

Walley (1991) proposed a betting interpretation of imprecise probability, which is inspired by de Finetti
(1974/2017), who identifies probability with fair betting rates. The goal is to axiomatize a functional
R : L∞ →R, which assigns to a gamble the smallest number R(X ) so that X −R(X ) is a desirable transaction

6This class of selection rules necessarily must be specified in advance; confer (Shen, 2009). A prominent line of work aspires
to fix the set of selection rules as all partially computable selection rules (Church, 1940), but there is no compelling reason to
elevate this to a universal choice; cf. (Derr & Williamson, 2022) for an elaborated critique.

7Unfortunately, this introduces tedious sign flips when comparing results to Walley (1991).
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to our decision maker, where she incurs the loss X (ω) but in exchange gets the reward −R(X ). Formally:

R(X ) := inf{α ∈R : X −α ∈D},

where D is a set of desirable gambles. Walley (1991, Section 2.5) argued for a criterion of coherence, which
any reasonable functional R should satisfy, and consequently obtained the following characterization
(Walley, 1991, Theorem 2.5.5), which we shall take here as an axiomatic definition instead.8

Definition 1.2. A functional R : L∞ →R is a coherent upper prevision if it satisfies ∀X ,Y ∈ L∞:

UP1. R(X ) ≤ sup(X ) (bounded)
UP2. R(λX ) =λR(X ), ∀λ ∈R+ (positive homogeneity)
UP3. R(X +Y ) ≤ R(X )+R(Y ) (subadditivity)

Together, these properties also imply ∀X ,Y ∈ L∞ (Walley, 1991, p. 76):

UP4. R(X + c) = R(X )+ c, ∀c ∈R (translation equivariance)
UP5. X (ω) ≤ Y (ω) ∀ω ∈Ω⇒ R(X ) ≤ R(Y ) (monotonicity)

To a coherent upper prevision, we can define its conjugate lower prevision by:

R(X ):=−R(−X )

=− inf{α ∈R : −X −α ∈D}

= sup{α ∈R : α−X ∈D},

which specifies the highest certain loss α that the decision maker is willing to shoulder in exchange for
giving away the loss X (ω), i.e. receiving the reward −X (ω). Due to the conjugacy, it suffices to focus on
the upper prevision throughout. In general, we have that R(X ) ≤ R(X ) for any X ∈ L∞. If R(X ) = R(X )
∀X ∈ L∞, we say that R := R = R is a linear prevision, a definition which aligns with de Finetti (1974/2017).

By applying an upper prevision to indicator gambles, we obtain an upper probability P (A) := R(χA), where
A ⊆ Ω. Correspondingly, the lower probability is P (A) := 1−P (AC) = R(χA). In the precise case, there
is a unique relationship between (finitely) additive probabilities and linear previsions; however, upper
previsions are more expressive than upper probabilities. Finally, we remark that via the so-called natural
extension, a coherent upper probability which is defined on some subsets of events A ⊆ 2Ω can be
extended to a coherent upper prevision NatExt(P ) on L∞, which is compatible with P in the sense that
NatExt(P )(χA) = P (A) ∀A ∈A (cf. (Walley, 1991, Section 3.1)).

2 Unstable Relative Frequencies

Assume that we have some fixed sequence
#–
Ω : N→Ω on a possibility setΩ of elementary events, but that

for some events A ∈A , where A ⊆ 2Ω, the limiting relative frequencies do not exist. What can we do then?
In a series of papers (Ivanenko & Labkovskii, 1986a;b; 1990; 1993; Ivanenko & Munier, 2000; Ivanenko
& Labkovskii, 2015; Ivanenko & Pasichnichenko, 2017) and a monograph (Ivanenko, 2010), Ivanenko
and collaborators have developed a strictly frequentist theory of “hyper-random phenomena” based
on “statistical regularities”. In essence, they tackle mass decision making in the context of sequences
with possibly divergent relative frequencies. Like von Mises, they take the notion of a sequence as the
primitive, that is, without assuming an a priori probability and then invoking the law of large numbers.
They explicitly recognize that “stochasticness gets broken as soon as we deal with deliberate activity of

8Here, we need the vector space assumption on the set of gambles. We also note that Walley (1991, pp. 64–65) himself made a
similar definition, but then proposed the more general coherence concept.
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people” (Ivanenko & Labkovskii, 1993)9. The presentation of Ivanenko’s theory is obscured somewhat by
the great generality with which it is presented (they work with general nets, rather than just sequences).
We build heavily upon their work but entirely restrict ourselves to working with sequences. While in some
sense this is a weakening, our converse result (see Section 3) is actually stronger as we show that one can
achieve any “statistical regularity” by taking relative frequencies of only sequences. For simplicity, we
will dispense with integrals with respect to finitely additive measures in our presentation, so that there
are less mathematical dependencies involved;10 instead, we work with linear previsions. Moreover, we
establish11 the connection to imprecise probability and give a different justification for the construction.
The contribution in this section may be viewed as unifying ideas from Ivanenko with Walley’s framework.

2.1 Ivanenko’s Argument — Informally

We begin by providing an informal summary of Ivanenko’s construction of statistical regularities on
sequences. Assume we are given a fixed sequence

#–
Ω : N→Ω of elementary events

#–
Ω(1),

#–
Ω(2), . . ., where

we may intuitively think of N as representing time. In contrast to von Mises, who demands the existence
of relative frequency limits to define probabilities, we ask for something like a probability for all events
A ⊆Ω, even when the relative frequencies have no limit. To this end, we exploit that sequences of relative
frequencies always have a non-empty set of cluster points, each of which is a finitely additive probability.
Hence, a decision maker can use this set of probabilities to represent the global statistical properties of
the sequence. In fact, we will see that this induces a coherent upper probability. Also, our decision maker
is interested in assessing a value for each gamble X : Ω→R, which is evaluated infinitely often over time.
Here, the sequence of averages n 7→ 1

n

∑n
i=1 X (

#–
Ω(i )) is the object of interest. In the case of convergent

relative frequencies, a decision maker would use the expectation to assess the risk in the limit, whereas in
the general case of possible non-convergence, a different object is needed. This object turns out to be a
coherent upper prevision. We provide a justification for using this upper prevision to assess the value of a
gamble, which links it to imprecise probability.

2.2 Ivanenko’s Argument — Formally

LetΩ be an arbitrary (finite, countably infinite or uncountably infinite) set of outcomes and fix
#–
Ω : N→Ω,

an Ω-valued sequence. We define a gamble X : Ω→ R as a bounded function from Ω to R, i.e. ∃K ∈
R : |X (ω)| ≤ K ∀ω ∈Ω and collect all such gambles in the set L∞. We assume the vector space structure on
L∞ as in Section 1.2.

The set L∞ becomes a Banach space, i.e. a complete normed vector space, under the supremum norm
∥X ∥L∞ := supω∈Ω |X (ω)|. We denote the topological dual space of L∞ by (L∞)∗. Recall that it consists
exactly of the continuous linear functionals E : L∞ →R. We endow (L∞)∗ with the weak*-topology, which
is the weakest topology (i.e. with the fewest open sets) that makes all evaluation functionals of the form
X ∗ : (L∞)∗ →R, X ∗(E) := E(X ) for any X ∈ L∞ and E ∈ (L∞)∗ continuous. Consider the following subset
of (L∞)∗:

PF(Ω) := {
E ∈ (L∞)∗ : E(X ) ≥ 0 whenever X ≥ 0,E(χΩ) = 1

}
.

Due to the Alaoglu-Bourbaki theorem, this set is compact under the weak* topology, see Appendix A.1.

A finitely additive probability P : A → [0,1] on some set system A , whereΩ ∈A , is a function such that:

9This not only occurs because of non-equilibrium effects, but also from feedback loops, what has become known as “perfor-
mativity” (MacKenzie et al., 2007) or “reflexivity” (Soros, 2009). See the epigraph at the beginning of the present paper.

10The two well-known accounts of the theory of integrals with finitely additive measures are (Rao & Rao, 1983) and (Dunford &
Schwartz, 1988). The theory of linear previsions as laid out in (Walley, 1991) appears to be an easier approach for our purposes.

11Ivanenko & Labkovskii (2015) mention in passing that sets of probabilities also appear in (Walley, 1991).
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PF1. P (Ω) = 1.
PF2. P (A∪B) = P (A)+P (B) whenever A∩B =; and A,B ∈A .

We induce a sequence of finitely additive probabilities
#–
P where

#–
P (n) := A 7→ 1

n

∑n
i=1χA(

#–
Ω(i )) for each

n ∈ N. It is easy to check that indeed
#–
P (n) is a finitely additive probability on the whole powerset 2Ω

for any n ∈ N. We shall call
#–
P the sequence of empirical probabilities. Due to (Walley, 1991, Corollary

3.2.3), a finitely additive probability defined on 2Ω can be uniquely extended (via natural extension)
to a linear prevision EP : L∞ → R, so that EP (χA) = P (A) ∀A ⊆Ω. Furthermore, we know from (Walley,
1991, Corollary 2.8.5), that there is a one-to-one correspondence between elements of PF(Ω) and linear
previsions EP : L∞ → R. Hence, we associate to each empirical probability

#–
P (n) an empirical linear

prevision
#–
E (n) := X 7→ NatExt(

#–
P (n))(X ), where X ∈ L∞ and we denote the natural extension by NatExt.

We thus obtain a sequence
#–
E : N→ PF(Ω).

On the other hand, each gamble X ∈ L∞ induces a sequence of evaluations as
#–
X : N→R, where

#–
X (n) := X

(
#–
Ω(n)

)
. For X ∈ L∞, we define the sequence of averages of the gamble over time as

#   –
ΣX : N→R,

where
#   –
ΣX (n) := 1

n

∑n
i=1 X

(
#–
Ω(i )

)
. For each finite n, we can also view the average as a function in X , i.e.

X 7→ 1
n

∑n
i=1 X

(
#–
Ω(i )

)
. Observe that this is a coherent linear prevision and by applying it to indicator

gambles χA , we obtain
#–
P (n). Hence, we know from (Walley, 1991, Corollary 3.2.3) that this linear prevision

is in fact the natural extension of
#–
P (n), i.e.

#–
E (n) = X 7→ 1

n

∑n
i=1 X

(
#–
Ω(i )

)
= X 7→ #   –

ΣX (n). This concludes the

technical setup; we now begin reproducing Ivanenko’s argument.

Since PF(Ω) is a compact topological space under the subspace topology induced by the weak*-topology
on (L∞)∗, we know that any sequence

#–
E : N→ (L∞)∗ has a non-empty closed set of cluster points. Recall

that a point z is a cluster point of a sequence
#–
S : N→T , where T is any topological space, if:

∀N , where N is any neighbourhood of z with respect to T , ∀n0 ∈N : ∃n ≥ n0 :
#–
S (n) ∈ N .

We remark that this does not imply that those cluster points are limits of convergent subsequences.12 We
denote the set of cluster points as CP(

#–
E ). Equivalently, by applying these linear previsions to indicator

gambles, we obtain the set of finitely additive probabilities P :=
{

A 7→ E(χA) : E ∈ CP(
#–
E )

}
. Due to the

one-to-one relationship, we might work with either CP(
#–
E ) or P . Following Ivanenko, we call P the

statistical regularity of the sequence
#–
Ω; in the language of imprecise probability, it is a credal set.

We further define

R(X ) := sup
{

E(X ) : E ∈ CP(
#–
E )

}
= sup{EP (X ) : P ∈P } , X ∈ L∞,

where EP := NatExt(P ), and

P (A) := sup
{

E(χA) : E ∈ CP(
#–
E )

}
= sup{P (A) : P ∈P } , A ⊆Ω.

Observe that R is defined on all X ∈ L∞ and P is defined on all subsets of Ω, even if Ω is uncountably
infinite, since each P ∈P is a finitely additive probability on 2Ω. We further observe that R is a coherent
upper prevision on L∞ or equivalently, a coherent risk measure in the sense of Artzner et al. (1999).13

Correspondingly, P is a coherent upper probability on 2Ω, which is obtained by applying R to indicator
functions. This follows directly from the envelope theorem in (Walley, 1991, Theorem 3.3.3).

So far, the definition of R and P may seem unmotivated. Yet they play a special role, as we now show.

12This would hold under sequential compactness, which is not fulfilled here in general, but it is for finiteΩ.
13For the close connection of coherent upper previsions and coherent risk measures we refer to (Fröhlich & Williamson, 2024).
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Proposition 2.1. The sequence of averages
#   –
ΣX has the set of cluster points

CP
(

#   –
ΣX

)
=

{
E(X ) : E ∈ CP(

#–
E )

}
= {EP (X ) : P ∈P } ,

and therefore

R(X ) = supCP
(

#   –
ΣX

)
= limsup

n→∞
#   –
ΣX (n).

Proof. First observe that
#–
E (n)(X ) = #   –

ΣX (n).

We use the following result from (Ivanenko & Pasichnichenko, 2017, Lemma 3).14

Lemma 2.2. Let f : Y →R be a continuous function on a compact space Y and #–y a Y -valued sequence.
Then CP

(
n 7→ f

(
#–y (n)

))= f
(
CP

(
#–y

))
.

On the right side, the application of f is to be understood as applying f to each element in the set CP
(

#–y
)
.

Consider now the evaluation functional X ∗ : PF(Ω) →R, X ∗(E) := E(X ), which is continuous under the
weak*-topology. The application of the lemma with f = X ∗, Y = PF(Ω), #–y = #–

E hence gives:

CP
(
n 7→ X ∗

(
#–
E (n)

))
= X ∗

(
CP

(
#–
E

))
.

But since X ∗
(

#–
E (n)

)
= #   –
ΣX (n), we obtain that CP

(
#   –
ΣX

)
= X ∗

(
CP

(
#–
E

))
=

{
E(X ) : E ∈ CP

(
#–
E

)}
.

A similar statement holds for the coherent upper probability.

Corollary 2.3. For any A ⊆Ω, P (A) = limsup
n→∞

(
#–
P (n)(A)

)
= limsup

n→∞
1

n

n∑
i=1

χA

(
#–
Ω(i )

)
.

Proof. Just observe that
#–
P (n)(A) = #     –

ΣχA(n) and apply the previous result.

Thus the limes superior of the sequence of relative frequencies induces a coherent upper probability on
2Ω; similarly, the limes superior of the sequence of a gamble’s averages induces a coherent upper prevision
on L∞. By conjugacy, we have that the lower prevision and lower probability are :

R(X ) = inf
{

E(X ) : E ∈ CP
(

#–
E

)}
= liminf

n→∞
#   –
ΣX (n), ∀X ∈ L∞,

P (A) = inf{P (A) : P ∈P } = liminf
n→∞

1

n

n∑
i=1

χA

(
#–
Ω(i )

)
, A ⊆Ω,

which are obtained in a similar way using the limes inferior. Finally, when an event is precise in the sense
that P (A) = P (A) (and thus the liminf equals the limsup and hence the limit exists), we denote the upper
(lower) probability as P (A) and say that the precise probability of A exists.

Example 2.4. von Mises & Geiringer (1964, p. 11) considered a binary sequence (Ω= {0,1}) given by

#–
Ω =

〈
0[1],1[1],0[2],1[2],0[4],1[4], . . .0[2i ],1[2i ], . . .

〉
,

for i →∞. The notation i [ j ] here means j repetitions of i and 〈·〉 forms a finite or infinite sequence. It is
a straightforward calculation to show that the induced relative frequencies of ones have all elements of[1

3 , 1
2

]
as cluster points.

14A subtle point in the argument, which Ivanenko & Pasichnichenko (2017) do not make visible, is the sequential compactness
of R, which means that for any cluster point of an R-valued sequence we can find a subsequence converging to it.
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Example 2.5. LetΩ= {0,1,2,3} and

#–
Ω =

〈
〈3,0〉[1],〈1,2〉[1],〈3,0〉[2],〈1,2〉[2],〈3,0〉[4],〈1,2〉[4], . . . ,〈3,0〉[2i ],〈1,2〉[2i ], . . .

〉
,

for i →∞. Similarly, the notation 〈a,b〉[ j ] means j repetitions of the tuple 〈a,b〉, e.g. 〈a,b〉[2] = a,b, a,b.
It is easy to see that the events {0,2} and {1,3} each have the limiting relative frequency 0.5. But for the
elementary events the cluster points of the relative frequencies are:

[1
4 , 1

3

]
for ω= 3 and ω= 0;

[1
6 , 1

4

]
for

ω= 1 and ω= 2. This illustrates that the set system of events for which precise probabilities exist need not
form a field, but in fact a pre-Dynkin system (see Derr & Williamson (2023)).

Example 2.6. The arising of finite additivity is not a feature of the divergence, but is due to the strictly fre-
quentist setting. Consider for instanceΩ=N,

#–
Ω(i ) = i . Then the relative frequencies for each elementary

converge to 0. Hence P ({ω}) = P ({ω}) = 0 ∀ω ∈N and P = P is a finitely additive probability, but P (Ω) = 1
in violation of countable additivity.

2.3 The Induced Upper Prevision

We have seen that the upper prevision R, as we have just defined it, has the property that it is induced
by the statistical regularity of the sequence, and at the same time corresponds to taking the supremum
over the cluster points of the sequence of averages of a gamble over time. The set of cluster points is in
general a complicated object, hence it is unclear why one should take the supremum to reduce it to a
single number in a decision making context. Our goal in this section is to provide some intuition why
it is reasonable to use R, as we defined it, to assess the risk inherent in a sequence. Ivanenko & Munier
(2000) argued that R is the unique object which satisfies a certain list of axioms, which are similar to those
for an upper prevision, but including a so-called “principle of guaranteed result”, which appears rather
mysterious to us.

