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Abstract 

This thesis develops the idea of probabilistic arithmetic. The aim is to replace 
arithmetic operations on numbers with arithmetic operations on random variables. 
Specifically, we are interested in numerical methods of calculating convolutions of 
probability distributions. The long-term goal is to be able to handle random prob- 
lems (such as the determination of the distribution of the roots of random algebraic 
equations) using algorithms which have been developed for the deterministic case. 
To this end, in this thesis we survey a number of previously proposed methods 
for calculating convolutions and representing probability distributions and examine 
their defects. We develop some new results for some of these methods (the Laguerre 
transform and the histogram method), but ultimately find them unsuitable. We 
find that the details on how the ordinary convolution equations are calculated are 
secondary to the difficulties arising due to dependencies. 

When random variables appear repeatedly in an expression it is not possible to 
determine the distribution of the overall expression by pairwise application of the 
convolution relations. We propose a method for partially overcoming this problem in 
the form of dependency bounds. These are bounds on the distribution of a function 
of random variables when only the marginal distributions of the variables are known. 
They are based on the Frkchet bounds for joint distribution functions. 

We develop efficient numerical methods for calculating these dependency bounds 
and show how they can be extended in a number of ways. Furthermore we show how 
they are related to the "extension principle" of fuzzy set theory which allows the 
calculation of functions of fuzzy variables. We thus provide a probabilistic interpre- 
tation of fuzzy variables. We also study the limiting behaviour of the dependency 
bounds. This shows the usefulness of interval arithmetic in some situations. The 
limiting result also provides a general law of large numbers for fuzzy variables. In- 
terrelationships with a number of other ideas are also discussed. 

A number of potentially fruitful areas for future research are identified and the 
possible applications of probabilistic arithmetic, which include management of nu- 
meric uncertainty in artificial intelligence systems and the study of random systems, 
are discussed. Whilst the solution of random algebraic equations is still a long way 
off, the notion of dependency bounds developed in this thesis would appear to be of 
independent interest. The bounds are useful for determining robustness of indepen- 
dence assumptions: one can determine the range of possible results when nothing is 
known about the joint dependence structure of a set of random variables. 
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Chapter 1 

Probabilistic Arithmetic - The 
Very Idea 

Now that you have learnt about adding, minussing, 
multiplying and dividing you can do any sum. Even an 
atomic scientist only really uses these four operations. 
- Mrs S. Boal (Grade 1, Oakleigh Primary School. 1968) 

If one looks at the development of the measurement 
process during the past century, one soon obserues that 
with increasing frequency the raw data are (probability) 

distribution functions or frequency functions rather 
than real numbers. This is so in the physical sciences; 

and in the biological and social sciences it is the rule 
rather than the exception. One may thus convincingly 
argue that distribution functions are the "numbers" of 

the future and that one should therefore study these 
new numbers and their arithmetic. 

- Berthold Schweizer 

1.1 Motivation 

This thesis studies the idea of probabilistic arithmetic, which is the name we give to 
the idea of calculating the distribution of arithmetic (and perhaps other) functions of 
random variables. It is motivated by the hope of being able to develop procedures for 
solving random problems based on those already existing for the deterministic case. 
The fundamental observation to make is that nearly all existing numerical algorithms 
are based on the four operations of arithmetic: addition, subtraction, multiplication 
and division. For example, it may be possible to determine the distribution of the 
roots of polynomials with random coefficients by modification of existing algorithms 
for calculation of the roots in the deterministic case. Work to date on random 
polynomials has only obtained this for a very restricted class of polynomials [74, 
3561. 

The first step necessary in achieving this goal is the development of an efficient 
and accurate method for determining the convolution of probability distribution 



functions. We use the word "convolution" in its general sense describing the oper- 
ation on distribution functions corresponding to virtually any operation on random 
variables, and not just addition. If Z = L(X, Y) where X and Y are independent 
random variables with joint distribution function Fxy, then Fz, the distribution of 
Z, is given by 

z = J d(Fx(u)Fy(v)), (1.1.1) 
L{zI 

where L { z }  = {(u,v)(u,v  E 8, L(u,v) < z). The ability to calculate (1.1.1) is 
necessary but not sufficient for the construction of a probabilistic arithmetic. 

The most important difference between the deterministic and stochastic cases is 
the appearance of stochastic dependence. This has no counterpart in the determin- 
istic case. We shall see that even if we restrict ourselves to independent random 
variables at the outset, stochastic dependencies can arise during the course of a cal- 
culation due to the occurrence of repeated terms in expressions. For example, if X, 
Y and Z are independent random variables, then V = X+Y and W = X x Z are not 
necessarily independent. We give the name dependency error to the error incurred 
in calculating the distribution of some function of V and W (such as U = V/W) by 
assuming that V and W are independent. 

Whilst a general solution to this problem seems impossible, we can provide a 
partial solution in terms of dependency bounds. This is the name we give to lower 
and upper bounds on the distribution of functions of random variables when only the 
marginal distributions are known. In other words the dependency bounds contain all 
the possible results due to all the possible joint distributions of the random variables 
involved. If ldb and udb denote the lower and upper dependency bounds, and 
denotes a binary operation, we write the bounds on Z = XUY as 

These bounds can be calculated explicitly for certain classes of binary operations. 

The general approach we have just outlined has been studied previously by a 
number of authors. Whilst we defer a more detailed review of previous work to 
later chapters, let us mention the following now. The idea of an algebra of random 
variables based on the use of integral transforms for calculating the appropriate 
convolutions was advocated by Springer in [776] and formed the motivation for 
[220]. Analytical methods for determining distributions of functions of random 
variables are at the core of applied probability theory [631] (an early, but obscure 
review is given by Halina Milicer-Gruiewska [575]), and of course the study of the 
distribution of sums (in the central limit theorem) is the basis for many of the 
theoretical results in probability theory [177]. Numerical methods for calculating 
distributions of functions of random variables have been studied by a number of 
authors (chapter 2 is a review of available techniques). Some of the more recent 
techniques are the histogram method [160] (and the related method of discrete 
probability distributions [423]), and the intricate H-function method [164]. The 
problem we study is obviously related to the propagation of errors of measurement 



[S20]. Fuzzy arithmetic [432] derives from similar motivations and it is compared 
with probabilistic arithmetic in chapter 4. 

There are many problems arising in the course of our study of probabilistic 
arithmetic, and in this thesis we present solutions to some of them. However, many 
of them remain topics for future research and we give some more details on these in 
the final chapter of this thesis. We note here that our idea of probabilistic arithmetic 
can be considered to be a natural generalisation of interval arithmetic [583], which 
works entirely in terms of the supports of the distributions of the variables involved. 
We discuss this connexion in more detail later in this thesis. 

The rest of this chapter gives an overview of the results contained in this thesis 
(section 1.2); a brief decription of the structure of the thesis and suggestions on how 
to read it (section 1.3); and a few standard notational conventions (section 1.4). 

Some of the specific results obtained in this thesis (the highlights) are now described. 
The general structure of the thesis is described in section 1.3. 

1.2.1 Different Methods for Calculating Convolutions and 
the Laguerre Transform Method 

In chapter 2 we study a variety of methods for calculating convolutions of proba- 
bility distributions. Amongst these are the Laguerre transform methods developed 
by Keilson and Nunn [435]. We consider the possibility of using this method for 
operations other than addition and subtraction of random variables. Although we 
develop a number of new results, these turn out to be of little practical value because 
of the computational complexity of the formulae involved. 

1.2.2 The ~ e ~ e n d e n c ~  Bounds and Numerical Methods of 
Calculating Them 

The most interesting new techniques developed in this thesis are those for numer- 
ically calculating dependency bounds. We use the results of Frank, Nelsen and 
Schweizer 12771 who show that 

ldb(Fx, Fy , D)(z) = sup max(Fx(x) + FY (Y) - 1 , O )  (1.2.1) 
zoy=* 

and 
u d b ( F x , F ~ , O ) ( z ) =  inf min(Fx(x)+Fu(y), 1) 

zny=z 
(1.2.2) 

for certain classes of operations 0 .  Then by making use of a duality result to express 
these bounds in terms of the inverses of the distribution functions (the quantiles), we 



develop an efficient and accurate method for calculating the dependency bounds. A 
number of extensions to the dependency bounds are also considered. If some infor- 
mation is known about the joint distribution, then tighter bounds can be calculated. 
All this material is reported in chapter 3. 

1.2.3 Precursors, Multiple Discoveries, and Relationships 
with Fuzzy Sets 

In the course of reviewing previously published material on the topics covered in 
this thesis, a number of independent and multiple discoveries and precursors were 
found. For example George Boole discussed the analogue of dependency bounds 
for events in his Investigation of the Laws of Thought [97]. These are bounds on 
the probability of conjunction and disjunction of random events. They are usually 
associated with Frkchet [279], who rightly credits their original introduction to Boole. 
Boole's work on these bounds as lower and upper probabilities has recently seen a 
revival of interest in the area of expert systems which have to deal with uncertain 
information. In some cases recent authors are unaware of some of the previous work 
in the field 17,353,8361. We discuss this material in detail in section 4.1. There are 
several other instances of multiple discoveries, such as Riischendorf [695], Makarov 
15361 and Frank, Nelsen and Schweizer [277] on the dependency bounds for random 
variables. Another example is the duality result we use for numerical calculation of 
the de/pendency bounds. This has been presented (in various degrees of generality) 
by Frank and Schweizer 12781 Sherwood and Taylor 17431, Hohle [390], Fenchel [263] 
(see [530]), Bellman and Karush 1651, Nguyen [614] and Mizumota and Tanaka [579]. 
We discuss this in section 4.5. Of course these multiple discoveries should not be 
considered surprising, especially given the arguments of Lamb and Easton on the 
"pattern of scientific progress" [498]. 

1.2.4 The Inverse and Determinant of a Random Matrix 

Chapter 7 is concerned with a new result on the inverse and determinant of a ran- 
dom matrix. Inverses and determinants of interval matrices (matrices with interval 
coefficients) have been studied in the literature, and so we examined the effect of 
interpreting an interval as a uniformly distributed random variable. Apart from 
some interesting conclusions in this regard, the chapter shows the disadvantage of 
always seeking analytical results: the formula for the density of the determinant is 
quite complex and it is necessary to write a computer program in order to determine 
its specific values. This is one of the arguments of this thesis: When specific values 
of distributions are required (rather than general properties), it makes more sense 
to accept the need for numerical calculations at the outset rather than doggedly 
striving for analytical results which are often practically useless. 



1.2.5 A Limiting Result for Dependency Bounds 

Perhaps the most interesting purely mathematical result in this thesis is that re- 
ported in chapter 5. There we show that the dependency bounds of the normalised 
sum & ~ g ,  Xi converge to step functions. The position of the step functions de- 
pends solely on the support of distribution functions of the random variables {Xi). 
The method used to prove this result (T-conjugate transforms) has further poten- 
tial applications. These are discussed in chapters 6 and 8. The interpretation of 
the result is that in some cases, if it is necessary to use dependency bounds (be- 
cause of lack of further dependence information), then no further information will 
be obtained beyond that obtained by using interval arithmetic on the supports of 
the distributions. 

1.3 Thesis Structure 

Each of the chapters in this thesis is essentially self-contained and can thus be 
read independently of the others, although chapter 3 should be read before reading 
chapters 4-7. In fact each chapter was written as a paper, details of which are given 
in the 'LPublications" section at the beginning of the thesis and at the beginning 
of each chapter. For this reason there is some slight repetition of material in some 
places. We feel this will in fact be of benefit to the reader, as most of the repeated 
material is concerned with technical definitions which are difficult to remember for 
the entire length of the thesis. 

The remaining chapters of the thesis are sumrnarised below: 

Chapter 2 is a survey of different methods for numerically calculating convolu- 
tions of probability distributions. As well as reviewing previous work, we present 
some new results on the Laguerre transform method and the histogram method. We 
also point out some interesting connexions with methods used in metrology. 

Chapter 3 is the technical core of the thesis. Most of the other chapters are 
motivated by it. In it we fully develop the idea of dependency bounds and show how 
they can be calculated numerically. A number of examples are given. Furthermore 
a method for calculating ordinary convolutions (1.1.1) is presented. This uses the 
numerical representation developed in order to calculate dependency bounds and the 
result is that this method has a number of advantages over the methods described 
in chapter 2; not the least of which is its simplicity. 

Chapter 4, which is the longest in this thesis, describes a large number of inter- 
relationships between our dependency bound methods and other ideas. Amongst 
other things we discuss the Boole-Frkchet bounds, graph theoretical methods, lower 
and upper probabilities and fuzzy arithmetic. This latter item is of considerable in- 
terest. We show how the rulesfor combining fuzzy numbers are very closely related 
to the dependency bound formulae (1.2.1-1.2.2). 

Chapter 5 is devoted to the proof and exposition of a limiting theorem for de- 



pendency bounds. We prove a generalisation of the law of large numbers under 
no independence assumptions. We show that convergence to a wide range of dis- 
tributions is possible under the constraint that the restrictions on the supports as 
calculated by interval arithmetic are not violated. 

Chapter 6 simply re-presents the result of chapter 5 in terms of fuzzy variables. 
Thus we show a law of large numbers for fuzzy variables under a general t-norm 
extension principle. (The meaning of this sentence is explained in the introduction 
to chapter 6.) 

Chapter 7 presents a new result on the distribution of the inverse and determinant 
of a random matrix. We derive explicit formulae for perhaps the simplest case of 
a random matrix: a 2 x 2 matrix with independent elements, all having a uniform 
distribution on [0 ,  11. Surprisingly enough this result does not seem to have appeared 
in the literature before. Our motivation for deriving it was to examine the effect 
of interpreting an interval in interval arithmetic as a uniformly distributed random 
variable. 

Finally chapter 8 draws a number of conclusions from the work presented here 
and provides a number of suggestions for future research. 

1.4 Notational Conventions 

Equations and sections are numbered by chapter. Thus (2 .3 .5)  refers to the 5th 
numbered equation in section 2.3, which is the third section of chapter 2. Paren- 
thesised numbers always refer to equations. Numbers enclosed in square brackets, 
such as LL[13]," denote references to items in the reference list in chapter 9. Closed 
intervals such as [0,1] ( { X I  0 5 x 5 1)) are also denoted in this manner, but the 
context makes clear what is meant. 

Other mathematical notations are generally standard. We list the following 



which may otherwise cause some confusion. 

inf infimum (greatest lower bound). 
SUP supremum (least upper bound). 
!R The set of real numbers. 
F The set of extended real numbers (P = RU { - w , ~ ) ) .  

df ( X )  The distribution function of X. 
5 (for functions) pointwise inequality. 
SUPP The support of a function. 
Ran The range of a function. 
Dom The domain of a function. 
[a, b) The half-open interval { X I  a 5 x < b) .  

I{ }I Cardinality of a set. 
0 The null set. 
\ Set-theoretic difference. 
iff If and only if. 
I End of proof. 

Other notations are introduced where needed. 

Several algorithms are presented in this thesis. We use the syntax of the C 
programming language [453] with the exception that := denotes assignment and = 
equality. 



Chapter 2 

Numerical Methods for 
Calculating Convolutions of 
Probability Distributions 

Questions on local probability and mean values are of 
course reducible by the employment of Carlesian or 

other coordinates, to multiple integrals . . .. The 
intricacy and dificulty t o  .be encountered in dealing 

with such multiple integrals and their limits is so great 
that little success could be ezpected in attacking 

questions directly by this method. 
- M.W. Crofton 

2.1 Introduction, Aim and Analytical Methods 

The problem of calculating convolutions of probability distribution functions arises 
in a wide range of applications where distributions of functions of random variables 
are required. In many cases analytical solutions are intractable and so numerical 
methods are used. This chapter will survey the numerical methods that have been 
presented to date. This will form a suitable background for chapter 3 where we 
present a new method for calculating convolutions of distribution functions. We 
shall see that our new method has a number of aspects in common with the methods 
described in the current chapter, but that it also has a number of advantages. 

We will generally restrict ourselves to the problem at hand, and not discuss the 
applications in which convolutions arise. Generally we adopt the viewpoint of von 
Mises [577, p.321 who took the attitude that 

the exclusive purpose of [probability] theory is to determine, from the 
given probabilities in a number of initial collectives, the probabilities in 
a new collective derived from the initial one. 

The determination of the initial probabilities is the province of statistics and we do 



not consider it further. 

2.1.1 History, Motivation and Outline 

History of t h e  Problem 

It was recognised long ago that if the inputs to some calculation are random then 
the final result is likely to be random also. Sheynin [747, p.1171 cites a 16th century 
commentary by G%&a on the 12th century Indian writing Liliivati by Bhiscara. 
On page 97 of this 1751, there is a discussion of the determination of an area of 
a rectangle when the length and breadth are not known exactly and there is an 
implicit recognition that the area will be only approximate. It is suggested there 
that mean values should be used in order to provide a better estimate than single 
sample values. Of course other examples can easily be found. However the statement 
of the problem in terms of determining distributions of functions of random variables 
could not have occurred until last century: 

The point is that laws of distributions of functions of random quantities 
(even the simplest, the linear functions) could not have been consid- 
ered from a general point of view at least until distribution functions 
themselves began to be considered per se [745, p.290]. 

Thus although "it a u l d  be hardly doubted that Laplace [in his Th6orie Analytique 
des Probabilit6s (1812)] would have been able to transform distributions from one 
interval to another and from one argument [. . .] to another [. . .r [745, p.2901, one 
of the first explicit transformations, in terms of distributions, appears to have been 
due to Poisson in 1837 [652]. Sheynin [748, p.2951 says of a problem considered there 
that 

elementary as it is, this [. . .] problem seems to be one of the first in which 
densities were treated as purely mathematical objects. 

Another early example which arose in a completely different context concerns 
geometrical probability [449]. Sylvester's problem [810], whilst not couched in terms 
of functions of random variables (nor for that matter solved in such a fashion), is 
still an example of the sort of problem we are concerned with. 

T h e  Aim of this  Chapter  

So much for the history of the problem. We will now outline the purpose of the 
present chapter. 

Until recently most attempts at the determination of distributions of functions of 
random variables have entailed the search for analytical solutions. In other words, 
a formula for the required distribution was sought. Quite apart from the severe 



difficulties encountered in this approach (see section 2.1.2 below), a new formula 
needs to be determined for each new problem. Thus, whilst for some restricted 
classes of problems (such as products and quotients of independent random variables 
with "standard" distributions [674]) the main results can be tabulated, in general 
"it is not practicable to give a list of such occasional results, for it is clearly possible 
to invent further variations a t  will" [413, p.2891. A review of a number of exact 
analytical techniques for determining distributions arising in multivariate statistics 
is given in [547]. 

An alternative to the analytical approach is to use numerical methods for cal- 
culating the required distributions by using computer programs. Note that such an 
approach should not necessarily be considered second best compared to an exact 
analytical result. This is because the resulting formulae are sometimes so complex 
(e.g. infinite series of transcendental functions) that a computer program is needed 
to calculate the specific values and to determine the behaviour of the distribution. 
Thus we are really no worse off if we decide to use the computer from the outset. 
The study of these numerical methods is the focus of the present chapter. 

Organisation of t h e  Res t  of t h e  Chapter  

The rest of this chapter is organized as follows. The remainder of this introductory 
section is devoted to a review of analytical methods (including integral transforms), 
and the possible direct numerical calculation of these. Section 2.2 summarises a 
number of different methods that have been proposed, including the use of moments. 
Sections 2.3 and 2.4 look in rather more detail at two methods which would appear to 
be more promising. We examine the Laguerre transform in section 2.3, and look at  
the Histogram (or discrete probability distribution) method in section 2.4. Section 
2.5 examines interval arithmetic and methods used for the propagation of errors in 
metrology. 

2.1.2 Exact Analytical Results 

There is a well known general solution to the distribution of functions of random 
variables in terms of the Jacobian of transformation. We will now briefly present 
this result for a function of only two random variables. We restrict ourselves to 
this special case because we are mainly interested in functions of only two random 
variables (such as apply to the four arithmetic operations) and because there are 
notational difficulties in presenting the full general result carefully. (There is no real 
conceptual difficulty in extending the results to functions of N random variables.) 

T h e  General Solution in  t e rms  of t h e  Jacobian 

Let Z = g(X, Y) and W = h(X, Y) be two functions of the two random variables X 
and Y which have a joint probability density f,yp We wish to determine the joint 



density fzw of Z and W. This is given by [631, p.2011 

where ( X I ,  y l ) ,  . . . , ( x k ,  y k )  are the k real solutions to the pair of equations 

g(x ,  y )  = z and h(x ,  y )  = w (2.1.2) 

in terms of z and w where x is the absolute value of x. In other words 

g(xi,  yi) = z and h(xi ,  y;) = w 

for i = 1,. . . , k, and xi # x j ,  y; # y j  for i # j .  The term J ( x ,  y) is the Jacobian of 
transformation and is given by 

J ( x , y )  = det 
d h  d h  

where the notation 2 means that the partial derivative 2 is evaluated at  ( x ,  y).  

The density f zw is equal to zero for any ( z ,  w )  such that (2.1.2) has no real solutions. 

T h e  use of Auxiliary Variables 

We are often interested in m functions of n random variables with m < n. (In the 
present chapter we are only concerned with m = 1 and usually n = 2.) In order to 
use the above method in this situation it is necessary to proceed as follows. 

Let m = 1 but consider general n. Write 

for the function we are interested in. It is necessary to define n - m auxiliary 
functions in the following manner: 

The use of (2.1.1) will give fzlzz,..z,. In order to determine fz,  we need to calculate 



The integral in (2.1.4) is almost invariably the cause of difficulties encountered in 
determining fi, analytically. For practical problems n can be quite large (see for 
example [275] where n = 100 x 100 = 10000 and thus a 9999-fold integral needs 
to be evaluated!). Even when the integrals are tractable they can be exceedingly 
tedious: see the 12 page calculation in [860, appendix IV] (which actually contains 
an error that simplifies the calculation). Somewhat more reasonable examples can 
be found in [352,631]. In section 2.1.3 we show how formulae 2.1.1 and 2.1.4 result 
in the standard convolution integrals for arithmetic functions of random variables. 
The numerical integration of the Jacobian of transformation has been considered 
by Cook and Downs [161]. 

Historical Remarks 

The use of the Jacobian of transformation in the above manner was anticipated by 
Gauss in 1823 in his Theoria Combinationis [749, p.421, where he considered m = 1 
and assumed J > 0 always and thus omitted the I I operation in (2.1.1). The general 
solution was first given by Nasimov in 1889 16091. It was subsequently studied by 
Poincarb and Lammel (see the footnote on page 81 of [182]). 

2.1.3 Specialised Formulae for Convolutions 

When the function g, of the two random variables X and Y, is one of the four 
arithmetic operations, we obtain the four convolution equations below [631,776]. 

Z = X + Y :  fz(z) = /mfxy(z-x ,x)dx ,  -m (2.1.5) 

Z = x - Y :  f )  = Jm fxy(z+x,x)dx,  (2.1.6) 
-m 

1 
= x x Y : fz(z) = 1 -- nfxy(z/x, x x) dx, (2.1.7) 

m 

Z = X / Y :  fz(z) = Lm b l f x ~ ( z x ,  X) dx. (2.1.8) 

When X and Y are independent, these reduce to 

m 

Z = X + Y : fz( i )  = f x ( i  - x)fy(x) dx, (2.1.9) 
-m 

These latter equations (2.1.9-2.1.12) will be our main but not exclusive concern in 
this chapter. We shall refer to them respectively as sum, difference, product and 



quotient convolutions. The lesser known product and quotient convolutions would 
appear to have first been published in [400]. Note that equations 1.9-1.12 can 
be written in terms of cumulative distribution functions as the Lebesgue-Stieltjes 
integral (which always exists) 

where L { x )  = {(u, v)I U ,  v E Xi L(u, v) < x)  [520]. 

The idea of "convolution" of probability distributions has been generalised in 
a number of ways. For example, Urbanik [834,835] has studied a different type of 
convolution to those presented above. His generalised convolutions are also briefly 
mentioned by Schweizer and Sklar [718]. 

2.1.4 Integral Transforms 

Definitions 

We now consider the relationships between (2.1.9-2.1.12) and the Fourier and Mellin 
transforms. The Fourier transform of a function f (x) is defined by 

This is a specialisation of the Laplace transform 

where s = o $ it. The Mellin transform is defined by 

M.[f(x)] & im f(x)zs-' dx. (2.1.15) 

The Mellin transform can be derived from the Laplace transform by a logarithmic 
change of variables [379]. Note that the Mellin transformis only defined for functions 
with domain Rf. The multivariate extensions of these transforms are 

where t = (t,, . . . , tn) ,  and 

where s = ( s l ,  . . . , s,). 



The  Calculation of Distributions of Sums and  Products  

When these transforms exist, they can be used to determine the distribution of arith- 
metic functions of random variables as follows. If Xj (j  = 1,. . . , n) are independent 
random variables with densities fxj(xj) respectively, and if 

then - 

If the Xj  are not independent, and have a joint probability density fx(x), then 

Calculation of differences can be accomplished by setting Xi = -Xj. If 

then if X,  are all independent 

whilst if dependent, 

If Y = Xl/X2, then 

and if XI and X2 are independent, 

Thus if one has a means of inverting the Fourier and Mellin transforms, one can 
calculate the distributions of sums, differences, products and quotients of random 
variables. Note that we have omitted any mention of conditions for the existence of 
these transforms and of the uniqueness of the inverse transform. More details can 
be found in [254,476,517,606,662,776,788,904]. 

We note that the Fourier transform has been used in statistics for determining 
the sums of random variables for quite some time. Zolotarev [904] attributes its 
introduction to Lyapunov, although it appears [721, p.79] that Gauss knew of its 
applicability in 1813. The widespread use by Poisson and others did not occur until 
some time later. Fourier transforms are usually called characteristic junctions in 
probability theory, a name first used by Poincarb in 1896 [649] (not, as Cuppens 
[I771 suggests, by Lkvy [516] in 1925). The Mellin transform has been used in 
probability theory since at least 1938 [606]. 



Difficulties in using Integral Transforms 

Although the use of integral transforms does seem promising, there remains the 
problem of inverting the transform. This is usually the most difficult part. Indeed, 
most of the technical difficulties encountered by Springer in his book [776] occur 
in the inversion of the transforms. In a number of cases the analytical inversion 
formulas may be used. These are 

and 

However, these formulae are of little value for the development of a general numerical 
method for calculating distributions of functions of random variables. In their stead, 
approximate numerical methods which can be readily implemented on a computer 
need to be considered [776, chapter 81. 

2.1.5 The H-function Method 

One way of avoiding the necessity of calculating the inverse Mellin transform is to 
consider the Mellin transform of a very general function which includes as special 
cases all the actual functions to be encountered. The H-function [550], which was 
introduced by Fox [274], contains as special cases nearly all the special functions 
of applied mathematics. The significance of the H-function in the present context 
is that multiplication by a suitable constant (to make the integral over the domain 
of the function equal to 1) allows one to consider H-function distributions which 
include many classical univariate probability distributions as special cases. These 
are all only defined on the positive real line and include the gamma, exponential, 
Chi-square, Weibull, Rayleigh, Maxwell, half-normal, uniform, half-Cauchy, half- 
Student, F ,  Beta, and Bessel distributions. Representation by H-functions is of use 
in the context of probabilistic arithmetic becauses the probability densities of prod- 
ucts, quotients, and rational powers of independent H-function random variables 
are also H-function random variables [132,133,164,778]. Thus if one can numerically 
calculate the H-function inversion integral (that is the contour integral defining the 
H-function), one can determine the probability distribution of products, quotients 
and rational powers of random variables which have any of the distributions listed 
above. 

Methods of numerically evaluating the H-function inversion integral are dis- 
cussed in chapter 7 of [776] and are based on the work of Lovett [526] and Eldred 
[252]. Eldred's method is simplified by Cook and Barnes [164] which is, however, still 
rather complicated. By combining their technique of inverting the Mellin transform 
with a numerical method of inverting the Laplace transform described by Crump 
[175], Cook and Barnes produce a method for calculating the distribution of the 



sum of products, quotients and rational powers of H-function random variables. In 
[164] they present a FORTRAN program implementing the algorithm. For successful 
operation, this program requires a number of technical parameters to be specified, 
and the authors give some suggested values. They say (page 313) that the calcula- 
tion of the pdf of U'X2 + Y, where W, X, and Y were H-function random variables, 
required "about 24 seconds input/output and CPU time on a Cyber 170/750n. 

Other methods for the numerical inversion of Laplace and Mellin transforms are 
given in [86,185,186,215,826] The necessity of using the Laplace transform arises be- 
cause the sum or difference convolution of two (or more) H-function distributions is 
not an H-function distribution. Whilst an analytical expression exists for the convo- 
lution, it appears too complicated to be of any use in probabilistic arithmetic [548]. 
Springer suggests using Fourier transforms to perform the convolution. Although 
the Fourier transform of an H-function distribution is known [776, equation 6.3.21, 
inverting the Fourier transform may be intractable analytically. In [776, section 8.21, 
Springer refers to unpublished work of Carter [132] on a numerical technique for de- 
termining the moments of the distribution of the sum of independent H-function 
random variables. This would allow approximations to the distribution to be ob- 
tained using standard techniques for determining distributions from moments (see 
section 2.2.2 below). 

2.2 Miscellaneous Numerical Methods for Cal- 
culat ing Convolutions 

The problem of numerically calculating convolutions is related to the general prob- 
lem of approximating distributions which arises in many areas where the digital 
computer is not involved. A good survey of the general problem is given by Bow- 
man and Shenton [104]. 

2.2.1 Normal Approximations and other Parameterised Dis- 
tributions 

Perhaps the simplest and most widespread method of calculating the distributions 
of certain functions of random variables is to use a normal approximation to the 
distributions involved. The advantage of doing this is that normal distributions are 
closed under sum and difference convolutions. Thus if d f ( X )  = N(px, ux) and 
dj(Y) = N(py,uy),  then d f (X  + Y) = N(px + py,(u$ + u $ ) ~ / ' ) ,  if X and Y 
are independent. Therefore we could represent the distributions simply by p and u 
for the purposes of numerical calculation. This idea has been used by Pearl [641] 
and Sobierajski [770] and is discussed by Corsi in [168]. Note however that neither 
df(XY) or dj(X/Y) are normal in general [35,267]. 

When using normal approximations, two different approaches can be taken in 



order to interpret the final results. The first approach is simply to assume that 
the distributions involved are normal. This is often done in error analysis. It is an 
unjustified assumption in many cases, not only in the theory of errors, but in other 
areas as well. The second approach includes the admission that the distributions 
are in fact non-normal but uses normal approximations for the sake of calculation. 
Whilst this is often acceptable, it is certainly not a suitable methodology for a 
general probabilistic arithmetic. 

One problem in fitting a standard distrihution, which arises more often than is 
recognised, is described by Greenberg [338] as follows: 

The analyst thus has great latitude in choosing a distribution to fit his 
data - naturally he will select one that is convenient to work with and 
easily manipulated. The only serious differences between the data and 
the selected distribution will probably be in the tails, where relatively 
few (if any) of the observation[s] will lie. However, it is in these tails that 
the events of interest occur: the large delays, the long queue lengths etc. 
Thus any investigation of these events either by analytic means or by 
simulation (especially if importance sampling is used to obtain a larger 
representation of the values in the tail) is bound to be greatly [alffected 
by the distribution chosen - and the distribution must be chosen with 
little or no representation in the region of most interest. 

The fact that the normal distribution may be a good match to some population 
distribution everywhere except in the tails is the subject of Bagnold's paper [43]. 
(See also the reply by Rothschild [691].) The effect of the extreme tails on a final 
result is quite pronounced in some cases. In chapter 5 we show that the application of 
one method for overcoming a problem we call dependency error (see chapter 3) gives 
results that depend entirely on the extreme tail behaviour in certain circumstances. 