Our setup is as follows. We imagine an individual decision maker, who is faced with a fixed sequence
#–
Ω : N→Ω and various gambles X : Ω→R. The question to the decision maker is how to value this gamble
in light of the sequence, i.e. imagining that the gamble is evaluated at each

#–
Ω(1),

#–
Ω(2), ..., infinitely often.

Here, X (
#–
Ω(i )) represents a loss for positive values, and a gain for negative values. We can think of the

#–
Ω(i )

as the states of nature, and the sequence determines which are realized and how often. Importantly, we
view our decision maker as facing a mass decision, i.e. the gamble will not only be evaluated once, but
instead infinitely often.

In the imprecise probability literature, a key concept for decision making is desirability. A coherent set of
almost-desirable gambles is a set D ⊂ L∞, satisfying the following properties (Walley, 1991, p. 152):

D1. If inf(X ) > 0 then X ∉D (avoiding sure loss)
D2. If sup(X ) < 0 then X ∈D (accepting sure gains)
D3. If X ∈D and λ> 0, then λX ∈D (positive homogeneity)
D4. If X ,Y ∈D then X +Y ∈D (addition)
D5. If X −ε ∈D for any ε> 0, then X ∈D (closure).

Almost-desirable gambles are those which the decision maker would accept even without any reward for
it. We remark the existence of a subtle controversy about the role of 0 that distinguishes “almost” from
“strict” desirability (Walley, 1991, Section 3.7), see also (Couso & Moral, 2011). In this paper, we focus on
almost-desirability, and from now on drop writing “almost”. Which gambles are desirable to our decision
maker? We argue that an appropriate set of desirable gambles is given by:

D #–
Ω

:=
{

X ∈ L∞ : limsup
n→∞

#   –
ΣX ≤ 0

}
.
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It is easy to check that this satisfies D1–D5. Consider what X ∈ D #–
Ω means. If the limes superior of the

gamble’s average sequence, i.e. the growth rate of the accumulated loss, is negative or zero, then we are
guaranteed that there is no strictly positive accumulated loss which we will face infinitely often. The
choice of the average as the aggregation functional is justified from the mass decision character of the
setting, since we assume that our decision maker does not care about individual outcomes, but only about
long-run capital. Now, given this set of desirable gambles, we seek a functional R(X ) : L∞ → R, so that
when at each time step i , the transaction X (

#–
Ω(i ))−R(X ) takes place, this results in a desirable gamble for

our decision maker. Our decision maker shoulders the loss X (
#–
Ω(i )), while at the same time asking for

−R(X ) in advance. Intuitively, R(X ) is supposed to be the certainty equivalent of the “uncertain” loss X , in
the sense that X (

#–
Ω(i )) will vary over time. Therefore we define, in correspondence with D #–

Ω , the upper
and lower previsions (∀X ∈ L∞):

R(X ) :=inf
{
α ∈R : X −α ∈D #–

Ω

}
(1)

R(X ) :=−R(−X ) =sup
{
α ∈R : α−X ∈D #–

Ω

}
.

When a set of desirable gambles and an upper (lower) prevision are in this correspondence, it holds that
X −R(X ) ∈D #–

Ω and furthermore R(X ) is the least (smallest) functional for which this holds. We can now
observe that in fact R(X ) = limsupn→∞

#   –
ΣX (n), since

D #–
Ω =

{
X ∈ L∞ : R(X ) ≤ 0

}
is the general correspondence for a set of desirable gambles and a coherent upper prevision. Hence, we
have motivated the definition of R(X ) in Section 2.2. It is easy to see explicitly (cf. Appendix A.2) that
X −R(X ) ∈D #–

Ω and that R(X ) = limsupn→∞
#   –
ΣX (n) is in fact the smallest number such that the relation in

Equation 1 holds.

3 From Cluster Points to Sequence

In the previous section, we have shown how from a given sequence we can construct a coherent upper
prevision from the set of cluster points CP(

#–
E ). In this section, we show the converse, thus “closing the

loop”: given an arbitrary coherent upper prevision, we construct a sequence
#–
Ω such that the induced

upper prevision is just the specified one. We take this to be an argument for the well-groundedness of our
approach. For simplicity, we assume a finite possibility spaceΩ.

Theorem 3.1. Let |Ω| <∞. Let R be a coherent upper prevision on L∞. There exists a sequence
#–
Ω such that

we can write R as:

R(X ) = R #–
Ω (X ) := sup

{
E(X ) : E ∈ E #–

Ω

}
, E #–

Ω
:= CP

(
#–
E #–
Ω

)
∀X ∈ L∞,

where we now make the dependence on the sequence
#–
Ω explicit in the notation, i.e.

#–
E #–
Ω (n) := X 7→ 1

n

∑n
i=1 X

(
#–
Ω(i )

)
.

The proof is constructive and deterministically yields a sequence. The significance of this result is that it
establishes strictly frequentist semantics for imprecise probability. It shows that to any decision maker
who, in the subjectivist fashion, uses a coherent upper prevision, we can associate a sequence, which
would yield the same upper prevision in a strictly frequentist way. We interpret this result as evidence for
the naturalness, and arguably completeness, of our theory.

The key to prove this is Theorem 3.3, for which we introduce some convenient notation. For k ∈N, let
[k] := {1, . . . ,k} and define the (k −1)-simplex as

∆k :=
{

d = (d1, . . . ,dk ) ∈Rk :
n∑

i=1
di = 1, di ≥ 0 ∀i ∈ [k]

}
.
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It is also helpful to have a dual notation for sequences #–x : N→ [k], whereby we write either #–x (i ) or #–x i to
mean the same thing.

Definition 3.2. Suppose k ∈ N and #–x : N→ [k]. For any n ∈ N define the relative frequency of #–x with
respect to i at n, #–r

#–x
i : N→ [0,1] via

#–r
#–x
i (n) := 1

n |{ j ∈ [n] : #–x j = i }|

and the relative frequency of #–x at n, #–r
#–x : N→∆k as

#–r
#–x (n) := #–r

#–x
[k](n) =


#–r

#–x
1 (n)

...
#–r

#–x
k (n)

 . (2)

Theorem 3.3. Suppose k ∈N and C is a rectifiable closed curve in ∆k . There exists #–x : N→ [k] such that
CP( #–r

#–x ) =C .

The proof (which is constructive) is in Appendix B along with an example. From this, we obtain the
following Corollary (proven in Appendix B.10). Denote the topological boundary of a set D as ∂D .

Corollary 3.4. Suppose k ∈N and D ⊆ ∆k is a non-empty convex set. There exists #–x : N→ [k] such that
CP( #–r

#–x ) = ∂D.

Since we have a finite possibility space Ω, we can identify each linear prevision E with a point in the
simplex, by assigning coordinates to its underlying finitely additive probability; in the case of

#–
E #–
Ω (n), this

is the relative frequency #–r
#–
Ω (n). This is formalized in the following.

Proposition 3.5. Let
#–
E (n) :N→ PF(Ω) be a sequence of linear previsions with underlying probabilities

#–
P (n) := A 7→ #–

E (n)(A). Then E ∈ CP
(

#–
E (n)

)
with respect to the weak* topology if and only if the sequence

#–
D : N→∆k ,

#–
D (n) :=

(
#–
P (n)(ω1), . . . ,

#–
P (n)(ωk )

)
has as cluster point dE = (

E
(
χ{ω1}

)
, . . . ,E

(
χ{ωk }

))
with respect

to the topology induced by the Euclidean norm on Rk .

For the proof, see Appendix B.1. Here, the assumption of finite Ω is crucial; we leave it to future research
to (if possible) extend Theorem 3.1 to infinite Ω. Combining Corollary 3.4 and Proposition 3.5 allows us to
now prove Theorem 3.1.

Proof of Theorem 3.1. Let Ω = [k]. If R is a coherent upper prevision on L∞, we can write it as (Walley,
1991, Theorem 3.6.1):

R(X ) = sup{E(X ) : E ∈ E } , ∀X ∈ L∞,

for some weak* compact and convex set E ⊆ PF(Ω). From (Walley, 1991, Theorem 3.6.2) we further know
that

R(X ) = sup{E(X ) : E ∈ E } = sup{E(X ) : E ∈ extE } , ∀X ∈ L∞,

where ext denotes the set of extreme points of E .15 Then:

R(X ) = sup{E(X ) : E ∈ E }

= sup{E(X ) : E ∈ extE }

≤ sup{E(X ) : E ∈ ∂E }

≤ sup{E(X ) : E ∈ E } = R(X ),

15A point E ∈ E is an extreme point of E if it cannot be written as a convex combination of any other elements in E .

12



since extE ⊆ ∂E and ∂E ⊆ E ; note that E is closed. In summary, R(X ) = sup{E(X ) : E ∈ ∂E }.

Now choose D := {(
E(χω1 ), . . . ,E(χωk )

)
: E ∈ E

}
, which is a non-empty convex set in ∆k . We then obtain

from Corollary 3.4 a sequence
#–
Ω : N→ [k] with CP( #–r

#–
Ω ) = ∂D. But then it follows from Proposition 3.5

that the sequence
#–
E #–
Ω has cluster points CP

(
#–
E #–
Ω

)
= ∂E . Thus

R(X ) = sup
{

E(X ) : E ∈ CP
(

#–
E #–
Ω

)}
, ∀X ∈ L∞,

which concludes the proof.

Ivanenko (2010) offers a somewhat similar result to Theorem 3.1 by generalizing from sequences to
sampling nets. Ivanenko’s (2010) main result states that “any sampling directedness has a regularity, and
any regularity is the regularity of some sampling directedness.” (Ivanenko, 2010, Theorem 4.2). Our result
is more parsimonious in the sense that it relies only on sequences, which are arguably more intuitive
objects than such sampling nets.

Our result should also be compared to Theorem 4.2 in (Walley & Fine, 1982) and Theorem 2.2 in (Papamar-
cou & Fine, 1991b). On the one hand, our result is stronger since it holds for upper previsions, whereas
Theorem 4.2 in (Walley & Fine, 1982) and Theorem 2.2 in (Papamarcou & Fine, 1991b) hold for upper
probabilities only; note that upper previsions are more expressive than upper probabilities.16 On the
other hand, Theorem 2.2 in (Papamarcou & Fine, 1991b) is stronger in the sense that it guarantees that the
same upper probability is induced when applying selection rules.

We observe that two sequences
#–
Ω1,

#–
Ω2, might have different sets of cluster points CP

(
#–
E #–
Ω1

)
, CP

(
#–
E #–
Ω2

)
,

but when their convex hull coincides, the same upper probability and prevision is induced.17 Thus, in
light of the argument in Section 2.3, for the purpose of mass decision making, we may consider these
sequences equivalent. While in the classical case, relative frequencies are the relevant description of a
sequence, the statistical regularity provides an analogous description in the general case; moreover, we
differentiate only “up to the same convex hull” for decision making.

4 Unstable Conditional Probability

An interesting aspect of the strictly frequentist approach is that there is a natural way of introducing
conditional probability for events A,B ⊆Ω, which is the same for the case of converging or diverging
relative frequencies. Furthermore, this approach generalizes directly to gambles. We will observe that
this, perhaps surprisingly, yields the generalized Bayes rule. In the precise case, the standard Bayes rule is
recovered.

Recall that for a countably or finitely additive probability Q, we can define conditional probability as:

Q(A|B) := Q(A∩B)

Q(B)
, A,B ⊆Ω, if Q(B) > 0. (3)

Important here is the condition that Q(B) > 0. Conditioning on events of measure zero may create trouble.
Kolmogorov then allows the conditional probability to be arbitrary. This is rather unfortunate, as there
arguably are settings where one would like to condition on events of measure zero.

16Indeed, the proof of Theorem 4.2 in (Walley & Fine, 1982) exploits this simplification by assuming that the credal set has a
finite number of extreme points.

17Assume R(X ) := sup{E(X ) : E ∈ E }. Then indeed R(X ) = sup
{
E(X ) : E ∈ coE

}
, where co denotes the weak* closure of the

convex hull; cf. (Walley, 1991, Section 3.6).
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As a prerequisite, given a linear prevision E ∈ PF(Ω), we define the conditional linear prevision as:

E(X |B) := E
(
χB X

)
E

(
χB

) , if E
(
χB

)> 0,B ⊆Ω. (4)

The application to indicator gambles then recovers conditional probability. As long as E
(
χB

) > 0, it is
insignificant whether we condition the linear prevision, or instead condition on the level of its underlying
probability and then naturally extend it; confer (Walley, 1991, Corollary 3.2.3).

Nearly in line with Kolmogorov’s conditional probability, von Mises started from the following intuitive,
frequentist view: the probability of an event A conditioned on an event B is the frequency of the occurence
of the event A given that B happens. In what follows, we build upon this idea, which von Mises called
“partition operation” (von Mises & Geiringer, 1964, p. 22). Walley & Fine (1982, Section 4.3) have extended
this definition to the divergent case of conditional probability on a finite possibility space; we further
extend it to conditional upper previsions on arbitrary possibility spaces and link them to the generalized
Bayes rule. As a technical preliminary, we define a wrapper functionΨ : PF(Ω)∪ {⊥} → PF(Ω) as:

Ψ(P ) :=
{

P0 if P =⊥,

P otherwise,

where P0 is an arbitrary finitely additive probability on 2Ω, and ⊥ represents “undefined”.

4.1 Conditional Probability

Recall our sequence of unconditional finitely additive probabilities
#–
P (n) := A 7→ 1

n

∑n
i=1χA

(
#–
Ω(i )

)
. We

want to define a similar sequence of conditional finitely additive probabilities. A very natural approach

is the following: let A,B ⊆ Ω be such that
#–
Ω(i ) ∈ B for at least one i ∈ N. We write 2

#–
Ω
1+ for the set of

such events, i.e. events which occur at least once in the sequence. Define a sequence of conditional
probabilities

#–
P (·|B) : N→ PF(Ω) by

#–
P (·|B)(n) :=Ψ

A 7→
∑n

i=1(χA ·χB )
(

#–
Ω(i )

)
∑n

i=1χB

(
#–
Ω(i )

)
 , (5)

where we consider only those
#–
Ω(i ) which lie in B , and hence we adapt the relative frequencies to the

occurrence of B . Informally, this is simply counting |A and B occured|/|B occured|. Until B occurs for
the first time, the denominator will be 0 and thus the mapping undefined (returning the falsum ⊥).

Throughout, we demand that the event B on which we condition is in 2
#–
Ω
1+, i.e. occurs at least once in the

sequence. Note that this is a much weaker condition than demanding that P (B) > 0, if B is precise. Denote
by nB the smallest index so that

#–
Ω(nB ) ∈ B . Note that

#–
P (A|B)(n) = #–

P (n)(A∩B)/
#–
P (n)(B) for n ≥ nB .

Proposition 4.1. Assume B ∈ 2
#–
Ω
1+. Then

#–
P (·|B) is a sequence of finitely additive probabilities.

Proof. For n < nB , this is clear due toΨ. Now let n ≥ nB .

PF1:
#–
P (Ω|B)(n) = 1: obvious.
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PF2: If A,C ⊆Ω, A∩C =;, then we show that
#–
P (A∪C |B)(n) = #–

P (A|B)(n)+ #–
P (C |B)(n).

#–
P (A∪C |B)(n) =

∑n
i=1

(
χA∪C ·χB

)(#–
Ω(i )

)
∑n

i=1χB

(
#–
Ω(i )

)
=

∑n
i=1

(
χA ·χB

)(#–
Ω(i )

)
+∑n

i=1

(
χC ·χB

)(#–
Ω(i )

)
∑n

i=1χB

(
#–
Ω(i )

)
= #–

P (n)(A∩B)/
#–
P (n)(B)+ #–

P (n)(C ∩B)/
#–
P (n)(B)

= #–
P (A|B)(n)+ #–

P (C |B)(n).

Noting that since A and C are disjoint,
#–
Ω(i ) cannot lie in both at the same time for any i .

Even though the probability is conditional, we deal with a sequence of finitely additive probabilities again.
Hence, we can now essentially repeat the argument from Section 2.2. To each

#–
P (·|B)(n), associate its

uniquely corresponding linear prevision
#–
E (·|B)(n), which is of course given by (∀X ∈ L∞, n ≥ nB ):

#–
E (·|B)(n) = #   –

ΣX |B(n) := X 7→
∑n

i=1

(
X ·χB

)(#–
Ω(i )

)
∑n

i=1χB

(
#–
Ω(i )

) .

It is easy to check that
#–
E (·|B)(n) is coherent. For n < nB , set

#–
E (·|B)(n) = NatExt(P0). From the weak*

compactness of PF(Ω), we obtain a non-empty closed set of cluster points CP(
#–
E (·|B)).

Definition 4.2. If B ∈ 2
#–
Ω
1+, we define the conditional upper prevision and the conditional upper probability

as:
R(X |B) := sup

{
Ẽ(X ) : Ẽ ∈ CP

(
#–
E (·|B)

)}
; P (A|B) := sup

{
Q(A) : Q ∈ CP

(
#–
P (·|B)

)}
, A ⊆Ω.

Since they are expressed via an envelope representation,18 R and P are automatically coherent (Walley,
1991, Theorem 3.3.3). By similar reasoning as in Section 2.2, we get the following representation.