Rather than using a normal distribution, a more flexible parameterised family of 
distributions could be used. Recall that we have already examined (section 2.1.5) 
the use of H-function distributions. A simpler alternative is to use, say, the Pear- 
sonian curves [251,627]. Whilst these curves provide a much better fit to a wide 
range of distributions (compared with the normal distribution), their use as a gen- 
eral method for calculating distributions of functions of random variables is severely 
restricted by the fact that apart from certain special cases [59,482], the distribution 
of a function of random variables is not available in terms of the parameters of the 
distributions involved. Even when the distribution is available, it  is not necessar- 
ily Pearsonian [482]. In other words, the family is not closed under convolutions. 
General conditions that need to be satisfied for a parameterised family to be closed 
under sum convolutions are given by Crow [174], and these are restrictive enough 
for us to discard the idea. 

Thus we reject both normal and other parameterised distributions as being un- 
suitable for our purposes. Not only are the assumptions often invalid, but we cannot 
calculate the convolutions of interest in terms of the parameters involved. 



2.2.2 Methods Based on Moments 

Definitions and  Basic Approach 

Another simple method which deserves consideration is representation using mo- 
ments. The n-th central moment of a random variable X with distribution function 
Fx is defined by 

p$ = E(x.)= j rn ~ F ~ ( Z )  
$2 

assuming the integral exists. The method of moments (introduced by Tchebyshev 
and Markov - see appendix I1 of [837]) entails calculating results in terms of mo- 
ments of distributions when exact distributional results are unavailable. Given the 
moments of a distribution, one can either fit a distribution using the techniques de- 
scribed in [376], or one can use the Tchebyshev inequalities or their generalisations 
[212,317,318,537] to determine distributional results. Unfortunately, there are prob- 
lems associated with both of these methods. Firstly, the moments do not always 
determine a distribution exactly [752] so that two different distributions can have 
all moments identical [462,634,643]; and secondly, the Tchebyshev inequalities are 
often quite loose. 

There are also a number of ad hoc methods which use moments. For example, 
Broadbent [107] suggested approximating the distributions of products and quotients 
by lognormal distributions fitted to the moments. This is unsuitable for our needs 
because of restrictions on the class of distributions that can be accommodated. 

Even if these problems are ignored, there are still substantial difficulties in using 
moments as a basis for probabilistic arithmetic. This is because although there is 
a simple and exact formula for the moments of a sum of two independent random 
variables 

(see [586, p.267]), there are no such simple results for products and quotients. In- 
deed, for the case of the quotient, the moments may not even exist. It is easy to 
prove that if 2 = X / Y ,  where X and Y are random variables with densities fx 
and f y  bounded and continuous at the origin, then in order for p$jY to exist it is 

necessary (and sufficient) for p g )  to exist and for f y  to have a zero of order n - 2 at 
the origin. (In some cases the odd order moments exist as Cauchy principal values.) 

Approximate Formulae for Moments of Functions of Random Variables 

Whilst exact formulae for moments of products and quotients do not exist, there 
are useful approximations which have found wide application in applied probability 
theory. There are two different ways of developing approximate formulae. The first 
method, which is based on the binomial expansion, is discussed in [208,644,827,874] 
and is of little use. More useful is the method based on partial differentiation of the 



function involved. This was studied in great detail by Tukey in [829-8311. The basic 
idea is to use a truncated Taylor series expansion of the function in question in order 
to linearise any non-linearities about expected values. Tukey says that the results 
obtained with only second order expansions are surprisingly accurate. Generally 
the approximate formulae are more accurate if the random variables have small 
coefficients of variation. The formulae are known in metrology as the general error 
propagation laws [22]. The formulae for an arbitrary function of random variables 
are given by Hahn and Shapiro [352, p.2521 as follows. Let Z = h(Xl,. . . , X,) be a 
function of n independent random variables. Then 

and 

(2) where as usual we write u$ for px and the partial derivatives are evaluated at their 
expected values. There are related but more complex formulae in terms of cross- 
moments for cases when the Xi are not independent. Note the following special 
cases. If Z = h(X1, X2) = XI f XZ, 

There are many possible variations on these formulae. For example, the derivation 
of an expression for the variance of products was the subject of the three papers [87, 
331,3321. 

Uses of ,These Approximate Formulae 

The above approximate formulae formed the basis of Metropolis's significance arith- 
metic [573,574]. The name comes from his use of the relationship 

sx  = 1 log, ('!z1+0.5)1 - 

in order to determine the number of significant digits sx in a calculated result. 
Metropolis stated that 



an important observation is that (2.2.3-2.2.5) do not depend on the de- 
tailed structure of the distribution function associated with each operand, 
apart from the natural assumption that the first and second moments 
exist [573, ~.183] .  

He also noted that the formulae are only usable when the coefficients of variation 
are small. 

Although the above approximate formulae are not entirely suitable for a com- 
pletely general "probabilistic arithmetic", they are very useful in specific applications 
and have been used widely. See the examples in [405,809]. Moment based methods 
have found wide application in power systems analysis. The use of cumulants (which 
are directly related to moments [448]) has become popular in power systems analysis 
[131,542,677,784]. Representation of distributions by their cumulants has the ad- 
vantage that sum convolutions can be calculated by the simple pointwise addition of 
cumulants. The resulting distribution is then calculated by using a Gram-Charlier 
expansion (see section 2.3.5 below). Whilst this method may seem elegant, there 
are many problems, even within the restricted application area envisaged for it by 
its developers. Apart from a number of specific problems caused by the area of 
application (which would be encountered by all methods of probabilistic arithmetic) 
there is the difficulty of representing distributions that are far from normal. In gen- 
eral there is an unknown approximation error. In some cases the fitted distribution 
can differ considerably from the measured distributions, especially in the tails [542, 
figure 71. 

A moment based method has also been suggested by PetkoviC [645], who de- 
veloped an idea he calls "probable intervals." These are defined, for some random 
variable X with density fx having finite support [a, b], as the ordered pair (px, qu$). 
The parameter q > 0 is chosen such that < (b - a)/2. PetkoviC showed that 
if fx is continuous and unimodal, then 0% < r2 + 2rpx, a$ < 2r3fx(px)/3 and 
a$ < r2/3 ,  where r = (b - a)/2. He suggests that these results can be used in order 
to choose q. Once q is chosen, then the probable intervals can be combined using 
interval arithmetic (see section 2.5, especially subsection 2.5.3). 

2.2.3 Non-Linear Transformations 

Another method for calculating distributions of functions of random variables is to 
use a nonlinear transformation to convert some arbitrary distribution into, say, a 
normal distribution. The special properties of the normal distribution can then be 
used to determine the distribution of the appropriate function of the transformed 
random variables. The desired result is then calculated by using an inverse trans- 
formation. Transformation to normality was originally used as an aid to quadrature 
1461. It has since been widely used in reliability assessment, although not in a very 
rigorous manner 1711, p.xxi]. 

A recent application of the transformation idea is reported by Petrina et  al in 



[646]. Using the probability integral transform to convert a random variable X with 
distribution function Fx into a random variable Y with distribution function Fy 
(i.e.  Y = Fgl(Fx(X))) as their starting point, Petrina et al. proceed as follows. 
Hastings' approximation 13631 to the normal distribution function is used to evaluate 
Fy. They then determine an approximate overall transforming function by fitting 
a low degree polynomial to a discrete mapping from X to Y determined by using 
sample values of X.  Once X has been transformed to Y (and in practice there are 
several Xs and several Ys), the original problem can be solved in terms of normal 
random variables. For the application considered by Petrina et  a l ,  a third degree 
polynomial approximation appears to give quite accurate results. The actual de- 
tails of this approach are more intricate than indicated here. Whilst the technique 
appears quite useful in a number of circumstances, there seems little hope of devel- 
oping a general probabilistic arithmetic in terms of it. (The idea of using polynomial 
transformations to normality is also discussed in [448, section 6.251.) 

2.2.4 Direct Sampling of the Densities for Sum and Dif- 
ference Convolutions 

Allan e t  a1 [19], in an examination of probabilistic power systems analysis, consid- 
ered the distribution of the sum of nl independent continuous Gaussian distributed 
random variables added to the sum of n2 discrete random variables with binomial 
distributions. They used the results mentioned earlier for the sum of Gaussian ran- 
dom variables and found the distribution of the sum of the discrete random variables 
by numerically convolving their distributions using discrete convolution algorithms. 
The combination of these two results is a convolution of a Gaussian distribution 
with a series of Dirac delta distributions. This is simply a superposition of Gaussian 
distributions. 

The evaluation of the discrete convolution arising from the addition (or subtrac- 
tion) of discrete random variables can also be accomplished by means of fast Fourier 
transform algorithms [20]. Indeed, any of the wide variety of fast discrete convo- 
lution algorithms can be used [83,624]. These fast algorithms are not applicable 
outside the case where the random variables can only take values on an eqnispaced 
grid. A trivial example of how this technique is used is given in [461]. 

The case of continuous convolutions is more difficult. A naive approach would be 
to approximate the continuous density f (x) by the sampled discrete representation 
f(kT), where T is the sample spacing. This is the approach used by Ackroyd [2-41. 
By simply sampling a continuous density with a finite number of samples, approxi- 
mations have to be made. There are two types of approximation errors. The first, 
which we call sampling error, is due to the density not being bandlimited, and thus 
the conditions under which the sampling theorem holds [375] are not satisfied [411]. 
The second form of approximation error is caused by the requirement of using only a 
finite number of samples. This makes the exact repesentation of densities with infi- 
nite (or semi-infinite) support impossible. We call this truncation error. An analysis 



of sampling and truncation errors for general functions (not necessarily probability 
densities) is given by Papoulis [632]. An analysis with particular reference to proba- 
bility densities is given by Widrow [864] in his consideration of amplitude quantized 
sampled data systems. As well as discussing the well known Shannon sampling the- 
orem [142,411,781], Widrow shows that if the probability density is bandlimited to 
W (that is if the support of the characteristic function or Fourier transform is con- 
tained within [-W, W]), then the set of samples spaced 1/W apart allows recovery 
of all the moments (but not the density, which requires samples only 1/(2W) apart). 

2.2.5 The Skinner/Ackroyd Method 

While it is possible, as mentioned above, to derive estimates for the error incurred 
in sampling the distribution function, it is preferable to provide strict upper and 
lower bounds on the error automatically as the calculation is performed. This has 
been done by Ackroyd and Kanyangarara [6]. They modified techniques presented 
in [24]  by using an idea originally proposed by Skinner [758]. They sample the 
cumulative distribution rather than the probability density. The significance of this 
is that upper and lower bounds on the error caused by the sampling can be readily 
derived. 

Given a cumulative distribution Fx of a random variable X, two discrete ap- 
proximations are formed which are lower and upper bounds on Fx: 

The bounds Ex and Fx  are defined by 

and - 
Fx(x)  = Fx(kT) (k - l ) T  5 x < kT 

and can be understood by consideration of figure 2.1. The corresponding probability 
densities f and Tx are obtained by differencing and are related by 

Denoting n-fold convolution by a superscript (n), Ackroyd and Kanyangarara [6] 
showed that 

-(4 F$-')(z) 5 F ~ ) ( x )  5 F, (x) - 
for all x E X. ,For the special case of sum-convolutions it is possible to use the 
relationship 

in order to speed the calculation of these bounds by calculating 



Figure 2.1: Illustration of Ackroyd's method of discretising a continuous probability 
distribution function. The solid line is F(x),  and the two dashed lines are F ( x )  and - 
F(x) respectively. 

The tightness of the bounds depends upon the size of T and the shape of Fx. There 
is no consideration in this scheme of the truncation error caused by representing a 
distribution with infinite support, although this error can be made arbitrarily small 
by increasing the number of samples. In chapter 3 we develop a method similar 
to this where the quantiles Fil are uniformly sampled and which has considerable 
advantages over the method described here. 

Of all the techniques based on converting a continuous convolution to a dis- 
crete convolution by sampling, those which can be performed efficiently with fast 
Fourier transform algorithms [83,624] use uniform (equi-spaced) sampling. A dif- 
ferent method of sampling which has been applied to the numerical calculation of 
characteristic functions is given by Jones and Lotwick [415]. This has been applied 
[416] to a method of non-parametric density estimation presented by Silverman [755, 
7561. Their method reduces the error incurred by the sampling process by using a 
different method of assigning the sample values. We note that for some distributions 
non-uniform sampling [I491 is better, although the practical value of this requires 
further investigation. 

2.2.6 Spline Based Methods 

Yet another approach to computing sum convolutions of probability densities was 
introduced by Cl6roux and McConalogue [155,557]. Their idea is based on the piece- 



wise representation of the cumulative distribution function of always positive random 
variables by cubic splines. Cubic splines are used as they have well behaved first 
derivatives (the probability density). In [557] a FORTRAN program is presented which 
can be used to approximate convolutions of densities that are bounded, analytic, and 
have support only on the positive real line. The algorithm appears to give accurate 
results, although estimates of the errors have not been determined: "a useful error 
analysis is not practicable" [155, p.1145]. The distribution function is represented by 
m equally spaced samples supplemented by m spline coefficients. Approximations to 
convolutions of distributions so represented are obtained in terms of the representing 
values. The details of this are quite messy and are omitted here. 

One of the restrictions on the class of distributions to which the technique can 
be applied is removed in a generalisation presented in [558]. This generalisation 
overcomes problems with cubic spline approximations to infinite singularities, or 
where the function being approximated and all its derivatives vanish at the origin. 
A discussion of the original method, this generalisation, and a comparison with three 
other methods which are often used in solving renewal equations (the application 
for which this technique was originally developed) is given by Baxter in [61]. 

Nevertheless this generalised technique is still quite restricted, especially since 
it deals only with sum convolutions and because we do not know how accurate 
the final results are. The use of splines in conjunction with the histogram method 
is mentioned briefly in section 2.4.3 below. A relationship between splines and 
convolutions was also the subject of Sakai's paper [703]. 

2.3 Laguerre Transforms and Other Orthonor- 
ma1 Transforms 

Orthonormal expansions are logical candidates for representing probability distribu- 
tions so that convolutions can be calculated numerically. In this section we will look 
at one particular orthonormal expansion that has been widely studied in this regard 
and is based on Laguerre polynomials. Laguerre polynomials have been used in a 
number of areas such as signal processing and system identification as well as being 
used as a general means for representing continuous functions on a digital com- 
puter [145,152,153,272,366,401,402,460,485,507,589,590,604,623,884]. The Laguerre 
transform we examine was developed by Keilson and others [435,436] for calculating 
the sum convolutions (and other operations) of probability densities. The original 
motivation was to push back the "dreaded Laplacian curtain" [434, p.1791. (This 
is the name given to the fact that many results in queueing theory can only be 
expressed in terms of Laplace transforms.) The technique has been used success- 
fully in a number of applications. In section 2.3.1 below we will briefly outline the 
technique and show how it can be used to calculate the sum and difference convo- 
lutions. No work has been presented to date on using Keilson's Laguerre transform 
to calculate product and quotient convolutions. Accordingly, in sections 2.3.2-2.3.4 



we examine three possible approaches to achieve this. We obtain a number of new 
results but ultimately find that the methods appear intractable. In section 2.3.5 
we briefly look at some other Laguerre transforms and consider their convolution 
relations. Our conclusions on the suitability of orthonormal expansions (particularly 
Laguerre transforms) as a method of representing probability densities suitable for 
numerically calculating convolutions are given in section 2.3.6. 

Orthonormal transforms other than Laguerre transforms have been used widely 
in other areas. We now briefly consider some which might be useful for calculat- 
ing convolutions. Hermite polynomials form an orthonormal set on ?E with weight 
function exp(-x2) [477]. They have been used to define Hermite transforms [190, 
191,3101. Debnath [I911 proved a complicated convolution formula for the Hermite 
transform of odd order. The convolution in question has no relation to the sum or 
product convolutions we are interested in and is thus of no use to us. The convo- 
lution structure of orthogonal transforms based on Jacobi polynomials (orthogonal 
on the interval [-1,1]) has also been investigated [39,270,292,474], but these too are 
of no use to us. (The convolutions are not of the form (2.1.9-2.1.12).) Other or- 
thonormal systems such as the one recently discussed by Christov [I461 are also 
inapplicable to our area of interest. Nonorthogonal expansions (which have some of 
the desirable features of orthogonal expansions without the "undesirable features") 
are also possible candidates for calculating convolutions. See the consideration of 
the Mellin transform and product convolution on pages 1281-1282 of [184]. 

2.3.1 The Laguerre Transform Method 

Definitions 

The Laguerre transform method is based on the use of the associated Laguerre 
functions 

en(,) = e-z/2 L,(x) 

which provide an orthonormal basis in L2(0, w). Here L,(x) is the Laguerre poly- 
nomial of degree n which is defined by the Rodrigues' formula [811] 

The polynomial Ln(x) has the explicit form 

An extended set of associated Laguerre functions, which allows the representation 
of the probability densities of random variables that are not always positive, can be 
defined by 



where U ( x )  = 1 for x 2 0 and U ( x )  = 0 for x < 0. The set { h , ( ~ ) ) : ~  is an 
orthonormal basis of L2(-oo, a). Thus for any f E L Z ( - m ,  oo) there is a unique 
re~resentation 

where the equality is in the Lz-sense. The coefficients { f i }  are known as the Laguerre 
dagger coeficients and are given by the Laguerre transform 

If En 1 fA l  < co, pointwise convergence is guaranteed for all x t R \  (0) .  The inverse 
transform (2.3.4) is unique i f f  is continuous. 

Calculation of S u m  and  Difference Convolutions 

In order to see how convolutions are calculable with Laguerre transforms we define 
the two generating functions 

and 
03 

~ , # ( f )  = f,#un = ( 1  - u)T; ( f ) .  
n=-03 

The Laguerre sharp coeficients { f , # } ~ ~  are related to the dagger coefficients by 

where A h n ( x )  = h,(x) - hn-l(x) .  The inverse relation is 

Recalling our notation L,( f )  = Jrm e-"" f ( x )  dx for the Laplace transform of f ,  then 
it can be shown [792] that 

( h )  = lm e-'"h.(x) dx 
-m 

- - - - (" - ) - m < n < co &(a) t [-$, $1. (2.3.7) 
s + $  s + ,  

Equation (2.3.7) gives a relationship between the sharp generating function and the 
bilateral Laplace transform: 



Using this relationship, the sum convolution 

can be calculated as follows. The convolution theorem for Laplace transforms states 
that L,(f *g) = Ls(f)L,(g). Therefore T,#(f *g) = T,#(f)T,#(g). This is equivalent 
to the discrete convolution 

which can be readily calculated on a computer. Difference convolutions can be 
t calculated by simply setting gf(x) = g(-x) (by swapping the roles of gL and g-, for 

n = 1 , 2 , .  . .) and then calculating a sum convolution. In practice it is necessary to 
truncate the series if,!,) and Igk) to a finite length. This will introduce errors, but 
they can be analysed and controlled. 

Extensions and  Applications 

The assumption that f ,  the density, is in L2 is not always satisfied. If f $ L2 then 
the Laguerre dagger transform defined by (2.3.5) does not exist. However one can 
define a sharp transform which does exist if f c j  L2 provided that f E L1. It is 
equivalent to the dagger transform when f E L2 14411. 

The Laguerre transform method has been successfully applied to a number of 
problems in applied probability that require the evaluation of sum convolutions. 
Some of the applications include a study of the approach to normality in the central 
limit theorems [436,791], and the evaluation of renewal densities [791]. The Laguerre 
coefficients for a number of widely used distributions are given by Sumita in [792], 
although not all are given in a closed form. We note in passing that whilst it is 
possible to derive some formulae for the Laguerre transforms of H-function random 
variables by using the results in [45,549,740], these do not appear to be of any value 
because they are very complicated. Further details on the Laguerre transform and 
its applications can be found in [437441,546,791-8001. 

2.3.2 Distributions of Products and Quotients using the 
Laguerre and Mellin Transforms 

We will now consider the possibility of using the Laguerre transform for evaluat- 
ing the density of the quotient or the product of two random variables in terms of 
the Laguerre coefficients of the operands. Because of the success with which it has 
been used for sum convolutions, a method of using it for calculating product and 
quotient convolutions would make the technique rather more complete. We should 
expect that the determination of the quotient or product convolutions will be rather 
more difficult (compared to the sum or difference convolutions) because product and 



quotient are non-linear operations. Also, whereas the sum convolution has the nice 
property that the sum convolution of any two bounded continuous distributions is 
bounded and continuous, the same is not true of the product convolutions. For ex- 
ample, the product of two standardised Gaussian random variables has a probability 
density f(x) = (l/?r)ICo(x), where KO is the Bessel function of the second kind of 
purely imaginary argument [35,171]. This has a singularity at the origin. 

There does not appear to be any work on using the Laguerre transform to cal- 
culate product and quotient convolutions in the literature. Sumita and Kijima have 
considered the simpler problem of finding the Laguerre transform of the product 
of two functions in terms of the Laguerre coefficients of the functions [798]. That 
is, given the Laguerre coefficients of f (x)  and g(x), they determine the Laguerre 
coefficients of f ( x ) ~ ( x ) .  

Drawing on an analogy with the method of determining the relationship for the 
Laguerre transform coefficients for the sum (and hence difference) of two random 
variables by considering the Laplace transform of the associated Laguerre functions, 
we will now examine the (unilateral) Mellin transform of l,,(z). If we write l,(x) as 

then we can determine the Mellin transform termwise. Using equations 6.3.1 and 
6.1.3 of [257] we have 

Setting a = a gives 

Noting that r(s + k) = r ( s )  n:=,(s + j )  we obtain 

where c = ln2. Unfortunately this is nowhere near as simple as (2.3.7) (the Laplace 
transform of h,(x)), and thus there is no apparent simple relation between the 
Laguerre coefficients for the product or quotient of two random variables. In section 
2.3.5 we will briefly discuss some other relationships between Laguerre polynomials 
and Mellin transforms that have appeared in the literature. 

2.3.3 Distribution of Products and Quotients Calculated 
with the Laguerre Transform Directly 

Another possible approach to determining the Laguerre coefficients of product and 
quotient convolutions is to examine the convolutions directly. We consider the quo- 
tient here, and we let Z = X / Y  be the quotient of two random variables. The 



functions f ,  g, and h are the densities of X, Y and Z respectively. We assume 
X and Y (and hence Z) are always positive (thus f(x) = g(x) = h(x) = 0 for 
all x < 0). This does not sacrifice any generality as we can always determine the 
quotient of two random variables that are not always positive by considering the 
positive and negative parts separately and then combining the results in a mixing 
operation. 

T h e  General Approach 

The convolution equation we are studying is 

m Let h(y) = C Z ~ ~ ~ ( Y ) ,  f(x) = Cn=of,%(x) and g(x) = CZ=ogLem(~), where 
{h:}, { f:), and {gL} are the respective one-sided Laguerre dagger coefficients. Then 

If {f:} and {gk} E el, then the Laguerre expansion converges pointwise uniformly 
almost everywhere (see theorem 2.3.1 in the following subsection). Assuming this 
we can write 

and we need to evaluate the integral 

Evaluation of t h e  Integral 

Gradshteyn and Ryzhik [336, eq. 7.41441 give 

e-bz: a (a) im x Ln (Xz) L?)(px) dx (2.3.13) 

for Re(a) > -1, Re(b) > 0, where F[a,P; 7; z] is the hypergeometric function 
defined by 



The generalised Laguerre polynomial L ~ ) ( X )  is defined by 

Observing that L?-')(X) = L p ) ( x )  - L ~ ~ ( Z )  [336, eq. 8.97141, we can write the 
integrand of I as 

. , - z ( ~ + l ) l z ~ , ( ~ ~ ) ~ ~ ( ~ )  = xe-z(~+1)/2 [L?)(xY) - L ; ~ ~ ( X Y ) ]  [LC)(.) - L2L1(x ) ]  . 
(2.3.15) 

If we set or = 1, b = (Y + 1 ) / 2 ,  X = y ,  and p = 1 we have (from equation 2.3.13) 

The hypergeometric function F(or,/3; 7; Z) terminates if or or /3 are negative integers. 
Since or = - m, P = -n  , and 7 = -m - n - 1, we can write 

We also have (when max( i )  = min(n, m))  

'-' ( j  - m ) ( j  - n )  rI 
j=o ( j  - m - n - 1)  

- - 
-m(-m + 1 ) .  . . (-m + i - I)(-n)(-n + 1 ) .  . . (-n + i - 1 )  

(-m - n - I ) ( - m  - n)(-m - n + 1)  -. . (-m - n - 1 + i - 1)  

- - (-l)'m(m - 1 ) .  . . (m  - i + I)(-l)jn(n - 1 ) .  . . (n  - i + 1 )  
(-l) '(m + n + l ) (m + n)(m + n - 1 ) .  . . (m + n + 2 - i )  

- - (-l)'m! n! (m + n + 1 - i)! 
(m - i )!  (n - i ) !  (m + n + I ) ! '  

Therefore 

(-1)n4 fin(",") 
- - C 

(m + n + 1 - i)! ( y - l)"'+n-2i . (2.3.17) 
(Y  + 1)' i=o ( m  - i n  - i ) ! !  y + 1 

Recalling equation (2.3.15) we have 



and therefore 

T h e  Result 

Equation 2.3.18 gives h in terms of { fi) and {gi). However what we redly want is 
to determine {hi} directly in terms of {fi) and {gi). We have 

where Bm,n(y) is given by (2.3.17). Even if the inner series in (2.3.19) is uni- 
formly convergent (a fact which is not readily apparent), this is obviously going 
to be a rather messy expression for hi: a complicated sum of integrals of the form 

-912 
dy. So, although Gradshteyn and Ryzhik [336, eq. 3.38381 give an ex- 

pression for this integral (in terms of Whittaker's function), this does not result in 
a simple expression for hi. Difficulties remain even if we numerically compute the 
integral beforehand. This can be seen by considering 

where is the precomputed integral. If we truncate the Laguerre series by 
using only 100 coefficients, then in order to calculate {hi) for k = 0, .  . . ,100 in 
excess of lo6 operations would be required. 

A derivation of the Laguerre coefficients of the product of two random variables 
gives a similar result to that obtained above (a complicated sum of Whittaker func- 
tions) and is not considered further. 

The fact that the results we have obtained are so complicated is surprising when 
we consider Feldheim's result [261] that the Laguerre polynomials are the only or- 
thogonal polynomials pn(y) with a multiplicative theorem of the form 

where Anj are constants. The significance of Feldheim's result can be seen by com- 
paring (2.3.21) with the ~ roduc t  convolution (see equation 2.3.50) where f (sly) is a 
term in the integrand. Nevertheless this is not as simple as [387, equation 22.13.141 

which was the original motiovation for Keilson's Laguerre transform [434] 



Other expansions for products of Laguerre polynomials have appeared in the 
literature [44,255,777], but these are all in terms of Laguerre polynomials L p ) ( x )  
of different orders a. Products of other orthogonal polynomials are discussed in 
[36,290,291,293]. Niukkanen [621] has presented a very general result giving the 
product of two Laguerre polynomials in terms of a series of Laguerre polynomials. 
These are also presented in terms of Laguerre polynomials of different orders a. 
The coefficients for the Laguerre polynomials in his expansion are very complicated 
expressions in terms of his generalised hypergeometric series [620] and do not appear 
to be of any use here. 

2.3.4 Distributions of Products and Quotients using the 
Laguerre Transform and Logarithmic/Exponential 
Transformation of Variables 

Instead of determining the distributions of products and quotients directly, it may 
be possible to use logarithmic and exponential transformations. It can be shown 
that if X is an almost surely positive random variable with a probability density 
f (x), then the random variable Y = log X has a density g ( y )  = eY f  ( eY) .  The inverse 
transformation is f ( x )  = ( l / x ) g ( l o g  x ) .  I f  we can determine the Laguerre coefficients 
for g in terms of the coefficients for f ,  then we can calculate the probability density 
of products and quotients of random variables in terms of the Laguerre coefficients of 
the operands by calculating the effect of the logarithmic transformation, performing 
a sum or difference convolution, and then transforming back again. In this section 
we will derive a formula for the Laguerre coefficients of the logarithm of a random 
variable with a given density in terms of the Laguerre coefficients of the density. It 
turns out to be surprisingly difficult to do this. As a consequence, this subsection 
is rather longer and more intricate than the others. 

T h e  General Approach 

Let f (x) = C2=o f,?&,(x), where f i  = JF f  ( x ) l , ( x )  d x ;  and let g ( y )  = ey f ( ey )  = 
~ , "=og~L? , ( y ) ,  where g,!, = J? g(y)l ,(y)  dy.  We require Ig,t,} in terms of {fi}. Obvi- 
ouslv 

Let z  = eY, y  = log z ,  and so $ = eY and hence d z  = eydy. Then 



If the infinite series in (2.3.23) is uniformly convergent to an integrable function, then 
we can interchange the order of integration and summation and integrate termwise. - - 
Equation (2.3.23) is equivalent to 

Sumita [792, page 671 gives the following theorem regarding the uniform convergence 
of the extended Laguerre expansion. 

Theorem 2.3.1 Let f (x)  E L2(-w,co) have an extended Laguerre expansion 

and define the partial sum SN(X) = ~ r = - ~  frfhn(x). If {frf} E el ,  then SN(X) 
converges to f (x)  pointwise uniformly almost everywhere as N + w .  

This theorem implies that if {f:} E el, then f (x) = C;=-, fih,(x) is continuous 
for all x # 0 because when a sequence of continuous functions (such as SN(x)) 
converges to f uniformly, then f is continuous. The class of functions f for which 
the coefficients {fi} @ t1 has not been determined. However we do know that if f 
is not continuous for all x E (0, w) then {frf) @ e1 [435, page 3261. We will assume 
that {fi) E el from now on. 

It is required that 
N 

sk(x)  = C fiem(z)en(l0gz) (2.3.25) 
m=O 

converges uniformly to an integrable function for almost all z E [ l , w )  and for 
n = 0,1, .. .. This is true if {fi) E e1 because S&(x) converges to f(z)%(logz) 
(which is continuous and bounded), and SN(z) = cE=~ fAem(z) converges uniformly 
to f (z). Regarding the integrability condition, we observe that 

= z-;0((log z)") (2.3.26) 

which approaches 0 as z + cm for any given n, and therefore f (z)e,(logz) -+ 0 as 
z cm because f(z) -+ 0 as z + co. Now f(z) is integrable on [1,ca) (it is a 
probability density) and f(z) 2 0 for all z > 0. Also e,(logz) is bounded for all 
z > 0. Thus f (z)en(log z) is integrable on [l, w). 

Evaluation of t h e  Integral 

We can now interchange the order of integration and summation in (2.3.23) giving 
n m m  

e-"/2(log z)!?zp-; d z ~  (2.3.27) 
k=O m=O p=O 



We now need to evaluate the integral 

Gradshteyn and Ryzhik [336, eq. 4.35811 give 

where r ( a ,  x) is the incomplete gamma function defined by 

T(o, X) = e-tta-l dt .  

If we set m = k, v = p+ i, (P 2 O), and p = i 2 then (2.3.29) is equivalent to (2.3.28). 
Therefore 

I = 
dk 

( ( f ) l - ( ~ + + ) r ( + , ~  + ;)) . (2.3.30) 
d(p + ; Ik 

Let p' = p + i, then 

(2.3.31) 

We require an expression for 

where x = p' and c = ln2. Firstly consider 

d 
- (emr(a, x)) . ax 

Erdelyi et a1 [256, eq. 12, p. 1351 give 

a - (ezr(a, x)) = (a - l)eZr(a - 1,x). 
ax  

If we write 
eqr(a, x) = e (c-1)~ x eZr(a, x) 

and use the product rule along with (2.3.32) we obtain 

We actually require an expression for $ [ear(a, x)]. There does not appear to 
be one in the literature. Thus we now prove the following theorem by induction. 