Proposition 4.3. Assume B ∈ 2
#–
Ω
1+. The conditional upper prevision (probability) can be represented as:

R(X |B) = limsup
n→∞

#   –
ΣX |B(n), X ∈ L∞; P (A|B) = limsup

n→∞
#–
P (A|B)(n), A ⊆Ω.

Also, we obtain the corresponding lower quantities R(X |B) = liminfn→∞
#   –
ΣX |B(n) and P (A|B) =

liminfn→∞
#–
P (A|B)(n). Note that these definitions also have reasonable frequentist semantics even

when B occurs only finitely often; then the sequence
#–
P (·|B) is eventually constant and we have

#–
P (A|B) = |A and B occured|/|B occured|. For instance, if A and B occur just once, but simultaneously,
then P (A|B) = P (A|B) = 1. This is an advantage over Kolmogorov’s approach, where conditioning on
events of measure zero is not meaningfully defined.

We now further analyze the conditional upper probability and the conditional upper prevision. As a
warm-up, we consider the case of precise probabilities. If for some event A ⊆Ω, we have P (A|B) = P (A|B),
we write P̃ (A|B) := limn→∞

#–
P (A|B)(n).

Proposition 4.4. Assume
#–
Ω is such that P (B),P (A∩B) exist for some A,B ⊆Ω and P (B) > 0, that is, relative

frequencies converge to those values. Then it holds that P̃ (A|B) = P (A|B), where P (·|B) is the conditional
probability in the sense of Equation 3.

18An envelope representation expresses a coherent upper prevision as a supremum over a set of linear previsions.
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Proof.

P̃ (A|B) = lim
n→∞

#–
P (A|B)(n)

= lim
n→∞

1
n

∑n
i=1(χA ·χB )

(
#–
Ω(i )

)
1
n

∑n
i=1χB

(
#–
Ω(i )

)
(1)=

limn→∞ 1
n

∑n
i=1(χA ·χB )

(
#–
Ω(i )

)
limn→∞ 1

n

∑n
i=1χB

(
#–
Ω(i )

)
= P (A∩B)

P (B)
(2)= P (A|B).

(1) The limits exist by assumption and the denominator is > 0.
(2) In the sense of Equation 3.

Thus, when the relative frequencies of B and A ∩B converge, we reproduce the classical definition of
conditional probability. Now what happens under non-convergence?

4.2 The Generalized Bayes Rule

We now relax the assumptions of Proposition 4.4 and only demand that P (B) > 0.19 Then we observe that
the conditional upper prevision coincides with the generalized Bayes rule, which is an important updating
principle in imprecise probability (see e.g. (Miranda & Cooman, 2014)). The unconditional set of desirable
gambles is:

D #–
Ω

:=
{

X ∈ L∞ : limsup
n→∞

#   –
ΣX ≤ 0

}
=

{
X ∈ L∞ : R(X ) ≤ 0

}
.

Definition 4.5. For P (B) > 0, we define the conditional set of desirable gambles as:

D #–
Ω|B := {

X ∈ L∞ : XχB ∈D #–
Ω

}= {
X ∈ L∞ : limsup

n→∞
#             –
Σ(XχB ) ≤ 0

}
,

and a corresponding upper prevision, which we call the generalized Bayes rule, as:

GBR(X |B):= inf
{
α ∈R : X −α ∈D #–

Ω|B
}

(6)

= inf
{
α ∈R : χB (X −α) ∈D #–

Ω

}
= inf

{
α ∈R : R

(
χB (X −α)

)≤ 0
}

.

Remark 4.6. In fact, Walley (1991, Section 6.4) defines the generalized Bayes rule as the solution of
R(χB (X −α)) = 0 for α. It can be checked that this solution coincides with Definition 4.5,20 see Ap-
pendix A.3.

Proposition 4.7. Let P (B) > 0. It holds that R(X |B) = GBR(X |B).

19This condition is indispensable in order to make the connection to the generalized Bayes rule.
20The conditional set of desirable gambles is considered for instance in (Augustin et al., 2014) and (Wheeler, 2021), but there

the link to the generalized Bayes rule is not made technically clear.
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Proof. It is not hard to check that R(·|B) is a coherent upper prevision on L∞, hence we can represent it as
(Walley, 1991, Theorem 3.8.1):

R(X |B) = inf
{
α ∈R : X −α ∈DR(·|B)

}
, where DR(·|B) :=

{
X ∈ L∞ : R(X |B) ≤ 0

}
.

We show that R(X |B) = GBR(X |B) by showing that DR(·|B) =D #–
Ω|B .

Let X ∈ L∞. On the one hand, we know

X ∈D #–
Ω|B ⇐⇒ XχB ∈D #–

Ω ⇐⇒ R
(
XχB

)≤ 0

⇐⇒ limsup
n→∞

n∑
i=1

(XχB )
(

#–
Ω(i )

)
n

≤ 0. (7)

On the other hand,

X ∈DR(·|B) ⇐⇒ R(X |B) ≤ 0 ⇐⇒ limsup
n→∞

1
n

∑n
i=1(XχB )

(
#–
Ω(i )

)
1
n

∑n
i=1χB

(
#–
Ω(i )

) ≤ 0. (8)

It remains to show that the two limit statements (Equation 7 and Equation 8) are equivalent. Due to the
limit operation we can neglect the terms n = 1, . . . ,nB −1. Furthermore, we know that

#–

b (n) ∈ (0,1], n ≥ nB ,

and also 0 < liminfn→∞
#–

b (n). Thus, defining #–a (n) := 1
n

∑n
i=1(XχB )

(
#–
Ω(i )

)
and

#–

b (n) := 1
n

∑n
i=1χB

(
#–
Ω(i )

)
,

we can leverage Lemma A.2,21 included in Appendix A.4 to show:

limsup
n→∞

#–a (n) ≤ 0 ⇐⇒ limsup
n→∞

#–a (n)
#–

b (n)
≤ 0.

Remark 4.8. Note that X 7→ limsupn→∞
#             –
Σ(XχB ) = R

(
XχB

)
is not in general a coherent upper prevision

on L∞, as it can violate UP1; see Appendix A.5. In general, we have GBR(X |B) ̸= R
(
XχB

)
.

As a consequence, we can apply the classical representation result for the generalized Bayes rule.

Corollary 4.9. If P (B) > 0, the conditional upper prevision can be obtained by updating each linear
prevision in the set of cluster points, that is:

R(X |B) = sup
{

E(X |B) : E ∈ CP
(

#–
E

)}
,

where conditioning of the linear previsions is in the sense of Definition 4.

This follows from (Walley, 1991, Theorem 6.4.2). Intuitively, it makes no difference whether we consider
the cluster points of the sequence of conditional probabilities or whether we condition all probabilities in
the set of cluster points in the classical sense.

Closely related to conditional probability is the concept of statistical independence, which plays a central
role not only in Kolmogorov’s (Durrett, 2019, p. 37), but more generally in most probability theories (Levin
(1980); Fine (1973, Sections IIF, IIIG and VH)). In Appendix C we offer an independence concept for the
case of possibly diverging relative frequencies and discuss how it relates to the classical independence
notion in Kolmogorov’s framework.

21To rigorously apply the Lemma, we would again introduce a wrapper for the sequence
#–
b (n) to ensure strict positivity, since

finitely many terms i = 1, . . . ,nB −1 might be zero.
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5 Related Work

In this section we examine previous research at the intersection of frequentism and imprecise probability.
While divergence of relative frequencies has been linked to imprecise probability before, this has almost
exclusively been done in settings which are not strictly frequentist. Fine (1970) was one of the first authors
to critically evaluate the hypothesis of statistical stability. Fine (1970) observed that this widespread
hypothesis is regarded as a “striking instance of order in chaos” in the statistics community, and sought
to challenge its nature as an empirical “fact”. In contrast to our approach, Fine (1970) was concerned
with finite sequences and the question what it means for such a sequence to be random. While Fine did
mention von Mises, Fine (1970) opted for a randomness definition based on computational complexity.
Intuitively, one can consider a sequence random if it cannot be generated by a short computer program
(i.e. Turing machine). Fine then showed that statistical stability (“apparent convergence”) occurs because
of, and not in spite of, high randomness of the sequence. In contrast, a sequence for which relative
frequencies diverge has low computational complexity. We consider these findings surprising, and believe
that an interesting avenue for future research with respect to statistical stability lies in the comparison of
the computational complexity approach to von Mises randomness notion based on selection rules. We
agree with Fine (1970) that apparent convergence is not some law of nature, but rather a consequence of
data handling.

The previously mentioned paper may be seen as a predecessor to a long line of work by Terrence Fine
and collaborators, (Fine, 1976; Walley & Fine, 1982; Kumar & Fine, 1985; Grize & Fine, 1987; Fine, 1988;
Papamarcou & Fine, 1991a;b; Sadrolhefazi & Fine, 1994; Fierens et al., 2009); see also (Fine, 2016) for an
introduction. A central motivation behind this work was to develop a frequentist model for the puzzling
case of stationary, unstable phenomena with bounded time averages. What differentiates this work from
ours is that we take a strictly frequentist approach: we explicitly define the upper probability and upper
prevision from a given sequence. In contrast, the above works (with the exceptions of Section 4.3 in
(Walley & Fine, 1982), (Papamarcou & Fine, 1991b) and (Fierens et al., 2009)) use an imprecise probability
to represent a single trial in a sequence of unlinked repetitions of an experiment, and then induce an
imprecise probability via an infinite product space. This is in the spirit of, and can be understood as a
generalization of, the standard frequentist approach, where one would assume that X1, X2, . . . form an i.i.d.
sequence of random variables; here, there is both an “individual P ,” as well as an induced “aggregate P”
on the infinite product space, which can be used to measure an event such as convergence or divergence
of relative frequencies.

When a single trial is assumed to be governed by an imprecise probability, how can this be interpreted?
And what is the interpretation of the mysterious “aggregate imprecise probability”? This model falls
prey to similar criticisms as we outlined in the Introduction (Section 1) concerning the theoretical law
of large numbers. In fact, Walley & Fine (1982) subscribed to a frequency-propensity interpretation
(specifically, they were inspired by Giere (1973)), where the imprecise probability of a single trial represents
its propensity, that is, its tendency or disposition to produce a certain outcome. Consequently, one obtains
a propensity for compound trials in terms of an imprecise probability and thus one can ascribe a lower
and upper probability to events such as divergence of relative frequencies. To us, the meaning of such a
propensity is unclear. While we are not against a propensity interpretation as such, our motivation was to
work with a parsimonious set of assumptions. To this end, we took the sequence as the primitive entity,
without relying on an underlying “individual” (imprecise) probability.

Closely related to our work is (Papamarcou & Fine, 1991b), who were also inspired by von Mises. The
authors proved that, for any set of probability measures P on (Ω,2Ω), |Ω| <∞, and any countable set
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of place selection rules S ,22 the existence of a sequence
#–
Ω : N→Ω with the following property can be

guaranteed (Papamarcou & Fine, 1991b, Theorem 2.2):

∀#–
S j ∈S : ∀A ⊆Ω : limsup

n→∞

∑n
i=1χA

(
#–
Ω(i )

)
· #–

S j (i )∑n
i=1

#–
S j (i )

= sup{P (A) : P ∈P }.

That is, the sequence has the specified upper probability (take
#–
S j (i ) = 1 ∀i ∈ N) and this property is

stable under subselection. Note that this claim is in one sense weaker than our Proposition 3.1, where we
construct a sequence for which the set of cluster points is exactly a prespecified one — coherent upper
previsions are more expressive than coherent upper probabilities; on the other hand it is stronger, since
the property holds also when applying selection rules.

Within the setup of (Walley & Fine, 1982), Cozman & Chrisman (1997, Theorem 1, Theorem 2) proposed
an estimator for the underlying imprecise probability of the sequence. Specifically, they computed relative
frequencies along a set of selection rules (however without referring to von Mises) and then took their
minimum to obtain a lower probability; in a specific technical sense, this estimation succeeds. What
motivated the authors to do this is an assumption on the data-generating process: at each trial, “nature”
may select a different distribution from a set of probability measures; the trials are then independent but
not identically distributed. This viewpoint also motivated Fierens et al. (2009), who restricted themselves
to finite sequences. They offered the metaphor of an analytical microscope. With more and more complex
selection rules (“powerful lenses”), along which relative frequencies are computed, more and more
structure of the set of probabilities comes to light. The authors also proposed a way to simulate data from
a set of probability measures.

Cattaneo (2017) investigated an empirical, frequentist interpretation of imprecise probability in a similar
setting, where X1, X2, .. is a sequence of precise Bernoulli random variables, but pi := P (Xi = 1) is chosen
by nature and may differ from trial to trial, hence pi ∈ [pi , pi ]. The author drew the sobering conclusion
that “imprecise probabilities do not have a generally valid, clear empirical meaning, in the sense discussed
in this paper”.

Works which proposed extensions (modifications) of the law of large numbers to imprecise probabilities
include (Marinacci, 1999; Maccheroni & Marinacci, 2005; De Cooman & Miranda, 2008; Chen et al., 2013;
Peng, 2019).

In order to access a more powerful toolbox, De Cooman & De Bock (2022) and Persiau et al. (2022) more
recently studied the interplay of imprecise probability and randomness in the game-theoretic setup with
references to a frequentist perspective, see e.g. (De Cooman & De Bock, 2022, Corollary 28). While we
believe there is potential for establishing relations between our approach and theirs, the differences in
technical setup make it challenging to do so straightforwardly.

Separate from the imprecise probability literature, Gorban (2017) studied the phenomenon of statistical
stability and its violations in depth, including theory and experimental studies. Similarly, the work
of Ivanenko (2010), a major motivation for our work, does not appear to be known in the imprecise
probability literature.

6 Conclusion

In this work, we have extended strict frequentism to the case of possibly divergent relative frequencies
and sample averages, tying together threads from (von Mises, 1919), (Ivanenko, 2010) and (Walley, 1991).

22See (Papamarcou & Fine, 1991b) for the definition. Intuitively, a place selection rule is causal, i.e. depends only on past
values.
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In particular, we have recovered the generalized Bayes rule from a strictly frequentist perspective. Further-
more, we have established strictly frequentist semantics for imprecise probability, by demonstrating that
(under the mild assumption that |Ω| <∞) we can explicitly construct a sequence for which the relative
frequencies have a prespecified set of cluster points, corresponding to the coherent upper prevision. Previ-
ous results only covered the more restrictive case of upper probabilities (Walley & Fine, 1982; Papamarcou
& Fine, 1991b).

Statisticians exclusively assume that their data is part of a stable sequence, but the hypothesis of perfect
statistical stability is just a hypothesis; see Appendix D for an elaboration of this point. Importantly,
when one blindly assumes convergence of relative frequencies, one will not notice when it is violated
— in the practical case, when only a finite sequence is given, such a violation amounts to instability of
relative frequencies even for long observation intervals (Gorban, 2017). In this work, we have rejected the
assumption of stability; furthermore, in contrast to other related work, we have aimed to weaken the set of
assumptions by taking the concept of a sequence as the primitive. However, this gives rise to the critique
that no finite part of a sequence has any bearing on what the limit is, as has been pointed out by other
authors whose studies attempted a frequentist understanding of imprecise probability (e.g. (Cattaneo,
2017)). So what is the empirical content of our theory, what are its practical implications?

The reader may wonder why we have introduced von Mises’ frequentist account but not further used
selection rules afterwards. In von Mises’ framework, the set of selection rules expresses randomness
assumptions about the sequence, similar to what the i.i.d. assumption achieves in the standard picture. In
our view, randomness assumptions are the key to empower generalization in the finite data setting. Hence,
to supplement our theory with empirical content, the introduction of selection rules is needed. However,
multiple directions can be pursued here. For instance, Papamarcou & Fine (1991b) have defined the
concept of an unstable collective, where divergence remains unchanged when applying selection rules. By
contrast, we could introduce a set of selection rules and assume that relative frequencies converge within
each selection rule, but to potentially different limits across selection rules.23 Hence, we view this paper
as only the first step of a larger research agenda. The next step is to incorporate randomness assumptions
into the picture and explore the connections between various possible approaches, specifically how
different ways of relaxing vM1 and vM2 are related. As a consequence, we would obtain potentially
multiple ways of bridging the finite and the infinite case, which enables practical applications24.

Finally, we remark that an interesting avenue for future research may investigate the use of nets, which
generalize the concept of a sequence. Indeed, fraction-of-time probability (Gardner, 1986; Leśkow &
Napolitano, 2006; Napolitano & Gardner, 2022; Gardner, 2022) is a theory of probability with remarkable
parallels to von Mises’ (1919). Instead of sequences, this theory is based on continuous time, hence a
net

#–
Ω : R→Ω.25 Sample averages are then given by integration instead of summation. In essence, this

amounts to using a different relative measure than the counting measure, which is implicit in the work of
von Mises (1919). However, fraction-of-time probability was so far developed only for the convergent case;
we expect that a similar construction as in Section 2.2 could be used to extend it to the case of divergence.

23As demonstrated by Examples 2 and 3 in (Cozman & Chrisman, 1997), converging relative frequencies within selection rules
can lead to both overall convergence or divergence (on the whole sequence).

24Note that precise probability in the framework of von Mises also faces this bridging problem, which is a special case of ours;
a point explicitly recognised by Kolmogorov long ago: “Here I insist on the view, expressed by Mr. von Mises himself (von Mises,
1931, pp. 21–26) that ‘collectives’ are finite (though very large) in real practice” (Kolmogorov, 1939). Kolmogorov reiterated von
Mises’ view that the infinite sample case is indeed a “mathematical idealization” of the practical situation. Approximately a
century of effort has produced some reasonable refinements of that idealization in the finite stable case. We hope it will not take
quite that long in the finite unstable case, but recognise the many difficulties that will need addressing.

25We remark that the notion of a sampling net in (Ivanenko, 2010) is a different one, that is, fraction-of-time probability does
not fit this concept, although it is based on the usage of a net.
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Jacek Leśkow and Antonio Napolitano. Foundations of the functional approach for signal analysis. Signal
processing, 86(12):3796–3825, 2006.

Leonid A. Levin. A concept of independence with applications in various fields of mathematics. Technical
Report MIT/LCS/TR-235, MIT, Laboratory for Computer Science, 1980.

Edward H. Lockwood. A Book of Curves. Cambridge University Press, 1961.

Fabio Maccheroni and Massimo Marinacci. A strong law of large numbers for capacities. The Annals of
Probability, 33(3):1171–1178, 2005.

25



Donald A. MacKenzie, Fabian Muniesa, and Lucia Siu (eds.). Do economists make markets?: On the
performativity of economics. Princeton University Press, 2007.

Massimo Marinacci. Limit laws for non-additive probabilities and their frequentist interpretation. Journal
of Economic Theory, 84(2):145–195, 1999.

Celestino G. Méndez. On the law of large numbers, infinite games, and category. The American Mathe-
matical Monthly, 88(1):40–42, 1981.

Mary Midgley. Science as salvation: A modern myth and its meaning. Routledge, 2013.

John R. Milton. The origin and development of the concept of the ‘laws of nature’. European Journal of
Sociology/Archives Européennes de Sociologie, 22(2):173–195, 1981.

Enrique Miranda. A survey of the theory of coherent lower previsions. International Journal of Approximate
Reasoning, 48(2):628–658, 2008.

Enrique Miranda and Gert de Cooman. Lower previsions. In Introduction to Imprecise Probabilities,
chapter 2, pp. 28–55. John Wiley & Sons, Ltd, 2014.

Gabriel Nagy. Topological vector spaces III: Finite dimensional spaces – Notes from the Functional
Analysis Course (Fall 07 - Spring 08), 2007. URL https://www.math.ksu.edu/~nagy/func-an-
2007-2008/top-vs-3.pdf. Accessed: 2023-01-13.

Antonio Napolitano and William A. Gardner. Fraction-of-time probability: Advancing beyond the need
for stationarity and ergodicity assumptions. IEEE Access, 10:34591–34612, 2022.

Grégoire Nicolis and Ilya Prigogine. Self-organization in nonequilibrium systems. John Wiley & Sons, 1977.

Lars Olsen. Extremely non-normal numbers. Mathematical Proceedings of the Cambridge Philosophical
Society, 137(1):43–53, 2004.

John C. Oxtoby. Measure and category: A survey of the analogies between topological and measure spaces
(2nd edition). Springer, 1980.

Adrian Papamarcou and Terrence L. Fine. Stationarity and almost sure divergence of time averages in
interval-valued probability. Journal of Theoretical Probability, 4(2):239–260, 1991a.

Adrian Papamarcou and Terrence L. Fine. Unstable collectives and envelopes of probability measures.
The Annals of Probability, 19(2):893–906, 1991b.

Shige Peng. Nonlinear expectations and stochastic calculus under uncertainty: with robust CLT and
G-Brownian motion. Springer Nature, 2019.

Floris Persiau, Jasper De Bock, and Gert de Cooman. On the (dis)similarities between stationary imprecise
and non-stationary precise uncertainty models in algorithmic randomness. International Journal of
Approximate Reasoning, 151:272–291, 2022.

Graeme M. Philip and D.F. Watson. Some speculations on the randomness of nature. Mathematical
Geology, 19(6):571–573, 1987.

Alois Pichler. The natural Banach space for version independent risk measures. Insurance: Mathematics
and Economics, 53(2):405–415, 2013.

26

https://www.math.ksu.edu/~nagy/func-an-2007-2008/top-vs-3.pdf
https://www.math.ksu.edu/~nagy/func-an-2007-2008/top-vs-3.pdf


Itamar Pitowsky. Typicality and the role of the Lebesgue measure in statistical mechanics. In Probability
in physics, pp. 41–58. Springer, 2012.

Ilya Prigogine. Time, structure, and fluctuations (Nobel prize lecture). Science, 201(4358):777–785, 1978.

Ilya Prigogine. From Being to Becoming: Time and Complexity in the Physical Sciences. W.H. Freeman and
Company, 1980.

Ilya Prigogine and Isabelle Stengers. Order out of chaos: Man’s new dialogue with nature. Bantam Books,
1985.

K.P.S. Bhaskara Rao and M. Bhaskara Rao. Theory of charges: a study of finitely additive measures. Academic
Press, 1983.

Ángel Rivas. On the role of joint probability distributions of incompatible observables in Bell and Kochen–
Specker theorems. Annals of Physics, 411:167939, 2019.

Todd Rose. The end of average: How to succeed in a world that values sameness. Penguin UK, 2016.

Jane E. Ruby. The origins of scientific“law”. Journal of the History of Ideas, 47(3):341–359, 1986.

Amir Sadrolhefazi and Terrence L. Fine. Finite-dimensional distributions and tail behavior in stationary
interval-valued probability models. The Annals of Statistics, 22(4):1840–1870, 1994.

Eric Schechter. Handbook of Analysis and its Foundations. Academic Press, 1997.

Claus P. Schnorr. Zufälligkeit und Wahrscheinlichkeit: eine algorithmische Begründung der Wahrschein-
lichkeitstheorie. Springer, 2007.

Teddy Seidenfeld, Jessica Cisewski, Jay Kadane, Mark Schervish, and Rafael Stern. When large also is
small conflicts between measure theoretic and topological senses of a negligible set. In Presented at Pitt
Workshop 3/17, 2017.

Alexander Shen. Algorithmic information theory and foundations of probability. arXiv preprint
arXiv:0906.4411v1, 2009.

Lawrence Sklar. Physics and chance: Philosophical issues in the foundations of statistical mechanics.
Cambridge University Press, 1995.

Lawrence Sklar. Topology versus measure in statistical mechanics. The Monist, 83(2):258–273, 2000.

George Soros. General theory of reflexivity. The Financial Times, 27 October 2009.

Anastasios Stylianou. A typical number is extremely non-normal. arXiv preprint arXiv:2006.02202, 2020.

Terence Tao. 245B, notes 11: The strong and weak topologies. https://terrytao.wordpress.com/
2009/02/21/245b-notes-11-the-strong-and-weak-topologies/, 2009. Accessed: 2023-01-13.

Michiel van Lambalgen. Von Mises’ definition of random sequences reconsidered. The Journal of Symbolic
Logic, 52(3):725–755, 1987.

Elart Von Collani. A note on the concept of independence. Economic Quality Control, 21(1):155–164, 2006.

Richard von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 5(1):52–99,
1919.

27

https://terrytao.wordpress.com/2009/02/21/245b-notes-11-the-strong-and-weak-topologies/
https://terrytao.wordpress.com/2009/02/21/245b-notes-11-the-strong-and-weak-topologies/


Richard von Mises. Wahrscheinlichkeitsrechnung und ihre Anwendungen in der Statistik und Theoretischen
Physik. Deuticke, 1931.

Richard von Mises. Probability, Statistics, and Truth. Dover, 1981.

Richard von Mises and Hilda Geiringer. Mathematical theory of probability and statistics. Academic press,
1964.

Peter Walley. Statistical reasoning with imprecise probabilities. Chapman-Hall, 1991.

Peter Walley and Terrence L. Fine. Towards a frequentist theory of upper and lower probability. The Annals
of Statistics, 10(3):741–761, 1982.

Friedel Weinert (ed.). Laws of nature: Essays on the philosophical, scientific and historical dimensions,
volume 8. Walter de Gruyter, 1995.

Gregory Wheeler. A gentle approach to imprecise probability. In Thomas Augustin, Fabio Cozman, and
Gregory Wheeler (eds.), Reflections on the Foundations of Statistics: Essays in Honor of Teddy Seidenfeld.
Springer, 2021.

Edgar Zilsel. Das Anwendungsproblem. Ein philosophischer Versuch über das Gesetz der großen Zahlen
und die Induktion. Leipzig. Barth, 1916.

Edgar Zilsel. The genesis of the concept of physical law. The Philosophical Review, 51(3):245–279, 1942.

A Proofs

A.1 Weak* compactness of PF(Ω)

Walley (1991, Appendix D4) states that the set of linear previsions, PF(Ω), is compact due to the Alaoglu-
Bourbaki theorem, but does not explain how this follows. For completeness, we provide an argument.
First, we can observe, like Walley (1991), that the set is weak* closed. We use the following well known
Lemma, see e.g. (Deitmar, 2016, Lemma 12.3.4.).

Lemma A.1. Let X be a topological space, K ⊆X be compact and L ⊆ K be closed. Then L is compact.

Thus we will show that PF(Ω) is a subset of some weak* compact set in (L∞)∗, hence it is in fact weak*
compact. From the Alaoglu-Bourbaki theorem (see e.g. (Holmes, 1975, p. 70)), we know that the unit
ball of the dual norm is weak* compact in (L∞)∗. By definition of the dual norm ∥ · ∥∗ of the L∞ norm
∥X ∥ := supω∈Ω{|X (ω)|}, this is the following set:

B := {
X ∗ ∈ (L∞)∗ : ∥X ∗∥∗ ≤ 1

}
= {

X ∗ ∈ (L∞)∗ : sup
{|X ∗(X )| : X ∈ L∞ for which ∥X ∥ ≤ 1

}≤ 1
}

=
{

X ∗ ∈ (L∞)∗ : sup

{
|X ∗(X )| : X ∈ L∞ for which sup

ω∈Ω
{|X (ω)|} ≤ 1

}
≤ 1

}
.

Thus, to show that PF(Ω) is weak* compact, it suffices to show that PF(Ω) ⊆ B . That is, given some E ∈
PF(Ω), we show that if X ∈ L∞ is such that supω∈Ω{|X (ω)|} ≤ 1, then |E(X )| ≤ 1, since then the supremum
over all such X is also ≤ 1. Thus it suffices to show that |E(X )| ≤ supω∈Ω{|X (ω)|}. We know that E(|X |) ≤
supω∈Ω{|X (ω)|}, since E is a coherent upper prevision, cf. Walley (1991, 2.6.1a). But we also have that
|E(X )| ≤ E(|X |) from monotonicity and E(0) = 0, see e.g. Pichler (2013, Proposition 5), and thus |E(X )| ≤
E(|X |) ≤ supω∈Ω{|X (ω)|} ≤ 1, which concludes the proof.
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A.2 Properties of the Induced Upper Prevision

To see that X −R(X ) ∈D #–
Ω :

X −R(X ) ∈D #–
Ω ⇐⇒ lim

n→∞sup
1

n

n∑
i=1

(
(X −R(X ))

(
#–
Ω(i )

))
≤ 0

⇐⇒ limsup
n→∞

#   –
ΣX −R(X ) ≤ 0, since R(X ) is constant

⇐⇒ limsup
n→∞

#   –
ΣX (n)− limsup

n→∞
#   –
ΣX (n) = 0 ≤ 0.

Now we show that R(X ) = limsupn→∞
#   –
ΣX (n) is in fact the smallest number such that the relation in

Equation 1 holds. Suppose there exists ε > 0 such that R(X )−ε (with R defined as before) makes X −
(R(X )−ε) desirable, that is

limsup
n→∞

#   –
ΣX −R(X )+ε≤ 0,

which is a contradiction due to our choice of R.

A.3 Proof of Remark 4.6

In the literature, the generalized Bayes rule is defined as the solution α∗ of R
(
χB (X −α)

)= 0. We show

that α∗ = inf
{
α ∈R : R

(
χB (X −α)

)≤ 0
}

. Of course, we get for α := α∗ that equality holds (= 0). We just

have to exclude the possibility that there exists α̃<α∗ so that R
(
χB (X − α̃)

)≤ 0.

Assume such an α̃ exists, so R
(
χB X −χB α̃

)≤ 0. Write α̃+ε≤α∗ for some ε> 0. Since χB X −χB α̃−χBε≥
χB X −χBα

∗, it follows from monotonicity that R(χB X −χB α̃−χBε) ≥ R(χB X −χBα
∗) = 0. But from

subadditivity, R(χB X −χB α̃−χBε) ≤ R(χB X −χB α̃)+R(−χBε) and since εR(−χB ) < 0 due to coherence and
P (B) > 0, we have R(χB X −χB α̃−χBε) < R(χB X −χB α̃). Taking this together, we obtain R(χB X −χB α̃) > 0,
a contradiction to the assumption.

Thus we have shown that α∗ = inf
{
α ∈R : R

(
χB (X −α)

)≤ 0
}

. The other expressions in Definition 4.5

follow by simple manipulations.

A.4 Supplement for Proof of Proposition 4.7

Lemma A.2. Let #–a : N → R be a sequence and
#–

b : N → (0,1] be a nonnegative sequence such that
liminfn→∞

#–

b (n) > 0. Then:

limsup
n→∞

#–a (n) ≤ 0 ⇐⇒ limsup
n→∞

#–a (n)
#–

b (n)
≤ 0.

Proof. For brevity we simply write an and bn for the sequences #–a (n) and
#–

b (n).

limsup
n→∞

an ≤ 0 ⇐⇒ limsup
n→∞

an

bn
≤ 0

lim
n→∞

(
sup
k≥n

ak

)
≤ 0 ⇐⇒ lim

n→∞

(
sup
k≥n

ak

bk

)
≤ 0.

where we know that bn ∈ (0,1] and furthermore 0 < liminfn→∞ bn ≤ limsupn→∞ bn . If the sequence bn

would actually converge, then the statement is clearly true, since we can then pull out the limit of bn (this
is allowed).
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We begin by showing that LHS ≤ 0 =⇒ RHS ≤ 0. Our assumption is that

∀ε> 0 : ∃n0 ∈N : ∀n ≥ n0 : sup
k≥n

ak < ε. (9)

Our aim is to show that
∀ε′ > 0 : ∃n′

0 ∈N : ∀n ≥ n′
0 : sup

k≥n

ak

bk
< ε′.

So let some ε′ > 0 be given and fixed. We have to exhibit some n′
0 such that the above statement

holds. Choose ε := ε′ · limn→∞ infk≥n bk · 1
κ , for an arbitrary κ > 1. Then ε > 0 by our assumption that

limn→∞ infk≥n bk > 0, i.e. that P (B) > 0. Note that ε≤ ε′. Then, we know that ∃n0(ε) such that ∀n ≥ n0(ε)
supk≥n ak < ε.

Also, we know that ∀κ′ > 1 : ∃n′′
0 ∈N : ∀n ≥ n′′

0 :

limn→∞ infk≥n bk

infk≥n bk
≤ κ′. (10)

The numerator is the limit of the denominator (which exists) and furthermore infk≥n bk is monotone
increasing in n, that is, ∀n ∈N: limn→∞ infk≥n bk ≥ infk≥n bk . Thus, the ratio approaches 1 from above for
large n.

Now choose κ′ := κ and n′
0 := max(n0(ε),n′′

0 (κ′)). That is, we know that then both Equation 10 and
Equation 9 hold. Then we want to show:

sup
k≥n

ak

bk
= max

(
sup

k≥n,ak≥0

ak

bk
, sup

k≥n,ak<0

ak

bk

)
!< ε′,

which is a legitimate decomposition of the supremum into the “negative” and “nonnegative” subsequences.
But look at the second term (ak < 0) and observe that since bk > 0, clearly supk≥n,ak<0

ak
bk

≤ 0 < ε′. Thus we
only have to consider the first term. Further observe that

sup
k≥n,ak≥0

ak

bk
≤ sup

k≥n,ak≥0
ak · sup

k≥n,ak≥0

1

bk
= sup

k≥n,ak≥0
ak ·

1

infk≥n,ak≥0 bk
,

due to nonnegativity of the ak ≥ 0 and a general rule for the supremum/infimum, which applies since bk

is strictly positive. Now by assumption,

sup
k≥n,ak≥0

ak ·
1

infk≥n,ak≥0 bk
< ε′ lim

n→∞ inf
k≥n

bk
1

κ

1

infk≥n,ak≥0 bk
= ε′ · limn→∞ infk≥n bk

infk≥n,ak≥0 bk︸ ︷︷ ︸
≤κ

· 1

κ
≤ ε′.

Noting that infk≥n bk ≤ infk≥n,ak≥0 bk and therefore

limn→∞ infk≥n bk

infk≥n,ak≥0 bk
≤ limn→∞ infk≥n bk

infk≥n bk
≤ κ′.

Altogether, we have shown that

sup
k≥n

ak

bk
< ε′,

and therefore LHS ≤ 0 =⇒ RHS ≤ 0.

It remains to show that RHS ≤ 0 =⇒ LHS ≤ 0. Our assumption is that

∀ε′ > 0 : ∃n′
0 ∈N : ∀n ≥ n′

0 : sup
k≥n

ak

bk
< ε. (11)
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and our aim is to show that then

∀ε> 0 : ∃n0 ∈N : ∀n ≥ n0 : sup
k≥n

ak < ε.

So let ε> 0 be fixed. Choose ε′ := ε and set n0 := n′
0. Then we want to show that ∀n ≥ n0:

sup
k≥n

ak = max

(
sup

k≥n,ak≥0
ak , sup

k≥n,ak<0
ak

)
!< ε.