Theorem 2.3.2 

an n 

- [ e C T ( a ,  x ) ]  = x emI'(a - i, x ) .  (2.3.34) 
dxn  i=O 

PROOF. In order to make the proof less cumbersome, we define G ( a )  = emI'(a,x) 
and D = 2. We have already seen (equation 2.3.33) that 

az 

D [ G ( a ) ]  = ( C  - I ) G ( a )  + ( a  - l ) G ( a  - 1) .  (2.3.35) 

The theorem to be proved is 

Thus the induction hypothesis is 

(2.3.36) 

G ( a  - i). (2.3.37) 

Firstly observe that for arbitrary coefficients { q i ) ,  

r 7 

This fact along with equations 2.3.35 and 2.3.36 gives 

5 ( )  - 1 ) -  [ a  - 1  a - c - 1)  + 
i=O j=1 

( )  ( - 1 [ ( a  - j ) ]  ( a  - i - 1)G(a  - i - 1 )  
i=O 

= ( )  ( - l)n+l-i [ f i ( a  - j ) ]  ~ ( a  - i )  + 
j=1 

5 (:)(. - [.=(a - j ) ]  G ( a  - i - 1)  
i=O j=1 

= 2 ( y )  ( c  - 1ln+l-i [ h ( a  - j ) ]  G ( a  - i )  + 
j=1 



If we set i = k - 1 in the second sum (so k = i + 1) this can be written as 

i 

= % ,(G(cz - i)(c - ~ ) " + l - ~  n ( . - j )  + 
j=1 

(i f ,) (c - 1 ( a  ( a  - i) + 
j=1 

n+l  

(c - l)"+ 'G(a) + n (a - j)G(a - n - 1) 
j=1 

1 
n 

= G(a - i)(c - I)"+'-' 
i=l j=1 a -  [ (  ( 1-1 )] + 

n + l  

(c - I)"+ 'G(a) + n (a - j)G(a - n - 1) 
j=1 

n i 
n + l  

= ( a - i ) ( ~ - l ) " ~ ~ ( - j ) (  i=l j=1 2 . ) + 
n+l 

(c - l)"+'G(a) + (a - j)G(a - n - 1) 
j=1 

which equals (2.3.37). 1 

The Result 

The result we require (a closed form for equation 2.3.31) is obtained by substituting 
into (2.3.34). We find that 



Substituting (2.3.38) into (2.3.31) and (2.3.27) gives 

This can be written as 

where F ( k )  = CEzo j i G ( k ,  m) and G ( k ,  m) does not depend on j i :  

Thus G ( k ,  m)  could be tabulated for k ,  m = 0,1 , .  . . , N, where N is the length at 
which we truncate the infinite series of Laguerre dagger coefficients { f ; }  and {gL}. 
These tabulated values could then be used with equation (2.3.40) and the given 
Laguerre dagger coefficients { f i )  to calculate the set {g;}. 

There are problems with this scheme which reduce its practicability. Firstly, 
if N is of the order that has been used in most of the papers on the Laguerre 
transform technique cited earlier (100 to 500) then the table of values of G ( k , m )  
will contain 10000 to 250000 entries. Secondly, the values of G ( k , m )  for some 
m and k appear to be very large and beyond the range of most modern digital 
computers which can usually only represent numbers up to about lo3'. This second 
point was discovered upon programming (2.3.41) using a special package of extended 
floating point arithmetic subroutines [I361 (which is similar to the extended-range 
arithmetic used for calculating Legendre polynomials in [766] and the level-index 
system described in [154]) and a computational algorithm for the incomplete gamma 
function [295]. The expression (2.3.41) is unfortunately too complicated to derive 
rough asymptotic values for G ( k ,  m) to verify the program's correctness. We note 
that Sumita has encountered problems of excessive magnitudes in the calculation of 
the Laguerre coefficients of Gamma densities [792, p.1881. 

Reducing t h e  Extent  of t h e  Laguerre Coefficients 

The problems associated with (2.3.40) and (2.3.41) would be less severe if the La- 
guerre coefficients were of smaller extent (i.e. if N, the number of coefficients was 
smaller). Sumita [792] has shown that the extent of the coefficients depends heavily 
on the concentration about zero and the extent of the tails. Scaling and exponen- 
tial weighting of the density to be represented can reduce this extent considerably. 
Scaling involves setting g ( x )  = f (cx) for some positive constant c, and weighting 



involves setting g ( x )  = e-Ozf ( x )  for some positive constant 0. Sumita says that "a 
general procedure to find [the Laguerre coefficients of g(x)]  from [the coefficients 
of f ( x ) ]  has yet to be developed" [792, p.168]. The following theorem solves this 
problem. 

Theorem 2.3.3 Let g ( x )  = e-8zf(cx) ,  0 > 0,  c > 0,  f ( x )  = Cr=o fAen(x), and 
g ( x )  = C z = o g f , e m ( ~ ) .  Then if i f ; )  E el, 

min(m,n) ' = 2 f,iz(-1). C ( - l ) ' ( m  + n - i)! ( c  - 1 - 20)"-'(c - 1 + 20)"-' 
9 ,  

n=O i=O (m - i ) !  (n - i)! i! ( C  + 1 + 20)m+n+1-i ( c  + 1 - 20)-' ' 
(2.3.42) 

PROOF. We have 

If { f L }  E e l ,  then the Laguerre expansion in the square brackets in (2.3.43) converges 
uniformly (see theorem 2.3.1) and so 

t = 5 f i L - e -  Sm (-)"L,(CX) L,(x) dx. 
n=O 

If we let b = -, a = 0 ,  X = c, p = 1 and use equation 2.3.13 we obtain 

c 1 28 c 1 20 r ( m + n + l )  (+- c ) ~ ( + -  
93, = C f,! X 

n=O m! n! 

[ 
(v) (+Lo - c - 1) 

F -m, -n; -m - n; (y - c) (+Lo - 
, (m + n)! 2 ( 1 -  c + 20)n(c - 1 + 20)"' 

= C f n  x 
n=O m! n! (c  + 1 + 20)m+n+1 

I 

Substituting the expression for the terminating Hypergeometric series (2.3.16) gives 
(2.3.42). . 

Note the following special cases. 

m 2(-1)" mi"(",") 

C ( ) ( m  + n - ) c - 1 "+"-2' 
( O = O ) :  St, = Cfi- (-)(2.3.45) 

n=O (c $ 1 )  (m  - i )!  (n - i !  c + l 
min(m,n) (m  + - i)! 0"+"-2' 

( c = l ) :  - - 5f: C (I - 0)' 
( m  - i)! ( n  - i ) !  i! (0  + l)m+n+l-i 

(2.3.46) 
n=O i=O 



Sumita's result for 0 = [792, theorem 5.5.21 is a special case of (2.3.42): 

m 
min(m,n) (-l)'(m + n - i)! (2(c - 1))"-'om-' '. = C f: 2(-1In E ( - ( - i)! i! 2m+n+l-i 9, 

n=O i=o (2~) - '  

The ith term of the inner sum equals zero unless i = m (because of the Om-' term). 
If i = m, then n 2 m (because of the upper limit of the inner sum), and so - (-l)m(m + n - m)! (2(c - l))"-m 

+ = C fL2(-1)" 9, 
n=m O! (n - m)! m! 2m+"+1-m ( 2 ~ ) -  

This is Sumita's result 

Other  Uses of Logarithmic Transformation 

The use of a logarithmic transformation with the Laguerre transform has been sug- 
gested elsewhere. In section 7.9 of [792], Sumita considers the problem of deter- 
mining the distribution of the product of independent Beta variates. He finds the 
distribution of the logarithm of the variates analytically (rather than in terms of the 
Laguerre coefficients), and then uses the Laguerre transform to find the distribution 
of the sum of the transformed variates. From this, he obtains the distribution of the 
product by the inverse transformation. Sumita's approach is similar to that used by 
Ramsey et  a1 described below. 

Furmanski and Petronzio [285] introduced the idea of a logarithmic transforma- 
tion to solve a special class of problems encountered in Quantum Chromo-Dynamics. 
The method is described by Ramsey in [672]. He considers the solutions of integro- 
differential evolution equations of the form 

Comparing the right side of (2.3.49) with the expression for the probability density 
of the product of two random variables in terms of their densities suggests that it is 
a closely related problem. If the two random variables are independent and always 
positive we have from (2.1.11) 

Methods that have been used to solve (2.3.49) are similar to those suitable for 
solving (2.3.50). Two examples are Mellin transforms [119,325,633] and brute force 



numerical methods (evaluating the integral) [124]. Ramsey says that the brute 
force numerical methods "tend to be inefficient and prone to instability". The 
Mellin transform requires a numerical inversion which can be difficult. The method 
presented by Ramsey is "more stable and more accurate than other methods in 
that it allows one to deal with the functions F ( x ,  t )  directly rather than with their 
integral transforms" [672, p. 981 It involves a change of variables in (2.3.49) via a 
logarithmic transformation, followed by a sum convolution which is evaluated by a 
Laguerre transform. (Of course more than this is required in order to solve (2.3.49), 
but this is not our concern here.) 

Ramsey discusses the effect of truncation error and round-off error, pointing out 
that there is an inherent tradeoff between them: making the truncation error smaller 
by using more coefficients to represent the functions will compound rounding errors 
by requiring more arithmetic operations. For his particular application, Ramsey 
found that the round off error became significant (greater than 1%) with double 
precision arithmetic when N, the number of coefficients used, was greater than 15. 
In general he suggests values between 8 and 15 should be used. His values of N 
are less than those used by Keilson and Niinn [435, p.3471 who used 60, or Sumita 
[793, p.2621 who used 500 and found that when programmed with double precision 
arithmetic there was "no evidence of numerical problemsn (for simply calculating 
the convolution) [793, p.2731. 

Ramsey's method differs from the method we have developed above in the man- 
ner of determining the Laguerre coefficients of the logarithmically transformed func- 
tion. Whereas we have attempted to determine these from the Laguerre wefficients 
of the function to be transformed, Ramsey assumes the Mellin transform of the orig- 
inal function is known. He shows on page 102 of [672] how to derive the required 
Laguerre wefficients in terms of these transforms. This approach is obviously no 
good for our application. Ramsey also suggests (page 105) the idea of expanding 
the function by a power series and presents a method for determining the Laguerre 
coefficients in terms of the wefficients of the power series expansion. It is not clear 
(to the present author) how this method can work. 

2.3.5 Other Types of Laguerre Transforms and Related 
Results 

Before leaving the topic of Laguerre transforms, we briefly point out some other 
work on convolutions and Laguerre transforms which is not as widely known. A 
number of unexpected connections have been considered in [40] (see especially the 
editor's preface), which contains a paper on the use of Laguerre polynomials for 
convolutions on the Heisenberg group [62]. 

Hirschmann [378] develops an inversion formula for the transform defined for any 
real function f (n) by 

m 

f ( x )  = z f(m)Lm(x). (2.3.51) 
m=O 



His formula is related to the Post- Widder inversion formula for the Laplace transform 
[379, page 651. 

Debnath [189] introduced a transform in 1960 which is more closely related to 
Keilson's. It is a generalisation of McCully's transform [559] which was used for 
solving certain differential equations. Debnath's transform of a function F(x)  is 
defined by 

f a  = d m e - z x a ~ " ( x ) ~ ( x ) d x  a > -1. (2.3.52) 

In [192] Debnath shows that if f,(n) and g,(n) are the Debnath-Lagnerre transform 
of the functions F(x) and G(x) respectively, then the Debnath-Laguene transforms 
of the convolution F(x)  *D G(x) exists when Re(a) > -+ and is equal to f,(n)g,(n). 
The convolution *D is defined by 

where J,(z) is the Bessel function of the first kind of order n. This is much more 
complicated than equation 2.3.8 and is obviously of no use to us (for the purposes of 
probabilistic arithmetic). Debnath's transform has been further studied by Glaeske 
[308,309,311] and Fenyo [264]. In [308], Glaeske shows that 

- - sin a t  - 1 
7r 

This relationship seems to be of even less use than equation 2.3.11. Note that the 
Laguerre LLpolynomials" in the above transform are defined for non-integral degrees 
bv 

where Q is the degenerate hypergeometric function [336, section 9.21. Equation 
2.3.54 is equivalent to (2.3.14) when v is an integer [410]. 

The Laguerre transform closest in spirit to Keilson et a!% (which we studied 
above) is that discussed by Verma [840]. He obtains a real inversion formula for a 
general Laguerre transform of the form 

f )  = dm e - * ( ~ t ) ~ ~ i ~ ) ( s t )  f (t) dt. (2.3.56) 

His inversion formula is 



He also gives the following convolution formula for this transform [841]. Defining a 
special case of the transform (equivalent to Debnath's) 

he shows that 

where * is the ordinary sum convolution of two distributions, and f and g are 
distributions with supports bounded on the left. This is a generalisation of the 
result of Genin and Calvez [300] that 

Noting that L?) = L,, (2.3.59) can be seen to be equivalent to (2.3.8). 

Other Laguerre transforms are studied in [37,410,421]. Various issues relating 
to the convergence of certain Laguerre series expansions are discussed in [38,346, 
597-599,635,8901. Laguerre series expansions have also been used by Ackroyd [5] to 
invert a Poisson transform [91]. Laguerre polynomials have been used by Tsamas- 
phyros et a1 for the numerical inversion of Mellin transforms [822,826] (although 
unfortunately this doesn't help with the problem discussed in section 2.3.2). They 
have also been used for the numerical calculation of Fourier transforms [855] and 
evaluation of certain Hankel transforms [286]. The probabilistic origin of Laguerre 
and other classical orthogonal polynomials is investigated by Cooper et a1 in [167, 
7091. Laguerre series representations of certain special probability densities can be 
found in [109,303,404,815,816,823]. 

Laguerre polynomial expansions also appear in probability theory under the 
name of Gram-Charlier expansions 14481. If the successive derivatives of the Gaus- 
sian density function in the ordinary type A Gram-Charlier series are replaced by 
derivatives of the Gamma density then a representation of a density f(x) of the 
following form is obtained: 

In equation 2.3.60, p, (x)  = e-2xm-1/r(m) for m > 0. The coefficients {an) are 
given by 

a', = 
1 

+ +  % f ( x ) ~ n ( x )  d x ~  (2.3.62) 

The fact that there is no exponential weighting function in (2.3.61) means that 
{a',)~=. will only represent f using (2.3.60) if all the moments of f exist. Equation 
2.3.60 has the property that if only k terms of the infinite series are used, then the 
first k moments of the series representation of f will be correct [815, theorem 2.11. 
Further details and applications can be found in [303,404,816,823]. 



2.3.6 Conclusions on the Laguerre Transform Method 

Although we have covered a lot of detail in the analysis of the Laguerre transform 
method in the hope of using it for product and quotient convolutions, there are many 
problems which we have not mentioned. Many of these have already been examined 
to some extent by Sumita and others, and do not just occur in the attempt to 
calculate product and quotient convolutions. We have already mentioned (section 
2.3.4) how the shape of the density can affect the number of Laguerre coefficients 
required for an accurate representation. This is clearly an undesirable property. 
There are other methods (which we discuss elsewhere) for representing distributions 
and calculating convolutions which do not suffer from this problem. Other problems 
associated with the Laguerre transform method include the handling of dependencies 
(but see [797,799]), and the manner in which one can obtain the Laguerre coefficients 
to start with. If the density's analytical formula is known then one can calculate 
the coefficients analytically. However, if the density is derived from sample values 
this is not possible. 

To sum up then, we can say that while orthogonal series in general, and the 
Laguerre transform in particular, seem at first sight to be good choices for our goal, 
it turns out that this is not the case. The Laguerre transform can not be used to 
calculate product and quotient convolutions anywhere near as easily as it can be 
used to calculate sum and difference convolutions. Thus although a useful tool for 
sum and difference convolutions, it is not suitable as the basis for a more general 
probabilistic arithmetic. 

2.4 The Histogram and Related Methods 

The histogram method is a way of representing probability distributions and cal- 
culating their convolutions. It was developed by Colombo and Jaarsma [159,160] 
based on ideas in 14031 and has also been examined by Keey and Smith [433]. In this 
section we will examine this method in some detail, explaining how it is used and 
discussing the various difficulties that are encountered. We present the algorithms in 
question explicitly (they were only outlined by Colombo and Jaarsma in [160]). We 
will also compare the histogram method with two other similar methods (Kaplan's 
DPD method and Moore's generalisation of Interval Arithmetic). 