As to the second term, it is obviously negative, in particular supk≥n,ak<0 ak < ε. For the first term, where
the ak are nonnegative, observe that then ak ≤ ak

bk
since bk ∈ (0,1], consequently we have ∀n ≥ n0:

sup
k≥n,ak≥0

ak ≤ sup
k≥n,ak≥0

ak

bk
≤ sup

k≥n

ak

bk
< ε= ε′.

by our assumption Equation 11. And thus we have shown that RHS ≤ 0 =⇒ LHS ≤ 0.

A.5 Proof of Remark 4.8

Take for example X (ω) =−1 for a B ⊆Ωwhere P (B) < 1. Then sup X =−1, but

R
(
XχB

)= limsup
n→∞

1

n

n∑
i=1

(
XχB

)(#–
Ω(i )

)
= limsup

n→∞
− 1

n

n∑
i=1

χB

(
#–
Ω(i )

)
=− liminf

n→∞
1

n

n∑
i=1

χB

(
#–
Ω(i )

)
=−P (B),

and sup X =−1 <−P (B), hence UP1 does not hold. Thus X 7→ R
(
XχB

)
is not a coherent upper prevision

on L∞ in general (it is of course for B =Ω).

B Existence of Sequences with Prespecified Relative Frequency Cluster Points

In this section we prove Theorem 3.3 and thus demonstate the existence of sequences #–x : N → [k]
whose corresponding relative frequencies #–r

#–x : N→∆k have the property that their set of cluster points
CP( #–r

#–x ) =C , where C is an arbitrary closed rectifiable curve in ∆k . We do so constructively by providing
an explicit procedure which takes a chosen C and constructs a suitable #–x . We illustrate our method with
some examples. The question of how common sequences with non-convergent relative frequencies are is
addressed in Section D.

B.1 Sufficient to Work With Topology Induced by Euclidean Norm on the Simplex

Let |Ω| = k <∞. A linear prevision E on L∞ is in a one-to-one correspondence with a finitely additive
probability P , which we can represent as a point in the (k − 1)-simplex (see Lemma B.2 below). It is
convenient to then consider the cluster points of a sequence of such probabilities in the (k −1)-simplex,
with respect to the topology induced by the Euclidean norm on Rk . We show that the notion of such a
cluster point coincides with a cluster point in (L∞)∗ with respect to the weak* topology. This is the goal of
this section; in particular, we prove Proposition 3.5.

Since |Ω| = k <∞, we can represent any X ∈ L∞ as:

X (ω) = c1χ{ω1} +·· ·+ckχ{ωk },

where ci = X (ωi ).
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Similarly, any Z ∈ (L∞)∗ can be represented as:

Z (X ) = Z
(
c1χ{ω1} +·· ·+ckχ{ωk }

)
= c1Z

(
χ{ω1}

)+·· ·+ck Z
(
χ{ωk }

)
,

since the Z ∈ (L∞)∗ are linear functionals and the coefficients ci depend on X . Intuitively, Z
(
χ{ωi }

)= P (ωi )
if Z ∈ PF(Ω). Define di := Z

(
χ{ωi }

) ∀i ∈ 1, . . . ,n and consequently define

∥Z∥ :=
√

d 2
1 +·· ·+d 2

k .

For a given Z ∈ (L∞)∗, call dZ := (d1, ..,dk ) ∈Rk the coordinate representation of Z .

Lemma B.1. ∥ ·∥ is a norm on (L∞)∗.

Proof. Point-separating property: if and only if Z = 0, where 0 ∈ (L∞)∗ is given by 0(X ) = 0, ∀X ∈ L∞. But
this is easily observed, due to the similar property holding for the Euclidean norm: ∥Z∥ = 0 if and only if
di = 0 ∀i = 1, . . . ,n. Since di = Z

(
χ{ωi }

)
, this is the case exactly if Z = 0.

Subadditivity: ∥Y +Z∥ ≤ ∥Y ∥+∥Z∥. For the input Y +Z we get di = (Y +Z )
(
χ{ωi }

)= Y
(
χ{ωi }

)+Z
(
χ{ωi }

)
and then subadditivity follows from the similar property for the Euclidean norm.

Absolute homogeneity: ∥λZ∥ = |λ|∥Z∥, ∀λ ∈R. This follows easily.

With these properties, ∥ ·∥ is a valid norm on (L∞)∗.

We now show that the (k −1)-simplex is in a one-to-one correspondence with the set of linear previsions
PF(Ω) via the coordinate representation.

Lemma B.2. Let d ∈ ∆k . Then Z (X ) := c1d1 + ...+ ck dk ∈ PF(Ω). Conversely, let Z ∈ PF(Ω). Then the
corresponding dZ ∈∆k .

Proof. Let d ∈ ∆k and Z (X ) := c1d1 +·· ·+ ck dk . Since
∑k

i=1 di = 1 we have immediately that Z
(
χΩ

) = 1,
noting that χΩ = 1χ{ω1} +·· ·+1χ{ωk }. Also, if X ≥ 0, i.e. ci ≥ 0, ∀i ∈ [k], then Z (X ) ≥ 0 since di ≥ 0 ∀i . Thus,
Z ∈ PF(Ω).

Conversely, let Z be a linear prevision, i.e. Z
(
χΩ

) = 1 and Z (X ) ≥ 0 if X ≥ 0. From Z
(
χΩ

) = 1 we can
deduce that

∑k
i=1 di = 1. If X ≥ 0, we know that ci ≥ 0 ∀i ∈ [k], hence Z (X ) ≥ 0 can only be true if all di ≥ 0.

Thus dZ ∈∆k .

We here restate Proposition 3.5 for convenience.

Proposition B.3. Let
#–
E (n) :N→ PF(Ω) be a sequence of linear previsions with underlying probabilities

#–
P (n) := A 7→ #–

E (n)(A). Then E ∈ CP
(

#–
E (n)

)
with respect to the weak* topology if and only if the sequence

#–
D : N→∆k ,

#–
D (n) :=

(
#–
P (n)(ω1), . . . ,

#–
P (n)(ωk )

)
has as cluster point dE = (

E
(
χ{ω1}

)
, . . . ,E

(
χ{ωk }

))
with respect

to the topology induced by the Euclidean norm on Rk .

First note that if E ∈ PF(Ω), then dE = (
E

(
χ{ω1}

)
, . . . ,E

(
χ{ωk }

))= (P (ω1), . . . ,P (ωk )), where P is the under-

lying probability of E , and hence ∥E∥ =
√

P (ω1)2 +·· ·+P (ωk )2. To complete the proof, we need some
further statements first.

Definition B.4. A vector space X is called topological vector space if the topology on X is such that
(x, y) 7→ x + y is continuous with respect to the product topology on X ×X and (λ, x) 7→λx is continuous
with respect to the product topology on R×X . We call a topology which makes X a topological vector space
a linear topology.
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Remark B.5. The weak* topology makes (L∞)∗ a topological vector space with a Hausdorff topology,26

where vector addition and scalar product are defined pointwise: Y + Z := X 7→ Y (X )+ Z (X ) ∀X ∈ L∞,
λZ := X 7→λZ (X ) ∀X ∈ L∞.

Remark B.6 (well-known). A vector space whose topology is induced by a norm is a topological vector space.

Proposition B.7. On every finite dimensional vector space X there is a unique topological vector space
structure. In other words, any two Hausdorff linear topologies on X coincide (Nagy, 2007).

Now Proposition B.3 directly follows.

Proof of Proposition B.3. Our norm ∥ ·∥ makes (L∞)∗ a topological vector space due to Remark B.6, and
any topology induced by a norm is Hausdorff; but the weak* topology also makes (L∞)∗ a topological
vector space, and the weak* topology is Hausdorff. Hence we can conclude from Proposition B.7 that they
coincide. But then the two notions of what a cluster point is of course also coincide, since this depends
just on the topology.

Thus, for the proof of Theorem 3.1, we will work exclusively with the topology induced by the Euclidean
metric restricted to ∆k . For z ∈∆k and ϵ> 0 define the ϵ-neighbourhood (ball)

Nϵ(z) :=
{

p ∈∆k : ∥p − z∥ < ϵ
}

,

where ∥ ·∥ is the Euclidean norm (restricted to the simplex). Then from (Schechter, 1997, p. 430) we have
an equivalent definition of a cluster point:

Definition B.8. Say that z ∈∆k is a cluster point of a sequence #–x : N→∆k (and denote by CP( #–x ) the set of
all cluster points of #–x ) if for all ϵ> 0,

∣∣{n ∈N : #–x (n) ∈ Nϵ(z)
∣∣=ℵ0, where ℵ0 := |N| is the cardinality of the

natural numbers.

B.2 Further Notation

We will work solely with the topology on ∆k induced by the Euclidean metric; by the argument in the
previous subsection the cluster points w.r.t. this topology coincide with those w.r.t. the weak* topology.

We introduce further notation to assist in stating our algorithm. For terser notation, we drop the #–· symbol
for sequences #–x :N→ [k] throughout this appendix and simply write x. The i th canonical unit vector in
∆k is denoted ei := (0, . . . ,1, . . . ,0), where the 1 is in the i th position. The boundary of the simplex is

∂∆k := {(z1, . . . , zk ) : z1, . . . , zk ≥ 0, z1 +·· ·+ zk = 1}.

If p1, p2 ∈ ∆k then l (p1, p2) := {λp1 + (1−λ)p2 : λ ∈ [0,1]} is the line segment connecting p1 and p2. If
C ⊂ ∆k is a rectifiable closed curve parametrised by c : [0,1] → ∆k , its length is length(C ) = ∫ 1

0 |c ′(t )|d t .
For y ∈R, ⌊y⌉ is the nearest integer to y : ⌊y⌉ := ⌊y + 1

2⌋. We apply certain operations T elementwise. For
example, if z = 〈z1, . . . , zk〉 ∈∆k , then ⌊Tz⌉ := 〈⌊Tz1⌉, . . . ,⌊Tzk⌉〉 and (overloading notation) for T ∈N and
ι ∈Nk , ι/T ∈Rn is simply 〈ι1/T, . . . , ιk /T 〉. If i < j ∈N the “interval” is [i , j ] := {m ∈N : i ≤ m ≤ j }.

To avoid confusion, we will reserve “sequence” for the infinitely long x : N→ [k] and use “segment” to
denote finite length strings z : [n] → [k] which we will write explicitly as 〈z1, . . . , zn〉. We construct the
sequence x attaining the desired behavior of r x by iteratively appending a series of segments. We denote
the empty segment as 〈〉. If x1 and x2 are two finite segments of lengths ℓ1 and ℓ2 then their concatenation

is the length ℓ1 +ℓ2 segment x1x2 :=
〈

x1
1 , . . . , x1

ℓ1
, x2

1 , . . . , x2
ℓ2

〉
. We extend the i [ j ] notation to segments: if

26See for instance Exercise 13 and 14 in Tao (2009).
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z = 〈z1, . . . , zℓ〉, then z[ι] := 〈z, z . . . , z〉 is the length ℓι segment formed by concatenating ι copies of z. Given
n ∈N and a sequence x : N→ [k], the shifted sequence x+n : N→ [k] is defined via x+n(i ) := x(i +n) for
i ∈N.

B.3 Properties of Relative Frequency Sequences

Our construction of x relies upon the following elementary property of relative frequency sequences.

Lemma B.9. Suppose k,n,m ∈N, x : N→ [k]. Then

r x (n +m) = n

n +m
r x (n)+ m

n +m
r x+n

(m). (12)

Proof. For any i ∈ [k] we have

r x
i (n +m) = 1

n+m |{ j ∈ [n +m] : x( j ) = i }|
= 1

n+m

(|{ j ∈ [n] : x( j ) = i }|+ |{ j ∈ [n +m] \ [n] : x( j ) = i }|)
= 1

n+m
n
n |{ j ∈ [n] : x( j ) = i }|+ 1

n+m
m
m |{t ∈ [m] : x(n + t ) = i }|

= n
n+m r x

i (n)+ m
n+m

1
m |{t ∈ [m] : x+n(t ) = i }|

= n
n+m r x

i (n)+ m
n+m r x+n

i (m).

Since this holds for all i ∈ [k] we obtain Equation 12.

Observe that (12) also holds when x : [n +m] → [k] is a segment, in which case x+n = 〈xn+1, . . . , xn+m〉.
Furthermore note that (12) is a convex combination of the two points r x (n) and r x+n

(m) in ∆k since
n

n+m + m
n+m = 1 and both coefficients are positive. These two points are (respectively) the relative frequency

of x at n, and the relative frequency of x+n at m. This latter sequence will be the piece “added on” at
each stage of our construction and forms the basis of our piecewise linear construction of r x such that its
cluster points are a given C ⊂∆k .

The set of cluster points of any sequence is closed. In addition, we have

Lemma B.10. For any k ∈N and x : N→ [k], CP(r x ) is a connected set.

This follows immediately from (Bauschke et al., 2015, Lemma 2.6) upon observing that limn→∞ ∥r x (n)−
r x (n +1)∥ = 0 since ∥r x (n)− r x (n +1)∥ = ∥r x (n)− n

n+1 r x (n)− 1
n+1 e(x(n+1)∥ = 1

n+1∥r x (n)− ex(n+1)∥ ≤ 2
n+1 .

The boundedness of r x is essential for this to hold — for unbounded sequences the set of cluster points
need not be connected (Ašić & Adamović, 1970).

B.4 Logic of the Construction

The idea of our construction is as follows (see Figure 1 below for a visual aid). In order to satisfy the
definition of cluster points, we need to return to each neighbourhood of each point in C infinitely often.
To that end we iterate through an infinite sequence of generations indexed by g ∈ N. For each g , we
approximate C by a polygonal approximation C g comprising V g -many seperate segments. We choose the
sequence (V g )g∈N so that C g approaches C in an appropriate sense. Then for generation g we append
elements to x to ensure the sequence of relative frequencies makes another cycle approximately following
C g . We control the approximation error of this process and ensure its error is of a size that also decreases
with increasing g .

We now describe the construction of a single generation. Thus suppose g is now fixed and suppose the
current partial sequence (segment) x has length n. We suppose (and will argue this is ok later) that r x (n)
is close to one of the vertices of C g−1. We then choose a finer approximation C g of C (since V g >V g−1).
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Algorithm 1 Construction of x such that CP(r x ) =C

Require: C ⊂∆k , a rectifiable closed curve parametrized as c : [0,1] →∆k

Require: V : N→N ▷Number of segments at generation g ; as a function of n
Require: T : N→N ▷ Controls quantization of angle; needs to be increasing

1: x ←〈1〉 ▷ Arbitrary initialization x1 = 1
2: pold ← e1 ▷ pold = r 〈1〉(1) = e1

3: n ← 1 ▷ n is always updated to correspond to the current length of x
4: g ← 1
5: while true do ▷ Iterate over repeated generations g ; V is chosen at start of generation
6: V ←V (g ) ▷ Choose V for generation g
7: pv ← c(v/V ) for v = 0, . . . ,V ▷ Vertices of C g :=⋃

v∈[V ] l (pv−1, pv )
8: v ← 0
9: while v ≤V do ▷ For all vertices of C g

10: T ← T (n) ▷Quantization of angle; chosen per segment
11: pnew ← pv+1 ▷ The next vertex of C g

12: γi ← pold,i /(pold,i −pnew,i ) for i ∈ [k] ▷Will have pold ≈ pv

13: γ← min{γi : i ∈ [k],γi > 0} ▷ See (15)
14: p∗ ← γ(pnew −pold)+pold ▷Determine p∗ ∈ ∂∆k

15: ι←⌊T p∗⌉ ▷ Elementwise; ι= (ι1, . . . , ιk )
16: p̃∗ ← ι/T ▷ Elementwise; quantized version of p∗

17: T̃ ←∑k
i=1 ιi ▷Will have T̃ ≈ T

18: y ←〈1[ι1], . . . ,k [ιk ]〉 ▷ The string y is thus of length T̃
19: ℓ̃←⌈ n

T (γ−1)⌉ ▷ Integer number of repetitions of y needed

20: x ← x y [ℓ̃] ▷ Construct new x by appending z, comprising ℓ̃ copies of y
21: n ← n + ℓ̃T̃ ▷ Length of x now
22: pold ← r x (n) ▷ Relative frequency at current n
23: v ← v +1 ▷Move onto next vertex of C g

24: end while
25: g ← g +1 ▷Move onto next generation of the construction
26: end while ▷ Procedure never terminates

For each vertex pg
v , v ∈ [V g ] we append elements to x resulting in a segment of length n′. We do this in

a manner such that we move the relative frequency from r x (n) to r x (n′) ≈ pg
v . We do so by appending

multiple copies of a vector z to x where r z (m) points in the same direction as the direction one needs to
go from pold to pnew. This can only be done approximately because with a finite length segment, the set of
directions one can move the relative frequencies is quantized. We choose the fineness of the quantization
to be fine enough to achieve the accuracy we need. That is governed by the parameter T ∈N. We then
append ℓ̃ copies of z to x where ℓ̃ is the integer closest to the real number ℓ that would be the ideal number
of steps needed to get to the desired point pnew. We also control the error incurred by approximating ℓ by
ℓ̃. The upshot of this is that with the resulting extension to x we have r x (n′) is sufficiently close to pnew.
We then repeat this operation for all the vertices pg

v for v ∈ [V g ]. This completes generation g . We show
below that for each generation g , all the points in the relative frequency sequence are adequately close to
C g , where “adequately close” is quantified and increases in accuracy as g increases.

We consistently use the following terminology in describing our algorithm:
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generation These are indexed by g and entail an entire pass around the curve C , or more precisely its
polygonal approximation C g :=⋃

v∈[V g ] l (pv−1, pv )
segment Corresponds to a single line segment l (pv−1, pv ) of the g th polygonal approximation.
piece Corresponds to appending z = 〈1[ι1], . . . ,k [ιk ]〉 to x, which results in moving r x (n) in the direction

p̂∗.
step The appending of a single element of z, which will always move r x (n) towards one of the vertices of

the simplex ei (i ∈ [k]).

The end result is that we have constructed a procedure (Algorithm 1) which runs indefinitely (g increases
without bound), and which has the property that for any choice of ϵ> 0, if one waits long enough, there
will be a sufficiently large g such that all the relative frequencies associated with generated x are within
ϵg of C , and (ϵg )g∈N is a null sequence. We will thus conclude that CP(r x ) ⊇ C . We will also argue that
CP(r x ) ⊆C completing the proof.

B.5 Construction of p∗ and its Approximation p̃∗

The basic idea of the construction is to exploit Lemma B.9. Suppose n ∈N (and suppose it is “large”) and
fix m = 1 in (12) to obtain

r x (n +1) = n
n+1 r x (n)+ 1

n+1 r x+n
(1). (13)

Now r x+n
(1) = ex(n+1) and so r x (n +1) = n

n+1 r x (n)+ 1
n+1 ex(n+1). When n is large n

n+1 ≈ 1 and 1
n+1 is small,

and so this says that appending x(n +1) to the length n segment x([n]) moves the relative frequency
r x from r x (n) in the direction of ex(n+1) by a small amount. Observe that the only directions which the
point r x (n) can be moved is towards one of the vertices of the k-simplex, e1, . . . ,ek . Thus if we had, for a
fixed n that r x (n) = pold and we wished to append m additional elements z to x to produce xz such that
r xz (n +m) = pnew, we need to figure out a way of heading in the direction d = pnew −pold when at each
step we are constrained to move a small amount to one of the vertices. The solution is to approximate the
direction d by a quantized choice that can be obtained by an integer number of elements of [k].

Given arbitrary pold ̸= pnew ∈ relint∆k , we define p∗ to be the intercept by ∂∆k of the line segment starting
at pold and passing through pnew. (If pnew ∈ ∂∆k set p∗ = pnew.) The intercept on the boundary of ∆k is
denoted p∗ and is given by

p∗ := γ(pnew −pold)+pold (14)

for some γ> 0. We can determine γ as follows. The choice of γ can not take p∗ outside the simplex. Thus
let γi (i ∈ [k]) satisfy γi (pnewi −poldi )+poldi = 0. Thus γi = poldi

poldi−pnewi
. Any γi < 0 points in the wrong

direction and so we choose
γ := min{γi : i ∈ [k] and γi > 0}. (15)

Such a choice of γ guarantees that p∗ ∈ ∂∆k . Observe that the requirement that γi > 0 means the
denominator in the definition of γi is positive and less than the numerator, and thus all γi which are
positive exceed 1, and consequently γ> 1.

We can now take p∗ to be the direction we would like to move r x (n) towards. However our only control
action is to choose a sequence z ∈ [k]m . To that end we suppose we quantize the vector p∗ so that it has
rational components with denominator T ∈N (which will be strategically chosen henceforth). As we will
shortly show, this will allow us to move (approximately) towards p∗. Thus let ιi := ⌊T p∗

i ⌉ for i ∈ [k] and set

p̃∗ :=
( ι1

T
, . . . ,

ιk

T

)
. (16)

Observe that p̃∗ is not guaranteed to be in ∆k because there is no guarantee that
∑k

i=1 p̃∗
i = 1.
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We have

Lemma B.11. Let p∗ and p̃∗ be defined by (14) and (16) respectively. Then for all i ∈ [k],
∣∣p̃∗

i −p∗
i

∣∣≤ 1
2T .

Proof.
∣∣p̃∗

i −p∗
i

∣∣= 1
T

∣∣T p̃∗
i −T p∗

i

∣∣= 1
T

∣∣⌊T p∗
i ⌉−T p∗

i

∣∣≤ 1
2T , by definition of the rounding operator ⌊·⌉.

B.6 Determining the Number of Steps to Take

Observe that (12) can be written as

r x (n +m) = (1−α)r x (n)+αr x+n
(m). (17)

whereα= m
n+m and thus 1−α= n

n+m . This suggests that we can engineer the construction of x by requiring
a suitable α such that

(1−α)pold +αp∗ = pnew.

Recall we want the sequence r x to move from pold to pnew which can be achieved by a taking a suitable
convex combination of pold and p∗, which corresponds to appending a suitable number of copies of z to
x, where z is chosen to move r x (n) in the direction of p∗. If we substitute the definition of p∗ from (14)
we obtain the problem:

Find α such that (1−α)pold +α[γ(pnew −pold)+pold] = pnew

⇔ Find α such that (1−α)pold +αγpnew −αγpold +αpold −pnew = 0k ∈Rk

⇔ Find α such that pold(1−αγ)+pnew(αγ−1) = 0k ,

which is only true when either pold = pnew (which is a trivial case) or when 1−αγ= 0 and thus α := 1/γ,
which we take as a definition. Since γ > 1 this implies α < 1, which is consistent with our original
motivation for taking convex combinations.

We will append the segment z to x, where z = y [ℓ] and y = 〈1[ι1], . . . ,k [ιk ]〉. Now if each y is of length T and
we notionally made ℓ repetitions, we would have m = ℓT . From the definition of α this means

α= ℓT

n +ℓT
. (18)

We presume n is given (at a particular stage of construction) and T ∈N is a fixed design parameter. We
can thus solve for ℓ to obtain

ℓ= αn

T (1−α)
= (1/γ)n

T (1−1/γ)
= n

T (γ−1)
.

Observe that ℓ is not guaranteed to be an integer, a complication we will deal with later. If it was an integer,
we would create z by concatenating ℓ copies of y which is of length T . The vector y moves pold towards
p∗. By appending ℓ copies we should move r x to pnew as desired.

However we do not head exactly in the direction of p∗, since we worked with a quantized version p̃∗

instead, and we can not always take ℓ copies because ℓ is not guaranteed to be an integer; instead we will
take

ℓ̃ :=
⌈

αn

T (1−α)

⌉
=

⌈
n

T (γ−1)

⌉
copies of y which will move r x (n) towards p̂∗ instead of p∗. We now proceed to analyse the effect of these
approximations on our construction.
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B.7 Analyzing the Effect of Approximations

The parameter T ∈N is a design variable. Our construction will utilize

T̃ :=
k∑

j=1
ι j , (19)

where ι j = ⌊T p∗
j ⌉ for j ∈ [k]. Then T̃ ≈ T , a claim which we quantify below.

Lemma B.12. Suppose T ∈N, and T̃ is defined as above. Then T − k
2 ≤ T̃ ≤ T + k

2 .

Proof. By definition of the rounding operator ⌊·⌉, we have that∣∣∣ι j −⌊T p∗
j ⌉

∣∣∣≤ 1
2 ∀ j ∈ [k].

Thus

T p∗
j −

1

2
≤ ι j ≤ T p∗

j +
1

2
∀ j ∈ [k]

⇒
k∑

j=1

(
T p∗

j −
1

2

)
≤

k∑
j=1

ι j ≤
k∑

j=1

(
T p∗

j +
1

2

)
⇒ T − k

2
≤ T̃ ≤ T + k

2
.

Ideally we move r x (n) to
pnew = (1−α)pold +αp∗. (20)

by appending z (i.e. we hope that r xz (n +m) = pnew). But in fact the segment z which we will append to
x will move r x from pold instead to

p̂new := (1− α̃)pold + α̃p̂∗, (21)

where

α̃ := ℓ̃T

ℓ̃T +m
. (22)

and

p̂∗ :=
(
ι1

T̃
, . . . ,

ιk

T̃

)
. (23)

We now determine the error incurred from these approximations. We first need the following Lemma:

Lemma B.13. Suppose n,T ∈N, α is defined by (18) and α̃ is defined by (22). Then

|α− α̃| ≤ T

n
.

Proof. By definition of α̃ we have

|α− α̃| =
∣∣∣∣ ℓ̃T

ℓ̃T +n
− ℓT

ℓT +n

∣∣∣∣
=

∣∣∣∣ ℓ̃T (ℓT +n)−ℓT (ℓ̃T +n)

(ℓ̃T +n)(ℓT +n)

∣∣∣∣
=

∣∣∣∣ ℓ̃T n −ℓT n

(ℓ̃T +n)(ℓT +n)

∣∣∣∣ .
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C

C g

p∗
p̂∗

p̂new

pnew
pold Nϵ(pnew)

Figure 1: Illustration of construction of the sequence x. The figure shows how a single segment is created. We
have the desired curve C (in dark green) and a polygonal approximation C g using 5 segments (thus V g = 5). We
assume that we have already constructed the first n elements of x and thus we can compute r x (n). Denote this by
pold, an element of the simplex, itself shown in pale green. We hope to append a segment y of length m to x such
r x y (n +m) = pnew. However we can only choose elements of y from [k] and that means that at each step we move
towards one of the vertices of the simplex. We note that ideally we would move from pold towards p∗ ∈ ∂∆k . In order
to deal with the restrictions on directions we can head, we quantize p∗ as p̂∗ = ⌊T p∗⌉/T where in this example we
have chosen T = 9. As argued in the main text this means we will thus be restricted to heading towards one of a
fixed set of points on the boundary (marked in blue). Observe p̂∗ is located at one of these points in the diagram,
but in general it might not even be on the boundary of the simplex. We then construct y to move r x towards p̂∗

and take sufficient steps to move to p̂new. This too is done in repeated steps by setting y = z[ℓ̃] where z is a shorter
segment (marked by purple ticks on the line segment l (pold, p̂∗)) which will move towards p̂∗ by a small amount.
The end result is that we get r x y (n +m) = p̂new which is contained within Nϵ(pnew), an ϵ-ball centered at pnew.

Since (ℓ̃T +n)(ℓT +n) > 0 and ℓ̃= ⌈ℓ⌉ ≥ ℓ, we have

(ℓ̃T +n)(ℓT +n) ≥ (ℓT +n)(ℓT +n) ≥ n2

and since |ℓ̃−ℓ| ≤ 1,

|α− α̃| = |ℓ̃−ℓ| ·T n

n2 ≤ T

n
.

Our construction does not move r x (n) towards p̃∗ but an approximation of it, namely p̂∗ defined in (23).
We exploit the fact that repeating a segment does not change its relative frequencies, which we state
formally as

Lemma B.14. Let z = 〈
1[ι1], . . . ,k [ιk ]

〉
. Then r z (T̃ ) = p̂∗ = r z[ℓ̃]

(ℓ̃T̃ ).

Proof. For any i ∈ [k] we have r z
i (T̃ ) = 1

T̃

∣∣{ j ∈ [T̃ ] : z j = i
}∣∣= 1

T̃
ιi . The first equality is immediate. For the

second, similarly we have r z[ℓ̃]

i (ℓ̃T̃ ) = 1
ℓ̃T̃

∣∣∣{ j ∈ [ℓ̃T̃ ] : z[ℓ̃]
j = i

}∣∣∣= 1
ℓ̃T̃

· ℓ̃ιi = 1
T̃
ιi by definition of z[ℓ̃].

Since p̃∗ = ( ι1
T , . . . , ιkT

)
we have that p̃∗ = T̃

T p̂∗. This allows us to show:

Lemma B.15. Suppose T ∈N and p̂∗ is defined via (23). Then
∥∥p̂∗− p̃∗∥∥≤ k

2T .
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Proof. We have
∥∥p̂∗− p̃∗∥∥ =

∥∥∥p̂∗− T̃
T p̂∗

∥∥∥ =
∣∣∣1− T̃

T

∣∣∣ · ∥p̂∗∥ ≤
∣∣∣1− T̃

T

∣∣∣ . Suppose T̃ < T , then 1− T̃
T > 0 and∣∣∣1− T̃

T

∣∣∣ = 1− T̃
T ≤ 1− T−k/2

T = k
2T by Lemma B.12. Similarly if T̃ > T , then 1− T̃

T < 0 and
∣∣∣1− T̃

T

∣∣∣ = T̃
T −1 ≤

T+k/2
T −1 = k

2T completing the proof.

Lemma B.16. Suppose k,T ∈N and pnew and p̂new are defined as above. Then

∥p̂new −pnew∥ ≤ 4T

n
+ k

T
. (24)

Proof. From (20) and (21) we have

∥p̂new −pnew∥ = ∥(1− α̃)pold + α̃p̂∗− (1−α)pold −αp∗∥
= ∥[(1− α̃)− (1−α)]pold + (α̃p̂∗−αp∗)∥
≤ ∥(α− α̃)pold∥+∥α̃p̂∗−αp∗∥
≤p

2|α̃−α|+∥α̃p̂∗−αp∗∥. (25)

The second term in (25) can be bounded as follows:

∥α̃p̂∗−αp∗∥ = ∥(α̃−α+α)p̂∗−αp∗∥
= ∥(α̃−α)p̂∗+ (αp̂∗−αp∗)∥
≤ ∥(α̃−α)p̂∗∥+∥αp̂∗−αp∗∥
= |α̃−α| · ∥p̂∗∥+α∥p̂∗−p∗∥
= |α̃−α| · ∥p̂∗∥+α∥(p̂∗− p̃∗)+ (p̃∗−p∗)∥
≤ |α̃−α|

p
2+α∥p̂∗− p̃∗∥+α∥p̃∗−p∗∥

≤p
2|α̃−α|+ k

2T
+α

(∑k
i=1

(
p̃∗

i −p∗
i

)2
)1/2

,

by Lemma B.15 and the fact that ∥p̂∗∥ ≤ 1,

≤p
2|α̃−α|+ k

2T
+α

(∑k
i=1

( 1
2T

)2
)1/2

=p
2|α̃−α|+ k

2T
+α

p
k

2T
, (26)

where we used Lemma B.11 in the penultimate step. Since α≤ 1, combining (25) and (26) we have

∥p̂new −pnew∥ ≤ 2
p

2 |α̃−α|+ k

2T
+
p

k

2T
≤ 4 |α̃−α|+ k

T
.

Appealing to Lemma B.13 gives us (24).

The above arguments control the errors at the end of a piece (and thus in a segment). But for later purposes
we need control at each step. This follows immediately by the fact that we make small steps:

Lemma B.17. For n ∈N and m ∈ [T̃ ] and any x : N→ [k],

∥∥r x (n)− r x (n +m)
∥∥≤ 2T +k

n
.
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Proof. By Lemma B.9, ∥∥r x (n)− r x (n +m)
∥∥=

∥∥∥r x (n)− n
n+m r x (n)− m

n+m r x+n
(m)

∥∥∥
=

∥∥∥(1− n
n+m )r x (n)− m

n+m r x+n
(m)

∥∥∥
= m

n +m

∥∥∥r x (n)− r x+n
(m)

∥∥∥
≤ 2m

n +m

≤ 2m

n

≤ 2T +k

n
,

where the first inequality holds since ∥r x (n)∥,∥r x+n
(m)∥ ≤ 1 and the last step follows from Lemma B.12.

B.8 Completing the Proof of Theorem 3.3

The remaining piece of the argument concerns the piecewise linear approximation of C by C g . For
A,B ⊆∆k and a ∈∆k define d(a,B) := min{∥a −b∥ : b ∈ B} and the Hausdorff distance

d(A,B) := max{d(a,B) : a ∈ A}. (27)

Let us write V g (the number of vertices in the piecewise linear approximation at generation g ) in functional
form as V (g ). Let n(g ) denote the length of the segment of x that has been constructed at the beginning of
generation g , and let g (n) := inf{g ∈N : n ≤ n(g )} denote its quasi-inverse. Clearly n(g ) is strictly increasing
in g and g (n) is increasing, but often constant. With these definitions, we have V =V (g ) =V (g (n)).

Denote by C̃ (V ) the best piecewise linear approximation of C with V vertices, in the sense of minimiz-
ing ψC (V ) := d(C ,C̃ (V )). Since every rectifiable curve C has a Lipschitz continuous parametrisation,
we have that V 7→ ψC (V ) is decreasing in V and limV →∞ψC (V ) = 0. Thus limg→∞ψC (V (g )) = 0 and
limn→∞ψC (V (g (n))) = 0, although the convergence could be very slow (in n) and its speed will depend
on the choice of C . Denote by C̄ (n) := C̃ (V (g (n))) the sequence of best possible piecewise linear approxi-
mations of C indexed by n, and let ψ̄C (n) := d(C ,C̄ (n)). We have thus shown:

Lemma B.18. Let C ⊂∆k be a rectifiable curve. Then

lim
n→∞ψ̄C (n) = 0.

We summarize what we know so far.

1. For all generations g , ∥p̂new −pnew∥ ≤ 4T
n + k

T , where pnew = pv for v ∈ [V g ] (Lemma B.16). This
means the following. Suppose at the beginning of segment v in generation g we have n = length(x).

By definition, we have r x (n) = pold and r xz[ℓ̃]
(n + ℓ̃T̃ ) = p̂new. Furthermore, for m = i T̃ , i ∈ [ℓ̃] we

have r xz[i ]
(n + i T̃ ) ∈ l (pold, p̂new).