2.4.1 The Histogram Representation 

Definitions and  Notation 

The histogram representation is discussed with reference to figure 2.2. The proba- 
bility density fx of a random variable X is approximated by ff. This is defined by 



Figure 2.2: The histogram representation: ff(x) approximates fx(x). 

the set of ordered pairs 

Hx = {(lo, po),(xi, pi), . . . , ( ~ n - i ,  P , -~) , (xw~)}.  (2.4.1) 

where x i p i  = 1 and xi < xi+] for i = 0,. . . , n - 1. We have 

ff(x) = pi for X E [xi, xi+]). (2.4.2) 

In the equiprobable histogram (which is the focus of our attention here) we also have 

for i = 0 1 , .  . , n - 1 The zero in the last ordered pair in (2.4.1) allows a neater 
definition of the histogram and it is used to indicate the end of the data structure 
in computer implementations. 

Alternative Choices of pi 

An alternative to the equiprobable histogram is the equispaced histogram where 
xi - xi-] is constant. Colombo and Jaarsma [160] discuss the relative merits of 
the equiprobable versus the equispaced histograms. They present an argument in 
favour of equiprobable intervals in terms of the choice of class intervals in X 2  tests 



[343,450,543], and they compare the accuracy of the results obtained in using both 
techniques. Their conclusion is that equiprobable intervals are generally better. 

Note that "optimal" representations of the form (2.4.2), such as those that are 
obtained by minimising the L1 distance [429,430] (or "disparity" [671]) 

between the distribution functions F f  and Fx (corresponding to the densities f f  
and fx) in order to choose a histogram representation, are not appropriate for our 
purposes. Not only is the exact distribution Fx required to construct these approxi- 
mations F f ,  but one can not easily maintain the "optimality" when histograms are 
combined. 

Choice of t h e  Number  of Intervals and  t h e  E n d  Points  s o  and  x, 

Henceforth we shall only consider the equiprobable histogram. There thus arises the 
question of the choice of n, the number of intervals, and the choice of the endpoints 
s o  and x,. The number of intervals affects the accuracy of the convolutions and 
the time taken to compute them. We shall see below that the combination of two 
histograms of n bins has a computational complexity of O(n4). This restricts n to 
be normally less than 100. 

Regarding the end points xo and x,, if Fx has finite support, then they can be 
simply set to inf supp Fx and sup supp Fx respectively. If supp Fx = %, then there 
are two alternatives: one can either truncate fx in some way, or one can use an 
extended number system that allows m and -m as possible values. Colombo and 
Jaarsma [I601 argue, but not very convincingly, that a reasonable rule is simply to 
make the width of the end intervals some constant amount a larger than the width 
of the penultimate interval contiguous to it. That is, 

X, - x , - ~  = CY(X,-~ - x,-2) and XI - xo = a(xz - XI). 

They suggest that cu should be around 2.5 to 3 (as long as the "long tailed distribu- 
tions . . . are regularly shaped" [160]). The alternative method (using the extended 
real number system X* = XU(-m, m))  has been used by several authors in interval 
arithmetic [358,364,418,503,727]. This alternative method was used to calculate the 
example results presented below. It has the advantage of not relying on (sometimes 
unprovable) assumptions about the distributions in question. 

2.4.2 Combining Histograms to Calculate Convolutions 

We now consider how the equiprobable histograms (2.4.1) can be combined in order 
to calculate convolutions of the probability distributions which they represent. 



T h e  Basic Combining Rule 

Suppose we have two histograms 

and 

HY = { ( Y O ,  qo), ( Y I , ~ I ) ,  . . ., (~m- l , qm- l ) ,  (ym7O)1 

which represent two random variables X and Y with probability densities f x  and 
fy respectively. We assume that X and Y are independent. If is some arithmetic 
operation, and Z = XOY, then H I ,  is an unsorted histogram which approximates ' 

the density f i .  It is given by 

and 

rim+j = Pi X q j ,  (2.4.5) 

The rationale behind (2.4.4) and (2.4.5) is to consider all possible pairs of in- 
tervals and combine them together using the rules of interval arithmetic [li']. The 
upper and lower bounds of the resultant interval are the maximum and minimum of 
all combinations of the endpoints of the interval operands. Equation 2.4.5 says that 
the probability that Z will take on a value within a given interval [zim+j,~im+j] is 
the product of the probabilities that X and Y will take on values within the intervals 
[%?%I and [Y -3 . , F ~ ] .  

This basic combining rule is not entirely adequate because the histogram H i  is 
unsorted, and some of its constituent intervals may overlap. This can be seen from 
the following example. Let 

and 

HY = {(2,0.5),  (4,0.5), (6,O)). 

Then if Z = X x Y, 

Observe that the four intervals in H i  ([1,12), [4,12), [6,16) and [12,24)) are not 
disjoint. 



Construction of t h e  Disjoint Histogram and  Condensation 

Our final aim is to approximate fi by a histogram of the form of (2.4.1). The 
following procedure can be used in order to convert H y  to this form. 

1. Sorting step. Sort the nm 3-tuples of H g  into an order specified by the 
relation 5~ to give H g  The relation S H  is defined by 

if 
gi < g j  or (g j  = g j  and Zj I F j )  

This can be perfomed using a standard sorting algorithm (such as quicksort 
17221) by using an appropriate comparison function. 

2. Construction of t h e  disjoint histogram H;. The next step is to construct 
a disjoint histogram H i ,  where 

and 
g , ]  [ j , j ]  = 0 for all i # j. 

This will not necessarily be an equiprobable histogram (i.e. there may exist 
an i and j ,  i # j ,  such that sj # s j ) ,  although it will have the property that 
- wi = gi+l for i = 0,. . . , nm - 2. We will use the above (redundant) 3-tuple 
representation of the elements of H g  for clarity. The procedure used to form 
H g  from Hg is as follows: 

for (i := 0;  i < nm; i++){ - w. .= 2.. w .  .- 2. . si := 0;  -,' 4, %.-- ,+I ,  

for ( j  := i; j 2 0; j--){ 
if (Ti > and zj < g j ) {  

if (E; > 2, and uj 2 z j )  
s; += 7-j((Fj  - &7j)/(Zj - g j ) ) ;  

else if (mi 5 F j  and g; 2 zi) 
si += r j ( (E i  - g i ) / ( F j  - g j ) ) ;  

1 

The purpose of the inner for loop is to determine, for each interval [zj,2j], 
whether it overlaps the interval [u;,Ei]. The loop starts a t  j = i because there 
cannot be any overlap of relevance at j > i due to the sorting performed in 
step 1, and the assignments ui := zj and Ei := z;+~.  

The first if statement is true when [zj,Zj] n [ui,Ej] # 0. When this occurs we 
have to determine how much they overlap, and hence how much probability to 



include in the interval [u;,Zi] due to the probability in [ 2 , , ~ ~ ] .  This is what 
the next two statements do. 

Regarding the inner two if and else if stitements, note that the cases (toi < 
z .  and E; iiii 2,) and (ui < zj and Ei > 7,) cannot occur because ui = zi,  -3 - 
w; = z;+~ for j 5 i, and by the sorting step, zi < <+p or (gi = z;+~ and yi < 
- zi+,) when p > 0. 

3. Construction of t h e  equiprobable histogram Hz via condensation In 
order to construct an equiprobable histogram Hz from the disjoint histogram 
H g  we proceed in the following manner. If Hz is to comprise e intervals, i .e. 

then t; = l/(e - 1) for i = 0,. .. , e  - 1 and the vi are determined by the 
following algorithm. The variable u keeps track of how much probability we 
have used up. 

21 := 0; 
for(i := 0, j := 0; i < nm; i++){ 

u += 5;;  

wl~ile(u 2 I/(( - 1)) { 

The histogram Hz is the result we required. We have condensed the histogram 
Hg of nm - 1 intervals to the histogram Hz of! - 1 intervals. (We usually 
have ! << nm.) This condensation is necessary if we are to perform a series 
of arithmetic operations on a number of histograms, for otherwise the final 
histogram would have an enormous number of intervals. 

Computational Complexity and  Examples 

The computational complexity of the above algorithm is dominated by step 2, the 
construction of the disjoint histogram H E  This has time complexity O((nm)2) 
because for each of the nm bins in H I  we have to check whether any of the other 
nm - 1 bins overlap. The sorting in step 1 (O(nm log nm)) saves some time, but only 
by a constant factor (2). We will see below that when the histogram bins (intervals) 
are replaced by single points, then the complexity is dominated by the time taken ' 

for sorting. 



Figure 2.3: Histogram density of Z = X x Y where d f ( X )  = df(Y) = U I , ~  and 
N = 100. 



Figure 2.4: Histogram density of Z = X x Y where d f ( X )  = df(Y) = U1,2 and 
N = 50. 

The above combination algorithm was implemented in the form of a computer 
program and was used to calculate the following examples. Figure 2.3 shows the 
calculated histogram density of Z = X x Y  where X and Y are independent random 
variables with uniform distributions on [l, 21. All the distributions were represented 
by 100 histogram bins. The calculation took 20 minutes of CPU time on a Microvax 
I1 minicomputer. Figure 2.4 shows the result of the same calculation when only 50 
bins were used to represent the distributions involved. In this case the CPU time 
was only 1.6 minutes. Figure 2.5 shows the histogram representation of Z when 
Z = X + Y .  Again X and Y were independent and uniformly distributed on [1,2] 
and 50 bins were used in the histogram representation. 

2.4.3 Kaplan's Method of Discrete Probability Distribu- 
tions 

T h e  DPD Representation 

A method for representing and combining probability distributions similar to the 
histogram method was developed by Kaplan [423]. He used simple discretisations 



Figure 2.5: Histogram density of Z = X  + Y where d f ( X )  = d f ( Y )  = U1.2 and 
N = 50. 
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Figure 2.6: The Discrete Probability Distribution representation. 

of probability distributions and called his method the DPD (Discrete Probability 
Distributions) method. Instead of approximating a continuous probability density 
by a sequence of histogram bins (as in figure 2.2), a sequence of delta functions is 
used (see figure 2.6). Thus a random variable X is represented by a set of ordered 
pairs 

Dx = {(xI,PI), . . ., (x%,P")} 

where pi is the probability that the variable will take on the value x;. Whilst this 
seems to be really little different to Colombo and Jaarsma's histogram method, it 
does in fact differ in two ways. Firstly, Kaplan considers a DPD to be LLour state of 
knowledge" of the random variable in question and so the question of the accuracy 
of representation does not arise: 

We allow ourselves total freedom to select the xi and p; any way at 
all, save only that the set {(x;,pi)} adequately represents our state of 
knowledge and that it be suited to the numerical procedures we have in 
mind [423, p.1901. 

Secondly, the combination rules and condensation procedure are simpler than those 
for the histogram method, both in a conceptual and computational complexity sense. 
We will briefly examine this below. 



Nonuniqueness of t h e  D P D  Represenatation 

Firstly let us note that under Kaplan's definition and interpretation there are an 
infinite number of DPDs which can describe the same random variable. This caused 
consternation for Nelson and Rasmussen [612]. They were unhappy with the fact 
that 

{(2,0.02), (3,0.1), (4,0.08), (3,0.08), (4,0.40), (3,0.32)} (2.4.8) 

and 
{(2,0.02), (3,0.18), (4,0.48), (5,0.32)) (2.4.9) 

both described the same random variable. As Kaplan does not specify any con- 
straints such as xi # xj  for i # j ,  this is not surprising. Of course, one can represent 
a given random variable with the minimal number of 2-tuples if this condition is 
imposed. Kaplan's reply [424] points this out. The operation required to convert 
(2.4.8) into (2.4.9) is analogous to the condensation operation performed on the his- 
tograms described earlier, but is simpler here because we only have 2-tuples instead 
of 3-tuples. This condensation needs to be performed in any case, as we shall see 
below. 

Combination and  Condensation of D P D s  

Two DPDs are combined in the following obvious manner. If X and Y are two ran- 
dom variables represented by Dx = {(xi,pi))r=, and Dy = {(yj, qj))El respectively, 
then we calculate Dz = { ( z k , ~ k ) ) ~ ~ l ,  where 

and 

ri+jm = Pi X qj (2.4.11) 

for some operation 0. This is analogous to the combination rule for the histogram 
method. 

Since Dz has nm points a condensation operation is necessary. We have used 
the following algorithm in the calculation of the examples presented below. Let 
DZ = {(zi, ri)}r2 be the DPD produced by the combination procedure. Assume we 
want to condense Dz to l points. Let us call the condensed DPD D$ = {(z:, T:)}:=,. 



Then the following algorithm will determine D$ from Dz:  

. 
spacing := (z,, - z,)/e; 
v := zl + spacing; 
while(i 5 e){ 

r"= 0. 
3 '  1 

while(zi < v and i 5 e){ 
re+= r;; i++; 

3 
1 
z' .= v - (spacing/2); 

I '  
v += spacing; 
j++; 

1 
Recently Kaplan has demonstrated an improved condensation procedure [425]. It is 
similar to that which we use in the method we develop in chapter 3. 

Kaplan [423, p.196] suggested that upon obtaining the DPD of the desired result 
that it could be "smoothed" in order to make it look better. He does not make 
any suggestions as to how this could be carried out, although perhaps the work of 
Schoenberg, de Boor and others [92,100,713,847] on splines and histograms could be 
used. Of course there is absolutely no probabilistic justification for such a procedure. 
We shall see later that when working with lower and upper bounds on distribution 
functions the need for smoothing is absent. 

Applications and  Examples 

Kaplan shows how one can define probabilistic functions based on the DPD method. 
His approach is analogous to the "extension principlen used for fuzzy numbers (see 
chapter 4). (In fact the fuzzy extension principle was originally motivated by the 
probabilistic counterpart.) He uses the idea of a probabilistic function as a basis for 
a method of seismic risk assessment [426]. Other uses are in probabilistic risk as- 
sessment (121 (see [774] and [I051 for some general background), and in probabilistic 
fracture mechanics [487]. 

Using the algorithm detailed above we calculated the distribution of Z = X x Y 
and X + Y for the same parameters as the examples for the histogram method. 
Figure 2.7 shows the output for Z = X x Y with n, the number of points used, equal 
to 100. Figure 2.8 shows the output for Z = X + Y  with n = 50. The irregularity in 
figure 2.7 and the dip in the middle of figure 2.8 are both due to the condensation 
procedure. Note that the cumulative distribution formed from these two discrete 
densities would be quite accurate. Whilst the simple DPD condensation algorithm 
has the disadvantage of producing these irregularities, it has the advantage of being 
much faster than the histogram method. In fact, the complexity of the DPD method 
is dominated by the time taken for sorting. (Sorting is only implicit in our above 



Figure 2.7: Discrete probability distribution of Z = X x Y ,  d f ( X )  = df(Y) = UI ,~ ,  
and n = 50. 



Figure 2.8: Discrete probability distribution of Z = X + Y ,  d f ( X )  = df(Y) = U I , ~ ,  
and n = 50. 



algorithms, but is necessary in a practical implementation.) The CPU times for the 
two examples here were 6.42 and 1.58 seconds respectively. Compare these with the 
1323 and 100 seconds for the histogram method. 

2.4.4 Moore's Histogram Method 

The histogram method   resented above has been rediscovered by R.E. Moore [584] 
who developed it in the context of interval analysis (see [582] and section 2.5 be- 
low). Moore [584] shows how to determine the cumulative distribution function of 
an arithmetic operation on random variables when the random variables are repre- 
sented by the union of disjoint but contiguous intervals with a certain probability 
of occurence within each interval. Moore uses only a small number of subdivisions 
(2 or 4). He still obtains results which correspond closely with results obtained by 
Monte Carlo simulation (in terms of visual inspection of the graph of the cumulative 
distribution). This may be due in part to the fact that cumulative distributions do 
tend to look better than the corresponding densities because of the smoothing effect 
of the integration. 

More important however, is Moore's idea of the elasticity of a function with 
respect to a given input variable. This is defined as the limit of the ratio of variation 
of the function to the variation of the input variable as the input variation becomes 
small. In other words, if the function is f(x1,. . . ,x,), the elasticity of f with 
respect to zi is the logarithmic derivative ( y )  / (k). zi This can be approximated 

by considering some interval Xi = [&,ffi] such that xi E Xi, and calculating 

In equation 2.4.13 we have mid(Xi) = ( x i  + ffi)/2, width(Xi) = f f i  -Xi and 
width(f) is the range of f as xi ranges over [&,xi], Moore's idea is to subdivide 
finely only those Xi with a large elasticity because increasing the subdivision of those 
with a small elasticity will have a negligible effect on the accuracy of the answer. 
This idea would decrease the computational complexity of the histogram method 
considerably if some of the variables have a larger elasticity than the rest and should - 
certainly be taken into account in the development of a system for determining dis- 
tributions of complex functions of random variables. The notion of subdividing only - - 
those intervals with high elasticity is equivalent to the screening procedure men- 
tioned in [486]. Moore [584] gives an example application, an extended discussion 
of which appears in [581]. 