2. Furthermore, (by Lemma B.17) for all j ∈ [ℓ̃T̃ ], d
(
r xz[ℓ̃]

( j ), l (pold, p̂new)
)
≤ 2T+k

n — the relative

frequencies for all points in the segment are close to the line segment l (pold, p̂new).

Combining these facts, and appealing to the triangle inequality, we conclude that the sequence x con-
structed by Algorithm 1 satisfies

d(r x (n),C ) ≤ 4T

n
+ k

T
+ 2T +k

n
+ ψ̄C (n) ∀n ∈N. (28)
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We now choose T = T (n) and V =V (g (n)) appropriately. One choice is to choose T (n) =p
n. Equation 28

then implies

d(r x (n),C ) ≤ 4
p

n

n
+ kp

n
+ 2

p
n +k

n
+ ψ̄C (n) ∀n ∈N

which implies that for all n ∈N with
p

n > k,

d(r x (n),C ) ≤ 4p
n
+ kp

n
+ 4p

n
+ ψ̄C (n) = 8+kp

n
+ ψ̄C (n),

and thus Lemma B.18 implies limn→∞ d(r x (n),C ) = 0. By definition of the Hausdorff distance this means
that for any ϵ > 0 and any point y ∈ C , there exists an n such that ∥r x (n)− y∥ ≤ ϵ. Furthermore, by the
generational nature of our construction, if r x (n) is ϵ-close to y then for each subsequent generation g ,
there exists ng such that r x (ng ) is also ϵ-close to y . Since there are an infinite number of generations g ,
the sequence r x visits an ϵ-neighbourhood of y infinitely often. Since ϵ was arbitrary, y is thus a cluster
point of r x . Since y ∈C was arbitrary, every element of C is a cluster point of r x .

Finally, since in each generation the bounds above constrain r x more and more tightly, there cannot exist
cluster points that are not in C ; that is, CP(r ) ⊆C . We have thus proved Theorem 3.3.

B.9 Remarks on the Construction

We make a few remarks on the construction.

1. By the definition of ℓ̃ we are guaranteed that ℓ̃≥ 1 for each segment and each generation. For the
construction to approximate well, we need ℓ̃≫ 1, which it will inevitably be when n gets large
enough.

2. Recall n(g ) is the length of x at the beginning of generation g . Let Lg
C := length(C g ) > 0. Since

each step which r x moves is of size less than 1/n(g ) (see Equation 13), we require at least Lg
C ·n(g )

steps for r x to traverse the whole of C in generation g . Thus at the end of generation g and the
beginning of generation g +1 we have

n(g +1) ≥ n(g )+Lg
C ·n(g ) =λg

C ·n(g ).

Furthermore, Lg
C is increasing in g and approaches length(C ). Thus for all g , λg

C > 1 (and is in fact
increasing in g ). Hence n(g ) grows exponentially with g .

3. The growth of the length of x is controlled in a complex manner by the nature of the curve C . In
particular if C is very complex, then ψ̄C must decay slowly. Furthermore, if C has parts close to
∂∆k , in particular if some vertices v of the piecewise linear approximation C g are close to ∂∆k ,
then ℓ̃ can end up very large for that segment, meaning that the length of the sequence x grows
more rapidly. See Lemma B.19 for an illustration of this observation.

Finally note that since (by Lemma B.10) CP(r x ) must always be connected, we have in Theorem 3.3 what
appears to be the most general result possible (under the restriction that x takes values only in a finite
set [k]). We do not know what the appropriate generalization is to sequences x that can take values in an
infinite (or uncountable) set27.

27Although we do not pursue this in any detail, we remark that one could design an algorithm to construct x such that CP(r x )
is any subset D ⊆∆k by using our algorithm as a subroutine. The idea would be to construct a space filling curve that fills D,
each generation of which is a rectifiable curve. One would appeal to our algorithm for each generation, and then once within a
suitable tolerance, change the target to be the next generation of the space filling curve. A suitable method would be to simply
intersect an extant families of closed space filling curves for k dimensional cubes with the (k −1)-simplex (e.g. generalisations
of the Moore curve), attaching joins on ∂D where necessary. Since (see the main body of the paper) it ends up being only the
convex hull of CP(r x ) that matters, such an exotic construction is of little direct interest.
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B.10 From Boundary to Curves

Proof of Corollary 3.4. Bronshteyn & Ivanov (1975) show that if D is a convex set contained in the unit
ball (w.r.t. the Euclidean norm) in Rn and ϵ< 10−3, then there exists a set of at most Kϵ := 3

p
n(9/ϵ)(n−1)/2

points whose convex hull is at most ϵ away from D . Thus for any convex D ⊆∆k , and any ϵ< 10−3 there is a
polyhedron Dϵ comprising the convex hull of Kϵ <∞ points Qϵ := {qi ∈∆k : i ∈ [Kϵ]} such that d(D,Dϵ) < ϵ,
where d is the Hausdorff distance (27). Hence for any ϵ < 10−3 there exists a closed rectifiable curve
Cϵ (constructed by linearly connecting successive points in Qϵ) such that d(coCϵ,D) < ϵ. One can then
construct a sequence x such that CP(r x ) = ∂D as follows. Start with ϵ0 = 10−3. Pick and construct Cϵ0 as
above. Construct x according to the previous procedure (Appendix B.4–B.9) to get an entire generation
of r x within ϵ0 of Cϵ0 . Then let ϵ1 = ϵ0/2 and repeat the procedure, appending the constructed sequence.
Continue iterating (dividing the ϵ in half each phase) and one achieves that in the limit CP(r x ) = ∂D .

B.11 Illustration

We illustrate our construction for k = 3 for two (identical) generations and thus a single piecewise linear
(in fact polygonal) approximation C g of C . We take for C (a scaled version of) the lemniscate of Bernoulli
(Lockwood, 1961, Chapter 12), (Lawrence, 1972, Section 5.3) mapped onto the 2-simplex as the space
curve {(z1(t ), z2(t ), z3(t ) : t ∈ [0,2π]}, where

z1(t ) = 1

3
+ 1

12

2cos(t )

1+ sin2(t )

z1(t ) = 1

3
+ 1

12

2sin(t )cos(t )

1+ sin2(t )

z3(t ) = 1− z1(t )− z2(t ).

We set T = 12 and V = 30 (number of nodes in the polygonal approximation C g for both g = 1,2 to make
the figure less cluttered) and we iterated long enough to go around the lemniscate twice, which resulted
in a sequence of length 85677. As the construction proceeded, T̃ went from 9 up to 164 and ℓ̃ went from
1 or 2 for the first few segments up to 69 for the last (with the largest value being 104). The results can
be seen in Figure 2 which plots the achieved relative frequencies at different zoom levels. The small red
squares are the vertices of C g .

B.12 Construction of x such that coCP(r x ) =∆k

How much of the simplex can we cover with CP(r x )? This question is poorly posed as (it seems) we can
only ever construct one dimensional sets that are the set of cluster points of r x . However, for inducing an
upper prevision, all that matters is the convex hull of CP(r x ). We now show the convex hull of CP(r x ) can
be made as large as conceivable with simpler and more explicit construction:

Lemma B.19. Suppose k ∈N. There exists a sequence x : N→ [k] such that co(CP(r x )) =∆k .

Proof. As before, our proof is constructive. Recall e1, . . . ,ek are the vertices (and extreme points) of the
(k−1)-simplex, and co{e1, . . . ,ek } =∆k . We will construct a sequence x such that for all ϵ> 0, and all i ∈ [k],
r x visits Nϵ(ei ) infinitely often. Since limϵ→0 co

⋃
i∈[k] Nϵ(ei ) =∆k we will have achieved the desired result.

We again make use of (12). We will construct a sequence x by adding segments (s) such that for each
successive s we drive r x closer and closer towards one of the vertices ei (i ∈ [k]). In order to do this, at
each s we append m copies of i to the current x. Specifically, we construct x as follows:
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(a) Overall view, showing initialisation. (b) Closer view of just the region containing C .

(c) Zoom of upper right corner of Figure 2b. (d) Closer view; two generations are apparent.

(e) Closer again zoom of Figure 2d. (f) Near the centre of Figure 2b.

(g) Further zoom of Figure 2f. (h) An even closer view of Figure 2g.

Figure 2: Illustration of approximation of the polygonal curve C g by the relative frequencies of the sequence
constructed according to Algorithm 1. Two generations were used. Red squares are vertices of C g . See Section B.11
for details.

44



Require: φ : N→N

1: x ←〈〉
2: s ← 1
3: while true do
4: i ← s mod k ▷ Cycle around the vertices of the simplex
5: m ←φ(s +1)−φ(s)
6: x ← x i m ▷ Append m copies of i to x
7: s ← s +1
8: end while

We need to make m large enough so that the convex combination coefficient m
n+m approaches 1. To that

end, consider an increasing function φ : N→Nwhich will further restrict later. The role of φ is to control n
as a function of segment number s; that is n =φ(s) and thus m =φ(s +1)−φ(s). With this choice, we have

n

n +m
= φ(s)

φ(s +1)
and

m

n +m
= 1− φ(s)

φ(s +1)
.

and thus for all s ∈N

r x (φ(s +1)) = φ(s)

φ(s +1)
r x (φ(s))+

(
1− φ(s)

φ(s +1)

)
r x+φ(s) (

φ(s +1)−φ(s)
)

. (29)

We demand that lims→∞
φ(s)
φ(s+1) = 0 so that as s increases, the second term in (29) dominates. For any s ∈N,

r x (φ(s)) ∈∆k and thus

∥es modk − r x (φ(s +1))∥ =
∥∥∥∥es modk −

φ(s)

φ(s +1)
r x (φ(s))−

(
1− φ(s)

φ(s +1)

)
r x+φ(s)(

φ(s +1)−φ(s)
)∥∥∥∥

=
∥∥∥∥ φ(s)

φ(s +1)
es modk −

φ(s)

φ(s +1)
r x (φ(s))

∥∥∥∥
= φ(s)

φ(s +1)

∥∥es modk − r x (φ(s))
∥∥

≤ φ(s)

φ(s +1)
·2,

where the second line follows from the fact that we constructed x such that r x+φ(s)(
φ(s +1)−φ(s)

)= es modk .

But by assumption, lims→∞
φ(s)
φ(s+1) = 0 and hence for any ϵ> 0 there exists sϵ such that for all i ∈ [k],

∣∣{s ∈N : s > sϵ, s modk = i ,
∥∥ei − r x (φ(s +1))

∥∥≤ ϵ}∣∣=ℵ0.

That is, for each i ∈ [k], each ϵ-neighbourhood of ei is visited infinitely often by the sequence r x and
hence {e1, . . . ,ek } ⊆ CP(r x ). But since r x (n) ∈ ∆k for all n ∈ N we conclude that indeed co(CP(r x )) =
co({e1, . . . ,ek }) =∆k as required.

A suitable choice ofφ isφ(s) = ⌈
exp(sα)

⌉
for someα> 1, in which case φ(s)

φ(s+1) ≈ exp
(−αsα−1

)
. An argument

as in the proof of Theorem 3.3 would show that Sk :=⋃
i∈[k] l

(
ei ,e(i+1)modk

)⊆ CP(r x ). Observe that when
k = 3, Sk = ∂∆k , but for k > 4, that is not true, even though co(Sk ) = ∂∆k .
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C Unstable Independence

Closely related to conditional probability is the concept of statistical independence. Independence plays a
central role not only in Kolmogorov’s (Durrett, 2019, p. 37), but more generally in most probability theories
(Levin (1980); Fine (1973, Section IIF, IIIG and VH)). Already de Moivre (1738/1967, Introduction, p. 6)
nicely summarized a pre-theoretical, probabilistic notion of real-world independence:

Two events are independent, when they have no connexion one with the other, and that
the happening of one neither forwards nor obstructs the happening of the other.

This intuitive conception was then formalized by Kolmogorov (1933) (translated in (Kolmogorov, 1956)) in
the following classical definition.

Definition C.1. Let (Ω,F ,P ) be a probability space.28 We call events A ∈F and B ∈F classically indepen-
dent if P (A∩B) = P (A)P (B).

If P (B) > 0, then we can equivalently express this condition as P (A|B) = P (A) by using the definition of
conditional probability.

Kolmogorov’s definition is formal and it has been questioned whether it is an adequate expression of
what we mean by independence in a statistical context (Von Collani, 2006). As it is stated in purely
measure-theoretic terms, it is unclear whether it has reasonable frequentist semantics. In our framework,
we construct an intuitive definition of independence, where the independence of events is based on an
independence notion of processes (cf. (von Mises & Geiringer, 1964, p. 35-39)). Therefore, our definition
is thoroughly grounded in the frequentist setting. Furthermore, we shall generalize the independence
concept to the case of possible divergence, where new subtleties come into play. We will then consider how
our definitions relate to the classical case when relative frequencies converge. Assume that a sequence

#–
Ω

is given and we have constructed an upper probability P as in Section 2.2.

Definition C.2. We call an event B ∈ 2
#–
Ω
1+ irrelevant to another event A ⊆Ω if:

P (A|B) = P (A).

This definition captures the concept of epistemic irrelevance in the imprecise probability literature (Mi-
randa, 2008). Why does this definition possess reasonable frequentist semantics? Consider what P (A|B)
means (see Section 4.1): we are considering a subsequence, induced by the indicator gamble χB , that is,
we condition (in an intuitive sense) on the occurence of B ; and on this subsequence, we then consider an
unconditional upper probability. If this then coincides with the orginal upper probability, our decision
maker values A just the same whether B occurs or not. Thus B is irrelevant for putting a value on A.
In contrast to the classical, precise case, irrelevance is not necessarily symmetric. Hence, we define
independence as follows.

Definition C.3. Let A,B ∈ 2
#–
Ω
1+. We call A and B independent if P (A|B) = P (A) and P (B |A) = P (B).

Thus, we have obtained a grounded concept of independence for events. We note that Definition C.3 is
similar to a condition proposed by Walley & Fine (1982) for independence of joint experiments29; they did
not propose an independence concept for gambles.

How can we extend this to an irrelevance and independence concept for gambles? First, we briefly recall
how this is done in the classical case.

28Here,Ω is the possibility space, F is a σ-algebra and P is a countably additive probability measure.
29Walley & Fine (1982) considered outcomes of “joint experiments” in Ω×Ω. They furthermore demanded that lower limits of

relative frequencies factorize; to us it is not clear from a strictly frequentist perspective why this condition should be introduced.
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Definition C.4. Let (Ω,F ,P ) be a probability space and fix the Borel σ-algebra B on R. Given two gambles
X ,Y : Ω→R, we say that they are classically independent if:

P (A∩B) = P (A)P (B) ∀A ∈σ(X ),B ∈σ(Y ),

where the σ-algebra generated from a gamble X , σ(X ), is defined as the smallest σ-algebra which X is
measurable with respect to:

σ(X ) :=σ(
X −1(B)

)
,

and σ(H ) is the smallest σ-algebra containing all sets H ∈H , H ⊆ 2Ω.

Thus independence of gambles is reduced to independence of events. But note that this definition
inherently depends on the choice of the Borel σ-algebra on R. In our case, this is similar: to define
irrelevance and independence on gambles, we need to fix a set system on R, but we leave the choice open
in general.

Definition C.5. Assume a set system H ⊆ 2R and two gambles X ,Y : Ω→R are given. We call Y irrelevant
to X with respect to H if

P (X −1(A)|Y −1(B)) = P (X −1(A)) ∀A,B ∈H if Y −1(B) ∈ 2
#–
Ω
1+.

Similarly, we call them independent when both directions hold.

Observe that if H = B and P was actually a precise P on σ(X ) and σ(Y ), this definition would be
equivalent to Definition C.4 (modulo the subtlety regarding conditioning on measure zero events), due to
the following.

Lemma C.6. Given set systems A ,B ⊆Ω, in the precise case, the following statements are equivalent.

PI1. P (A|B) = P (A) ∀A ∈A ,B ∈B and P (B) > 0.
PI2. P (A∩B) = P (A)P (B) ∀A ∈A ,B ∈B.

Proof. Obviously PI2 implies PI1 by the definition of conditional probability. One only has to check that
when PI1 holds, that PI2 holds even if P (B) = 0. But if P (B) = 0, then also P (A∩B) = 0 due to monotonicity
of P in the sense of a capacity.

Example C.7. Choose H := {(−∞, a] : a ∈ R} in Definition C.5. Such an H is called a Π-system, which
is a non-empty set system that is closed under finite intersections. This particularΠ-system can in fact
be used to define independence in the classical case, which is done in terms of the joint cumulative
distribution function.

D Pathological or Normal? Much of the confusion about probability arises because the true depth
of the law of large numbers as an extremely hard analytical assertion is
not appreciated at all. — Detlef Dürr and Stefan Teufel (2009, p. 62)

When one looks at finite sequences x : [n] → [2], there is a simple counting argument using the binomial
theorem that illustrates that the vast majority of the 2n possible sequences have roughly equal numbers
of elements with values of 1 and 2. If one assumes that an infinite sequence x : N→ [2] is generated i.i.d.
then this argument can be used to prove the law of large numbers, which ensures “most” sequences have
relative frequencies which converge.

Hence the construction, as illustrated in the present paper, of sequences x : N → [k] with divergent
relative frequencies naturally raises the question of how contrived they are. That is, are we examining a
rare pathology, or something “normal” that we might actually encounter in the world? We will refer to
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sequences whose relative frequencies converge as “stochastic sequences” and sequences whose relative
frequencies do not converge as “non-stochastic sequences”30.