2.5 Interval Arithmetic and Error Analysis 

We will now consider a number of techniques which determine limited information 
about the distribution of functions of random variables. It seems natural to group 



these techniques together here, more for their commonality of motivation than of 
method. One of the most widely used methods for determining information about 
distributions of functions of random variables is interval arithmetic. In this sec- 
tion, as well as describing the basic ideas of interval arithmetic, we will consider a 
number of variations which have been proposed that provide some extra informa- 
tion about the distribution of values within an interval. We will then compare the 
interval arithmetic approach to the standard methods used by metrologists for the 
propagation of the effects of uncertainties in the results of physical measurements. 

2.5.1 The Standard Interval Arithmetic 

Interval arithmetic was developed by Moore [582] although the original idea was 
proposed by Sunaga in 1958 [801]. The original motivation was to develop an au- 
tomated way of handling rounding error in numerical computation. However it can 
also be used to propagate uncertainties in the input variables and this explains our 
consideration of it here. 

The basic idea of interval arithmetic is to work in terms of closed intervals of 
real numbers. We define 

to be the set of real intervals. The rules of interval arithmetic (which are rules for 
combining elements of Is) follow immediately from the convolution relations (1.9- 
1.12). It is simply necessary to observe that an interval XI  E 1% which represents 
some random variable X is given by 

I X = [inf SUPP fx , SUP SUPP fx] (2.5.1) 

where fx is the density of X .  If X I ,  Y' E Ix, then for some binary operation 0,  
2' = X'UY' is given by 

If 0 is monotonic, then it suffices to examine the end points of X and Y and we 
can write t = min $ and = max 4, where 

Note that according to (2.5.2), if Z' = X1/Y' and 0 E Y ,  then 2' = P (or is 
undefined if we do not allow the values -co and co). When = + equation 2.5.2 is 
also known as Minkowski addition (after Hermann Minkowski who considered it in 
1911) [607]. It has applications in areas other than interval arithmetic [608, p.2601. 

When q is one of the four arithmetic operations, Z' can be written explicitly. 
Addition and subtraction are described by 



and 
I I X  -Y  = [ g - g , Z - d .  

Products and quotients of intervals are more complicated because these operations 
are not monotonic if zero is contained in one of the intervals [583]. It turns out that 
there does not exist a single LLcoordinate-based" representation of intervals such that 
both sums and products can be calculated directly in terms of the coordinates (i .e.  
the whole interval has to be taken into account) [676]. There are at least three 
books on interval arithmetic and interval analysis [17,582,583] and a comprehensive 
bibliography by Garloff [289] which contains 1743 items. 

We shall see below that the definition of the interval arithmetic operations is 
only a small part (and the easiest part) of developing interval algorithms. It turns 
out that one can not simply apply the standard interval arithmetic operations to 
the standard algorithms of numerical analysis. The reason for this is dependency 
width or dependency em-or. This manifests itself in the subdistributive property: If 
X I ,  Y', Z r  E I%, then X1(Y' + 2') G X'Y' + X z Z ' .  This fact was first pointed out 
by Young [895] in 1931 and has been considered in detail by Ratschek and Spaniol 
[675,771]. The idea of a general function of intervals goes back at  least to Burkhill 
[121,122]. 

2.5.2 Triplex Arithmetic and Dempster's Quantile Arith- 
metic 

We will now turn to  an examination of generalisations of interval arithmetic which 
aim to provide some information about the distribution of the variables within the 
interval. Ecker and Ratschek [247] have considered intervals probabilistically in 
an attempt to understand the phenomena of subdistributivity and inclusion mono- 
tonicity. They also suggested a joint representation of distributions and intervals 
and studied some properties of Dempster's quantile arithmetic which we examine 
below. Ahmad [11] is supposed by Moore [583, page 17, note 41 to have looked at 
the arithmetic of probability distributions from the point of view of interval arith- 
metic. However, Ahmad's paper is solely concerned with nonparametric estimators 
of probability densities, and he has nothing to say about probabilistic arithmetic. 

Triplex Ari thmetic  

Triplex arithmetic 129,6171 was developed by Nickel and others to overcome a per- 
ceived inadequacy of ordinary interval arithmetic. A triplex number  X T  is an ordered 
triple [g,Z,z] where g is the lower bound on X ,  5 is the m a i n  value of X ,  and ?f is 
the upper bound on X .  If the 5 is discarded then we are left with ordinary interval 
arithmetic. The purpose of the "main value" (which is treated like a single real 
number in Triplex arithmetic calculations) is to provide some information about the 
distribution of X  within X I .  This is particularly important when fx is concentrated 
within a small region but has very wide tails. It turns out that the provision of this 



"main value" can help the convergence and accuracy of iterative algorithms [616]. 
Problems which are unstable using ordinary interval arithmetic can be made stable 
when triplex arithmetic is used. 

Quantile Arithmetic 

Dempster [204,205,207] has developed a method called quantile arithmetic which 
can be considered as a variation on triplex arithmetic. It is perhaps worthwhile to 
quote Dempster's motivation for quantile arithmetic before we describe it in detail. 

[Wlhile the support of the error distribution of some finite computa- 
tions on interval (random) variables may become arbitrarily large, the 
error distribution itself may be concentrated in a small interval with 
probability close to one. In such a case, the error distribution of the 
result has low dispersion, but long tails in which little probability is 
massed. It is upon consideration of this possibility that quantile arith- 
metic is based [204, pp.110-1111, [205, p.187], [207, pp.2262251. 

Again we consider a random variable X with density fx and distribution function 
Fx The quantile number XQ represents X by the approximation of fxo to fx: 

( 0  otherwise. 

(Note that fx is a density while fxs is a discrete frequency function.) 

Two quantile numbers XQ and YQ are combined to give ZQ = XQOYQ via the 
rule 

fxo(x)fyo(y) for z = xny, 
otherwise. 

We have assumed here that both fxs and fyo # 0 for only one choice of x and 
y such that z = xny for a given z. In order to convert the nine point frequency 
function fin into a three point frequency function fZo, Dempster uses the following 
condensation algorithm: Let zl 5 2 2 . .  . 5 zg be the nine values of z such that 
fm(z) # 0 and let qi = fzq(zi). Then fZo is given by 

t 0 otherwise, 

where 

i 

XI = zi for the largest i such that C qj 5 a ,  
j=1 



x2 = Z; for the smallest i such that qj 2 !j, 
j=1 

9 

z3 = Z; for the smallest i such that qj 5 or. 
. . 

3=, 

The choice of the parameter a is somewhat arbitrary (like the choice of q in PetcoviC's 
probable intervals - see section 2.2.2). Dempster gives a few suggestions, but these 
are mainly just common sense. Dempster [207] has applied his quantile arithmetic 
to the approximate solution of the distribution problem in linear programming [206, 
419,468,780,8611. 

Whilst superficially interesting, and seemingly an improvement over interval 
arithmetic, it turns out that quantile arithmetic has an important disadvantage 
compared with interval arithmetic. In quantile arithmetic, underestimation of the 
spread of a result can occur. Standard interval arithmetic often overestimates the 
spread (sometimes by a large amount), but the result is still correct in the sense that 
the "true" interval is contained within the broader one. In contrast, quantile arith- 
metic will sometimes give results which are wrong, in that the calculated interval is 
narrower than the true interval. 

2.5.3 Interval Arithmetic and Confidence Intervals from 
the Metrologist's Point of View 

We have seen that ordinary interval arithmetic uses only information about the 
support of the distribution of the random variables involved. An alternative method 
is to use interval arithmetic to combine confidence intervals. (The standard method 
can thus be considered to combine 100% confidence intervals.) Different confidence 
intervals should then give further information about the distribution of the final 
result. 

This idea has been considered by metrologists in the context of the theory of 
errors and the propagation of uncertainties arising from physical measurements. We 
will now examine what they have had to say on this topic. Metrologists have consid- 
ered the use of confidence intervals because of a shortcoming of the standard method 
of the statement and propagation of experimental uncertainty. (Note that the term 
"experimental error" is out of favour nowadays: "the uncertainty, in former times 
frequently called 'error' . . ." [846, p.831.) The standard method is to state uncer- 
tainties as standard deviations and to use the ILgeneral law of error propagation" 
[820] to propagate the errors through subsequent calculations. (A good recent re- 
view can be found in [22].) This general law is simply the linearisation of nonlinear 
functions by truncated (first order) Taylor series expansions about expected values 
(see section 2.2.2). Sometimes higher order expansions [69] or the more complicated 
expressions taking account of the covariances [78,352,858] are used. The shortcom- 
ing of this method arises in the determination of appropriate values of uncertainty 
to use for subjectively estimated "systematic errors," and the difficulty in converting 



a final uncertainty statement in terms of standard deviations into an interval result. 
An interval statement is often required for calibration or legal purposes. We shall 
consider these two difficulties in turn. 

Subjective Interval Estimates of "Systematic Error" and  Standard Devi- 
ations 

In recent years the distinction between "random" and "systematic" errors (first 
explicitly proposed by D. Bernoulli in 1780 [746, p.290] although implicitly adopted 
by Newton as early as 1676 [744, p.2221) has been called into question [302,603, 
846,8791. The point is that there has never been an entirely satisfactory criterion 
for deciding which category to use in any particular instance. (Miiller [603, p.3751 
quotes Yigoureux: "One has to remember that some errors are random for one 
person and systematic for another.") Similarly, LLwhat is a systematic error for one 
experiment may not be for another.. .. Much of the skill in experimental work comes 
from eliminating sources of systematic error" [49, p.721. The choice is important 
because the standard ("orthodox") theory propagates random and systematic errors 
through calculations differently. Systematic errors are added arithmetically, whereas 
random errors are added in quadrature. Indeed, as Miiller has pointed out, this is 
precisely the source of the difficulty in classification: "the traditional classification 
of uncertainties depends upon the further use we intend to make of them, and in 
general this can not be known in advance" [603, p.3761. 

The new "randomatic" theory avoids the problem of categorization by consid- 
ering all errors to be random. However it does distinguish between '"objective' 
statistical estimates" and "'subjective' guesstimatesn [302, p.6251. The subjective 
uncertainties are often given in terms of an interval. This has to be converted into 
a standard deviation in order to propagate it through any subsequent calculations. 
A number of (admittedly somewhat ad hoe) methods for doing this can be found in 
[878]. The subjective uncertainties are usually considered to be independent [878, 
p.831, although there seems to be no good a priori reason for this to be so. It wuld 
well be argued though that any error arising from an ad hoc handling of subjec- 
tive uncertainties should usually be negligible compared with the variability due to 
the "objective statistical estimates." Arguments against the randomatic theory of 
errors and proposals for an improved orthodox theory based on a more careful dis- 
tinction between the two classes of errors can be found in the closely argued paper 
of Colclough [158]. 

Determination of a Confidence Interval for t h e  Final Result 

A more serious and older problem is the conversion of a final uncertainty state- 
ment in terms of a standard deviation into an interval statement. We have already 
observed (section 2.2.2) that the Chebyshev inequality or its generalisations [212, 
317,318,5371 can be used to determine a confidence interval in terms of means and 
standard deviations. However, in general these will be very loose (pessimistic) in- 



tervals. Alternative approaches which give tighter, less pessimistic, intervals require 
assumptions about the underlying distributions. 

The oldest method is the assumption of normality. We have already discussed 
this in section 2.2.1. It has never found universal acceptance and had strong critics 
even some 60 years ago: "I reject, then, the Gaussian theory of error, without 
qualification and with the utmost possible emphasis; and with it go all theoretical 
grounds for adopting the rules that are based on it" [129, p.162]. We need add 
nothing further to this. 

An alternative, which is similar in its general approach to the lower and upper 
bounds on the distributions we consider in chapter 3, has been considered inde- 
pendently by Kuznetsov [488] and Weise 18571. Assuming that the true LLerror" 
distribution is symmetrical, unimodal and has finite support, Kuznetsov [488] cal- 
culated a confidence interval in terms of a variance by using the LLmean distribution" 
derived from lower and upper distribution functions satisfying the distributional as- 
sumptions. Weise [857], somewhat more ambitiously, considered a whole class of 
distributions V. He then used a distribution which was a mean of all possible dis- 
tributions over V in order to determine a confidence interval in terms of a given 
variance. (Obviously the choice of V, and the fact that the mean distribution is 
used, will affect the result; different choices will give different results.) Nevertheless 
this approach seems to be a promising way of investigating the effects of different 
distributional assumptions and of handling different degrees of optimism. 

Direct and  Exclusive Use of Confidence Intervals 

Although they are preferable to assuming normality, the methods of Kuznetsov and 
Weise are still not entirely satisfying. An alternative is to avoid completely the use of . - 
standard deviations as a measure of uncertainty and to use confidence intervals only 
from the outset. Miiller [602] and others haveargued against this idea on the grounds 
of difficulties in combining confidence intervals. The general consensus amongst 
metrologists seems to be described by the DIN standard 1319 part 4 "Basic Concepts 
of Measurements: Treatment of Uncertainties in the Evaluation of Measurements" 
[858] (a summary appears in [859]. This suggests a careful but fairly straight forward 
application of the general law for error propagation (in terms of standard deviations). 
No distinction is made between "random" and "systematic" errors apart from the 
methods of initially estimating the numerical value to be attributed. There are 
still difficulties in using standard deviations when repeated measurements are not 
independent [18], but these seem to be manageable given some idea of the spectrum 
of the error sequence. 

Recently Rowe [692] has presented some very interesting results which could lead 
to a partial combination of the two techniques (intervals and standard deviations). 
Using two separate approaches, Rowe has determined lower and upper bounds for 
py and oy in terms of p x ,  ox, X, X or limited order statistic information, for a 
class of transformations Y = g ( X ) .  Rowe's approach is preferable to the simple 



first order Taylor series approximations because lower and upper bounds for p,(,y) 
and cg(x) are given. These allow a more rigorous propagation of uncertainty. Also, 
when X and W or other distributional information is available, the tighter bounds 
can be obtained. 

Confidence Curves and  Fuzzy Numbers a s  a Generalisation of Interval 
Arithmetic 

Finally, to conclude this somewhat discursive exploration of the metrological uses 
and significance of interval arithmetic, we can mention the idea of fuzzy arithmetic 
[432]. This has been suggested as a natural generalisation of interval arithmetic and 
error propagation techniques [240] because under the standard sup-min combination 
rules (see chapter 4) fuzzy numbers can be combined in terms of interval arithmetic 
on the level sets of their membership functions. We examine fuzzy arithmetic, and 
point out some similarities to the idea of confidence curves introduced by Cox [I691 
and developed by Birnbaum and Mau [76,77,553] in chapter 4. These confidence 
curves are made up of nested sets of confidence intervals at different confidence 
levels and they may provide a useful generalisation for the purposes of the theory 
and propagation of errors. 

2.5.4 Permutation-Perturbation and Related Methods 

The original motivation for interval arithmetic was the automatic control of rounding 
errors in numerical calculations. There are several others approaches possible for 
this, and some are of interest for our goals as well. 

The most widely known is Wilkinson's analysis of particular algorithms to de- 
termine the accuracy of the result that can be expected (866,8671. More explicitly 
stochastic methods have been adopted in recent years. See for example [50,51,176]. 

Another method, which has been presented several times by Vignes et a1 [1,21, 
260,647,842,8431, is called the Permutation-Perturbation method or CESTAC (Con- 
tr6le et Estimation Stochastique des Arrondis de Calcul). The basic idea is to con- 
sider the 2" perturbations of a result of an n stage numerical computation obtained 
by perturbing each operation by an appropriate amount positively or negatively. 
This is combined with permutations of the order of computation (which will not 
always give the results that would be obtained over !R because of the failure of as- 
sociativity and distributivity under floating point arithmetic). Vignes argues that 
only a few (two or three) of this large number of results need be considered. He 
randomly perturbs and permutes the calculation and then estimates the accuracy 
of the result. Applications of the method can be found in [21,89,90]. 