The classical law of large numbers suggests that indeed “almost all” sequences are stochastic, and therefore,
by such reasoning, the non-stochastic sequences with which we have concerned ourselves in the present
paper are indeed pathological exceptions. In this appendix we will argue:

1. This very much depends upon what one means by “rare” or “almost all” and there are many
choices, and the only real argument in favour of the usual ones (which declare non-stochastic
sequences rare) is familiarity — different notions of “typicality” (for that is what is at issue) lead to
very different conclusions. Specifically, there are choices (arguably just as “natural” as the familiar
ones) which imply that rather than non-stochastic sequences being rare, they are in fact the norm
in a very strong sense.

2. Nevertheless, none of the mathematical nuances of the previous point allow one to conclude
anything about the empirical prevalence of stochastic or non-stochastic sequences in the world.
Indeed, no purely mathematical reasoning allows one to draw such conclusions, unless one
wishes to appeal to some conception of a Kantian “synthetic a priori.”

We will first explore what can said from a purely mathematical perspective, illustrating that there is a
surprising amount of freedom of choice in precisely posing the problem, and that the choices are conse-
quential. Then in Subsection D.3 we examine the question of prevalence of non-stochastic sequences
actually in the world.

D.1 The Mathematical Argument — The Choices to be Made

The classical Law of Large Numbers says “almost all sequences” are stochastic. But the “almost all” claim
comes from the mapping of sequences to real numbers in [0,1] and then making a claim that “almost all”
numbers correspond to stochastic sequences. Thus there are at least three choices being made here:

Mapping from Sequences to Real Numbers The choice of mapping from sequences to real numbers, to
enable to use of some notion of typicality on [0,1] to gauge how common stochastic sequences
are.

Notion of Typicality The notion of typicality to be used (e.g. Cardinality, Hausdorff dimension, Category
or Measure).

Specific Index of Typicality Within the above choice of notion of typicality, the particular choice of
typicality index, e.g. the measure or topology that underpins the notion of typicality.

The choices for the classical law of large numbers are 1) k-ary positional representation; 2) a σ-additive
measure on [0,1]; 3) The Lebesgue measure. As we shall summarize below, each of these three choices
substantially affects the theoretical preponderance of non-stochastic sequences.

That there are alternate choices that lead to the unusual conclusion that non-stochastic sequences are
“typical” has been known for some time: “This result may be interpreted to mean that the category
analogue of the strong law of large numbers is false” (Oxtoby, 1980, p. 85); see also (Méndez, 1981). The
significance of this fact has been stressed recently (Seidenfeld et al., 2017; Cisewski et al., 2018). And it has
been observed that the introduction of alternate topologies can change whether sequences are stochastic
(Khrennikov, 2013). However, the strongest results arise in number theory, motivated by the notion of a
“normal number.”

30 This dichotomy would appear clear-cut, but there is a subtlety: there exist sequences such that (xi )i∈N and (yi )i∈N are both
stochastic, but the joint sequence ((xi , yi ))i∈N is non-stochastic (Rivas, 2019); that is, the marginal relative frequencies converge,
but the joint relative frequencies do not!
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D.2 Notions of Typicality — Cardinality, Dimension, Comeagreness, and Measure

Let S (resp. N ) denote the set of stochastic (resp. non-stochastic) sequences N → [k]. That is,
S := {x : N→ [k] : limn→∞ r x (n) exists} and N := [k]N \S . (For simplicity, and alignment with Ap-
pendix B, we restrict ourselves to sequences whose domain is [k].)

In order to make a claim regarding the relative preponderance of stochastic versus non-stochastic se-
quences, they are often mapped onto the unit interval.31 In such cases, the question of relative prepon-
derance of classes of sequences is reduced to that of a question concerning the relative preponderance of
classes of subsets of [0,1]. The question then arises of how to measure the size of such subsets. Unlike
in the finite case mentioned above, merely counting (i.e. determining the cardinality of the respective
subsets) is hardly adequate, as it is easy to argue that |S | = |N | = ℵ1. There are three notions that have
been used to compare the size of S and N :

Measure A countably additive measure, usually the Lebesgue measure on [0,1].
Meagre / Comeagre A subset S of a topological space X is meagre if it is a countable union of nowhere

dense sets (i.e. sets whose closure has empty interior). A set S is comeagre (residual) if X \ S is
meagre.

Dimension A variety of fractal dimensions, such as the Hausdorff dimension, have also been used to
judge the size of non-stochastic sequences (and the numbers they induce); however for space
considerations we omit discussion of these results32.

Some of the results obtained in the literature are summarized below. The object is not to state them
in an entirely formal manner, or even to describe them in their full generality. Rather we simply wish
to show the diversity of conclusions available by tweaking the three choices enumerated above. If no
representation is mentioned, the usual k-ary positional representation is used, whereby x̃ ∈ [0,1] is
constructed from x : N→ [k] via x̃ :=∑

i∈N(xi −1)k−i (the (xi −1) term is required because our sequences
map to [k] = {1, . . . ,k}). Obviously every x ∈ [k]N maps to some x̃ ∈ [0,1]; and every z ∈ [0,1] corresponds to
at least one x ∈ [k]N (recalling we have to handle the situation that, when k = 10 for example, 0.49 = 0.50,
where i means that i is repeated infinitely, and thus there are two sequences x1, x2 ∈ [k]N such that
1/2 = x̃1 = x̃2). 33 Let S̃ := {x̃ ∈ [0,1] : x ∈S } and Ñ := {x̃ ∈ [0,1] : x ∈N }.

Most (Lebesgue measure) sequences are stochastic This is the classical strong law of large numbers. If
µleb denotes the Lebesgue measure on [0,1], then the claim is that µleb(S̃ ) = 1.

Most (comeagre) sequences are non-stochastic Let Xi = [2] and X =×i∈N Xi equipped with the product
topology. As a set X ∼= [2]N. Then N ⊂ X is comeagre (Oxtoby, 1980).

Most (comeagre) sequences are stochastic With different choices of topology, the opposite conclusion
holds — there are topologies such that S is comeagre (Calude et al., 2003).

Most (comeagre) sequences are extremely non-stochastic Let Ñ ⋆ denote the subset of [0,1] of x̃ corre-
sponding to x ∈ [k]N which satisfy ∀i ∈ [k], liminfn→∞ r x

i (n) = 0 and limsupn→∞ r x
i (n) = 1. These

sequences are (justifiably) called extremely non-stochastic; the sequence constructed in Sub-
section B.12 is an example. Then the set Ñ ⋆ is comeagre in the usual topology of real numbers
(Calude & Zamfirescu, 1999); confer (Calude, 2002, section 7.3).

Most (comeagre) sequences are perversely non-stochastic Denote the set of perversely nonstochastic
sequences N ⋆⋆ := {x ∈ [k]N : CP(r x ) =∆k }. Observe N ⋆⋆ ⊂ N ⋆. Let Ñ ⋆⋆ := {x̃ ∈ [0,1] : x ∈

31Attempts known to us to judge the relative sizes of S and N which do not rely on such a mapping are described in the first,
third and sixth of the cases listed below, and rely upon imposing a topology directly on the set of sequences [k]N.

32See for example (Eggleston, 1949; Olsen, 2004; Gu & Lutz, 2011; Bishop & Peres, 2017; Albeverio et al., 2017).
33This non-uniqueness of the representation will not affect the results below because {x̃1 = x̃2 ∈ [0,1] : x1 ̸= x2} =Q∩ [0,1] and

is of cardinality ℵ0, whereas |[k]N| = |[0,1]| = ℵ1.
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N ⋆⋆} (what Olsen (2004) calls “extremely non-normal numbers”, but we use “extremely” for the
larger set Ñ ⋆). Then Ñ ⋆⋆ is comeagre (in the usual topology of real numbers) (Aveni & Leonetti,
2022; Olsen, 2004). An even stronger result holds. Let A denote a (not necessarily uniform) finite av-
eraging operator and let N ⋆⋆⋆ := {x ∈ [k]N : CP(A(r x )) =∆k } and Ñ ⋆⋆⋆ := {x̃ ∈ [0,1] : x ∈N ⋆⋆⋆}.
Observe N ⋆⋆⋆ ⊂N ⋆⋆ and Ñ ⋆⋆⋆ ⊂ Ñ ⋆⋆. Then Ñ ⋆⋆⋆ is also comeagre (Stylianou, 2020)!

Most (Lebesgue measure) sequences are non-stochastic There exist a range of representations of real
numbers called Q∗-representations (Q∗ is a k×∞ matrix valued parameter of the representation);
see (Albeverio et al., 2005, Section 4) for details. Let x̃Q∗

denote the Q∗-representation of a
sequence x ∈ [k]N, and S̃ Q∗

:= {
x̃Q∗

: x ∈S
}

and Ñ Q∗
:= {

x̃Q∗
: x ∈N

}
. Then there exist Q∗ such

that µleb
(
Ñ Q∗)= 1. (Albeverio et al., 2005, p. 627). Thus if the size of N is judged via certain Q∗

representations, Lebesgue almost all sequences are non-stochastic!

An obvious conclusion to draw from the above examples is that in answering the question of the prepon-
derance of non-stochastic sequences, one can get essentially whatever answer one wants by choosing a
range of different precise formulations of the question. At the very least, this should make us skeptical
of any purely mathematical attempts to reason whether one might expect to encounter non-stochastic
sequences in practice — the topic to which we now turn.

D.3 Typical Real Sequences The laws of large numbers cannot be applied for describ-
ing the statistical stabilization of frequencies in sampling
experiments. — Andrei Khrennikov (2009, p. 20)

What do the above points imply about the likelihood one will encounter stochastic or non-stochastic
sequences when performing real measurements?

Nothing.

This is not to say that in actuality we will often encounter non-stochastic sequences. Rather our point is
that no amount of purely theoretical reasoning will be able to tell us in advance how “likely” it is to do so.
What is at issue is whether stochastic sequences are in fact “typical” in our world.

Perhaps the most surprising thing about the mathematical results summarized above is the extent to which
different notions of typicality affect the conclusions. This raises the question of whether some notions
of typicality are more justified when wishing to consider real sequences that have been measured in the
world. In the study of physics (especially aspects of physics that are apparently intrinsically statistical)
such questions have been raised, and below we briefly summarize what is known.

Traditionally, “probability” is considered as a primitive, and notions of typicality are derived from that in
terms of their “probability” of occurring. And the above examples illustrate that attempts to argue for the
Lebesgue measure having a privileged role as the “right” notion of typicality are barking up the wrong tree;
confer (Pitowsky, 2012). But this will not do for our question. Typicality is a more fundamental notion
(Galvan, 2006; 2007) — arguably the “mother of all” notions of probability (Goldstein, 2012). Typicality is
at the core of questions of non-stochastic randomness in physics, thus (consistent with the perspective of
the present paper) leading to non-additive measures of typicality (Galvan, 2022) (essentially defining a
measure of typicality inspired by a coherent upper probability) which allows the extension to notions of
mutual typicality necessary to reason about situations such as that referred to in footnote 30.

In fact, typicality plays an even stronger role than answering questions regarding the preponderance of
non-stochastic sequences. As Dürr & Struyve (2021, p. 36) observe “the notion of typicality is necessary to
understand what the statistical predictions of a physical theory really mean.” They note that the usual
appeal to the law of large numbers misses the point because while its conclusion is true (convergence of
relative frequencies) if one sees typical sequences, but “What needs to be explained is why we only see
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typical sequences! That’s actually the deep question underlying the meaning of probability theory from
its very beginning . . . ” (Dürr & Struyve, 2021, p. 37). In classical mechanics, appeal to Liouville’s theorem
suggests an “invariant measure” as being a natural choice; in the quantum realm, there is an analogous
choice (invariant to Bohmian flow) (Dürr & Struyve, 2021, p. 41). But these situations are rather special
from the perspective of a statistician. The situation is well summarized by Dürr (2001, p. 130): “What is
typicality? It is a notion for defining the smallness of sets of (mathematically inevitable) exceptions and
thus permitting the formulation of law of large numbers type statements. Smallness is usually defined in
terms of a measure. What determines the measure? In physics, the physical theory.” Confer (Dürr & Teufel,
2009, Chapter 4) who observe that from a scientific perspective (where one wants to make claims about
the world) establishing the pre-conditions for the law of large numbers to hold is “exceedingly difficult”34.

Very well one might say, but the arguments in favor of typicality of non-stochastic sequences given above
all rely on topological arguments, or unusual encodings of sequences to numbers. What is the justification
for topological notions of typicality when considering sequences of measurements obtained from the
world? Sklar (2000, p. 270) has actually argued that the topological perspective might offer a foundational
perspective with fewer opportunities for claims of arbitrariness than measure theoretical approaches. See
also (Sklar, 1995, p. 185) and the discussion in (Guttmann, 1999, Chapter 4) which reframes the problem
away from typicality to viewing the whole question from an approximation perspective where the notion
of smallness of sets is naturally one of meagreness. Our point is that even within the restricted realm of
physics, there are compelling arguments at least not to take the measure-based notion of typicality for
granted. Once that is accepted, non-stochastic sequences seem less unusual.

D.4 Violations of the Law of Large Numbers

A typical universe is in equilibrium; but “our universe is atypical or in non-equilibrium” (Dürr & Teufel,
2009, p. 81) and “what renders knowledge at all possible is nonequilibrium” (Dürr et al., 1992, p. 886) so
we should not be surprised if it is not “typical”. And indeed that is what we see as long as we look: “The
so-called law of large numbers is also invalid for social systems with finite elements during transition”
(Chen, 1991). Gorban (2011; 2017; 2018) has documented many examples of real phenomena failing to
be statistically stable. Such failures are held to explain departures from “normal” distributions (Philip
& Watson, 1987). But more importantly, they mean we should not expect even convergence of relative
frequencies in non-equilibrium situations.

Such was the conclusion of Prigogine in his ground-breaking studies of non-equilibrium thermodynamics
where he spoke of a “breakdown of the ‘law of large numbers’” (Nicolis & Prigogine, 1977, p. 9 and 228);
see also (Prigogine, 1978, p. 781), (Prigogine & Stengers, 1985, p. 180) and (Prigogine, 1980, p. 131). And
more recently, studies of the use of machine learning systems “in the wild” have recognized that non-
stochasticity is not so exotic after all (Katsikopoulos et al., 2021). Thus perhaps its time to downgrade this
“law” of nature.

D.5 Repeal of the Law of Large Numbers A typical universe shows statistical regularities as we per-
ceive them in a long run of coin tosses. It looks as if ob-
jective chance is at work, while in truth it is not. There is
no chance. That is the basis of mathematical probability
theory. — Detlef Dürr and Stefan Teufel (2009, p. 64).

34The example they give is for the Galton board, or quincunx, a device often appealed to in order to teach the reality of the
central limit theorem — an even stronger claim than the law of large numbers. The irony is that it is rarely checked empirically.
And when it has been, it has been found to be untrue! (Bagnold, 1983, Figure 8).
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Desrosières (1998) in his history of statistical reasoning has observed the awe with which stable frequencies
were viewed when they were first encountered; the effect been interpreted as a hidden divine order35. And
indeed in many practical situations, stable frequencies do arise. But that does not mean we should take
such situations as the only ones that can occur. We may well legitimately call them “normal.” But we can
better understand the normal by studying the pathological (Canguilhem, 1978, p. 19–20). Ironically in his
attempt to clarify the notion of “normal” Canguilhem (1978, p. 103) considered whether “normal” was
simply “average” and concluded “the concepts of norm and average must be considered as two different
concepts”. As we have seen, averages can indeed be far from normal, and potentially quite often.

Perhaps we have been misled by the strange name given to the famous theorem we are considering: by
calling it a “law” we are inheriting a lot of baggage as to what we mean by that, baggage that has been
traced to notions of divine origin of lawfulness (Zilsel, 1942).36 And we hanker after lawfulness:

We . . . naturally hope that the world is orderly. We like it that way... All of us . . . find this
idea sustaining. It controls confusion, it makes the world seem more intelligible. But
suppose the world should happen in fact to be not very intelligible? Or suppose merely
that we do not know it to be so? Might it not then be our duty to admit these distressing
facts? (Midgley, 2013, p. 199)

Perhaps the theory of imprecise probabilities presented in this paper which we have grounded in the
instability of relative frequencies may help us to admit this “distressing fact.” It does suggest to us that the
law of large numbers, while a fine and true theorem, as a “law” might be in need of repealing.

35“I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic order expressed by the ‘Law
of Frequency of Error.’ The law would have been personified by the Greeks and deified, if they had known of it. It reigns with
serenity and in complete self-effacement amidst the wildest confusion. The huger the mob, and the greater the apparent anarchy,
the more perfect is its sway. It is the supreme law of Unreason. Whenever a large sample of chaotic elements are taken in hand
and marshalled in the order of their magnitude, an unsuspected and most beautiful form of regularity proves to have been latent
all along.” (Galton, 1889, p. 66). See also (Rose, 2016) for a recent discussion on statistical normality.

36The contrary views regarding the historical origin of the notion of a scientific law (Milton, 1981; Ruby, 1986; Weinert, 1995)
do not contradict our point. Ironically, Zilsel was convinced that the law of large numbers was a natural law (indeed the most
fundamental of natural laws!) (Zilsel, 1916), and in his PhD thesis attempted to argue the case for this philosophically, although
after errors were pointed out, he renounced the argument and made no further reference to it (Lenhard & Krohn, 2022, p. 125).
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