Stummel [785] has also considered the effect of perturbations on intermediate 
results in the computation of arithmetic expressions by using the computational 
graph concept [60]. He has obtained a number of results for the condition number 
of an algorithm and has applied his results to a careful analysis of the numerical 



solution of a 2 x 2 linear system of equations [786] and the analysis of some interval 
arithmetic algorithms [787]. 



Chapter 3 

Numerical Methods for 
Calculating Dependency Bounds 
and Convolutions 

In m y  view there is a cenlral obligation to face squarely 
what we do and do not know, and lo  study robustness 

of conclusion against mistakes in a priori assumptions 
of independence, conditional or not. 

- William Kruskal 

In this chapter we present a new and general numerical method for calculating 
convolutions of a wide range of probability distributions. An important feature 
of the method is the manner in which the probability distributions are represented. 
We use lower and upper discrete approximations to the quantile function (the quasi- 
inverse of the distribution function). This results in any representation error being 
always contained within the lower and upper bounds. This method of representation 
has advantages over other methods previously proposed. The representation fits in 
well with the idea of dependency bounds. 

Stochastic dependencies which arise within the course of a sequence of operations 
on random variables are the severest limit to the simple application of convolution 
algorithms to the formation of a general probabilistic arithmetic. We examine the 
error caused by this effect (dependency error), and show how dependency bounds 
are a possible means of reducing its effect. Dependency bounds are lower and upper 
bounds on the distribution of a function of random variables which contain the 
true distribution even when nothing is known of the dependence of the random 
variables. They are based on the Frkchet inequalities for the joint distribution of 
a set of random variables in terms of their marginal distributions. We show how - 
the dependency bounds can be calculated numerically when using our numerical 
representation of probability distributions. Examples of the methods we develop 
are presented, and we briefly describe relationships with other work on numerically 
handling uncertainties. 

The present chapter is a very slightly modified version of the paper [873]. It 



is essentially self contained, and thus there is some slight repetition of material 
presented elsewhere in this thesis. 

3.1 Introduction 

In order to develop automated systems for dealing with uncertainty it is necessary 
to be able to calculate the basic operations of an uncertainty calculus numerically. 
Amongst the many different uncertainty calculi now available, ordinary probability 
theory is the oldest. Surprisingly though there has been little detailed examination 
of numerical methods for calculating the distribution of arithmetic operations on 
random variables. Although there have been a number of schemes ~roposed, so far 
there have been none that meet the following simple criteria: 

1. The method should allow the calculation of the distribution of all four arith- 
metic functions of random variables (and not just addition and subtraction). 

2. There should be no restrictions (or only very slight restrictions) on the class 
of random variables that can be handled. 

3. There should be a careful treatment of all the errors arising in the calculation 
(particularly those due to the numerical representation adopted). 

4. The method should be computationally tractable and the algorithms should 
be described explicitly. 

5. The method should be simple to understand and implement. 

The present chapter's goal then is to develop a method, satisfying these criteria, 
for what we will call "probabilistic arithmeticn. 

In this introductory section we will define the problem to be studied more pre- 
cisely (section 3.1.1) and introduce the notions of dependency error and dependency 
bounds (sections 3.1.2 and 3.1.3). Since we believe it is more worthwhile developing 
a method with a rigourous foundation rather than an ad hoc technique which works 
for some applications, we will be concentrating on the foundations rather than the 
applications of probabilistic arithmetic. Using the description of the necessary lay- 
ering of uncertain reasoning systems due to Bonissone [93,94], we could say that we 
are concentrating on the representation and inference layers but ignoring the control 
layer. 

It is worthwhile to compare our methods with other probabilistic methods as 
well as methods based on other uncertainty calculi (such as the theory of fuzzy 
sets). While we postpone a detailed examination of this to chapter 4, we do point 
out now that our method has some similarity to Jain's method for combining fuzzy 
numbers [407,408]. Jain's method was subsequently criticised by Dubois and Prade 
[223,224], although there own method (L-R fuzzy numbers 12251) is not without 



drawbacks either. More recently [238] Dubois and Prade have examined the re- 
lationship between Moore's probabilistic arithmetic [584] (itself an outgrowth of 
interval arithmetic [583]) and fuzzy arithmetic, by drawing on some results from the 
Dempster-Shafer theory of evidence [732]. In chapter 6 (see also chapter 4, section 
5) we will show that the normal combination rules for fuzzy numbers are in fact 
equivalent to our dependency bounds and that our limiting result (chapter 5) can 
be used to derive a law of large numbers for fuzzy variables under a general extension 
principle. Perhaps the work which is closest in spirit to that presented here is that of 
Grosof [341]. Grosof has taken much the same approach as we have in analysing the 
probabilities of events and combinations of events (rather than arithmetic operations 
on random variables). He has shown that a special case of his interval conditional 
probability logic is actually formally identical to the Dempster-Shafer theory of ev- 
idence. Several other authors [221,836] have recently adopted an approach similar 
to that outlined in the present chapter (viz. calculation of lower and upper bounds 
on probabilities when limited dependence information is available). 

3.1.1 The Problem 

Consider the following problem. Let X and Y be two random variables with distribu- 
tion functions Fx and Fy respectively. Let Z = X O Y ,  where is some arithmetic 
(or other) operation. Then what is Fz, the distribution of Z? For any given 0, 

if the joint distribution Fxu is known, then a solution to the problem in terms of 
an integral can be written down. The appropriate integral is determined from the 
Jacobian of transformation. In many cases, closed form solutions to the integral do 
not exist. Whilst series solutions can generally be obtained, the resulting formulae 
are often very complex and are of little value for an automated system. 

If the joint distribution of X and Y is not known (i .e.  only the marginals Fx 
and Fy are known), then one can not, even in principle, calculate Fz.  One can, 
however, calculate lower and upper bounds on Fz, as was recently shown by Frank, 
Nelsen, and Schweizer [277]. 

The present chapter develops numerical algorithms to solve both of these prob- 
lems. Algorithms are developed for calculating lower and upper bounds on Fz when 
it is known that X and Y are independent or when there is no knowledge of the 
dependency structure of X and Y at all. The techniques developed are quite gen- 
eral and can be used for almost all distributions. The method of representing the 
distributions and the results obtained for the convolutions are better than other 
numerical techniques that have been presented to date. The algorithms can be used 
to calculate lower and upper bounds in the manner of Frank, Nelsen, and Schweizer 
for a much larger class of distributions than can be managed analytically. All the al- 
gorithms are described explicitly and are computationally efficient. They have been 
implemented on a minicomputer and have been used to calculate some example 
results which are included in this chapter. 



3.1.2 The Idea of Probabilistic Arithmetic and the Need 
for Dependency Bounds 

The problems mentioned above arise naturally in the consideration of probabilistic 
arithmetic (the name is due to Kaplan [423]). The goal of probabilistic arithmetic is 
to replace the usual arithmetic operations on numbers by the appropriate operations 
on random variables (which are represented by their distribution functions). This 
is akin to several other ideas that have appeared in the literature, most notably 
interval arithmetic [17,583] and fuzzy arithmetic [225,432]. The similarities and 
connexions with these other ideas are not considered here, but are examined in 
some detail in chapter 4. One of the goals of probabilistic arithmetic is to solve 
random algebraic equations numerically, problems for which the methods of solution 
available a t  present are still rather limited (see [8,73,74] for a review of the available 
methods and known results). There are numerous other possible applications if a 
successful probabilistic arithmetic can be developed. 

Among the problems that need to be considered are the errors that can occur in 
a probabilistic arithmetic calculation and how they can be handled. We will show 
how one type of error, dependency error, is the most severe restriction on the simple 
application of convolution algorithms to the formation of a workable probabilistic 
arithmetic. The errors in probabilistic arithmetic can be classified into five types: 

Representation Error. This is the error caused by the approximation of a func- 
tion defined on an uncountable subset of 9 by a finite number of points or 
coefficients. 

Truncation Error.  This error, which can be distinguished from general represen- 
tation error for some representations, is caused by the necessity (for some 
distributions) of truncating the support of the distributions to a union of fi- 
nite intervals. 

Calculation Approximation Error.  This is caused by approximations made in 
developing the formulae used to implement the probabilistic arithmetic. For 
example, if a Taylor series expansion (say for the variance of the product 
of two independent random variables in terms of their moments [352,829]) 
is truncated after a finite number of terms, then the rule itself will only be 
approximate. This will introduce errors into the calculated results. 

Rounding Error. This is simply the error caused by performing numerical com- 
putations on machines with a finite wordlength. This will not be considered 
further here because in the absence of ill-conditioning, this can easily be made 
arbitrarily small. In any case, it is a problem associated with nearly all nu- 
merical algorithms, not only those for probabilistic arithmetic. 

Dependency Error. Dependency error is the most important type of error in prob- 
abilistic arithmetic. It arises in much the same manner as spurious correlation 
[644]. It is explained by considering the following sequence of operations where 



all the quantities are random variables. Assume that V, X ,  and Y  are inde- 
pendent. Then calculate 

A = X / Y ;  B = X * V ;  C = A + B ;  

The problem is that even though the three inputs are independent, A  and B 
are not because they both depend on X. 

Although such dependencies can be handled, in principle, by techniques based 
on the Jacobian of transformation, it is impractical to contemplate the use of 
such techniques for handling sequences of computations of the type commonly 
employed in the deterministic case. Thus, in order to carry out sequences 
of operations on random variables, one is usually obliged (for tractability) 
to assume independence in cases where dependencies, such as the one in the 
above equations, exist. A major aim of the present chapter is to investigate 
the question of handling the error that arises when independence is assumed 
(i.e. dependency error). 

The above classification is useful for comparing the different approaches to rep- 
resenting and calculating with distribution functions. This is true even though no 
precise definition of the "error" involved has been given. There does not seem to be 
any one "best" measure of error between two distributions as the best measure will 
depend to a large extent on what the distribution being calculated will be used for. 

3.1.3 Methods of Handling the Errors in Probabilistic Arith- 
met ic 

We only concern ourselves here with representation and dependency errors. (Trnn- 
cation error and approximation error are discussed in chapter 2 and rounding errors 
are mentioned for a specific problem arising in section 3.6.3.) In section 3.4 it will be 
shown how a natural representation inspired by the method we develop to combat 
dependency error can essentially remove all the problems of representation error. 
The basic idea is to use lower and upper approximations to the desired distribution 
rather than one single approximation. Any representation error is contained within 
these lower and upper bounds. 

Our method of handling dependency error is to use the results of Frank, Nelsen, 
and Schweizer [277] mentioned above. This allows the calculation of lower and upper 
bounds on a required distribution even if the distribution itself can not be calculated 
because it is not known that the variables involved are independent, or because the 
joint distribution is not available. There are several other possible approaches to 
handling dependency error. For instance, to calculate the distribution of 

it is only necessary to rewrite it as 



and the problem of dependency error introduced by repeated occurrences of the 
variable X disappears. This can be considered as solving the problem in Bonissone's 
control layer as we have changed the order in which the lower level computations are 
carried out. This rearrangement of expressions has been used in interval arithmetic 
and is discussed in more detail in chapter 4. 

There are various extensions to the ideas mentioned in the previous paragraph 
which are worth studying. One of these, which is discussed briefly in section 3.5, is 
to use some measure of dependence between the random variables and to modify the 
combination rules to take this extra information into account. With respect to this 
it is of interest to note a forgotten paper of Kapteyn (it appears to have been cited 
no more than three times since publication in 1912). In [427] Kapteyn considers 
problems such as the correlation between X and Y where X = A + B + C + D,  
Y = A + E + F + G and all the A, .  . . , G are independent. Another paper that 
deserves mention here is that of Manes [540] (see also [32,541]). Manes shows that 
the repeated occurrence of a variable in an expression causes problems in a wide 
range of fuzzy (vague or imprecise) theories (including the theory of fuzzy sets) and 
so the problem is not peculiar to probability theory. 

3.1.4 Outline of the Rest of This Chapter 

The rest of this chapter is organised as follows. Section 3.2 contains concise defini- 
tions of concepts which are needed later on. In section 3.3, the dependency bounds 
of Frank, Nelsen, and Schweizer are derived and explained. We extend their results 
by proving the pointwise best possible nature of the dependency bounds for opera- 
tions other than addition and subtraction. Some examples are calculated by directly 
using the formulae for dependency bounds. We show that a better way to calculate 
dependency bounds numerically is to use the numerical representation of probabil- 
ity distributions developed in section 3.4 along with special discrete versions of the 
dependency bound formulae. Algorithms for calculating ordinary convolutions in 
terms of this numerical representation are also developed in section 3.4. Sections 
3.5 and 3.6 contain some extensions to the basic results of sections 3.3 and 4 and 
include suggestions and directions for further research. Finally, section 3.7 contains 
a summary of the contributions of this chapter and some conclusions. 

3.2 Definitions and Other Preliminaries 

We now briefly present a number of definitions we need later on. Most of the material 
here is covered in more detail in [718]. 



3.2.1 Distribution Functions 

Definition 3.2.1 Let X be a random variable on E. Then its distribution function 
Fx is defined by d f ( X )  = F x ( x )  = P { X  < x }  for x E E. 

The corresponding density, when it exists, is denoted fx. 

Definition 3.2.2 The support of Fx, denoted supp Fx, is the set of x E E such 
that f x ( x )  = F&(x) exists and is non zero. 

Definition 3.2.3 The set of all distribution functions that are left continuous on 
!R will be denoted A. The subset of distribution functions in A such that F ( 0 )  = 0 
will be denoted At. 

3.2.2 Binary Operations 

Definition 3.2.4 A binary operation on a nonempty set S is a function T from 
S x S into S .  

Definition 3.2.5 Let T be a binary operation on S .  A n  element a of S is a left 
null element of T i f  T ( a , x )  = a for all x E S;  it is a right null element of T i f  
T ( x , a )  = a for all x E S; and it is a null element of T if it is both a left and right 
null element of T .  

A binary operation can have at most one null element. 

3.2.3 Quasi-Inverses 

Quasi-inverses are generalisations of the inverse of a function which are defined 
even when the function has jump discontinuities. In this chapter we are only con- 
cerned with quasi-inverses of non-decreasing distribution functions. Let F be a 
non-decreasing function on a closed interval [a, b]. Let y E [a, b]. Then F-'(Y) is the 
set { x ( F ( x )  = y] .  If F has no jump discontinuities then the cardinality of F-'(y) 
is one and we simply write F-'(y)  = x. If the cardinality of F-'(Y) is not one, then 
we have to somehow choose between the various elements of F-'(y). 

Definition 3.2.6 Let F be a non-decreasing function on a closed interval [a,b]. 
Then Q ( F )  is the set of functions F* (known as quasi-inverses of F )  defined on 
[F(a) ,F(b) l  b y  

1. F * ( F ( a ) )  = a and F*(F(b))  = b. 

2. I f y  E RanF  then F*(y) E F-'(y) 



3, If @ Ran F then F*(y) = sup{xl F(x)  < y)  = infix1 F(x) > y}. 

All F' E Q(F)  are non-decreasing and coincide except on an at most a denumerable 
set of discontinuities. There is a unique function FA E Q ( F )  which is left continuous 
on (F(a), F(b)), and a unique function FV E Q(F) which is right continuous on 
(F(a), F(b)). These are given by 

and 
FV(y) = infix1 F(x) > y). 

For all F* E Q(F),  FA 5 F' < FV on (F(a),  F(b)). If F and G are non-decreasing 
on(a,b), then F I G +  FA < G A a n d  FV < G V .  I f [ a , b ] = P = X U { - w , w }  
(the "extended reals"), then FA(0) = -w. This introduces technical difficulties and 
so we adopt the convention that FA(0) = FV(0) = inf supp F. 

Definition 3.2.7 A binary operation T on a set S is associative if 

Definition 3.2.8 A triangular norm (or t-norm) is an associative binary operation 
on [ O , l ]  that is commutative, non-decreasing in each place, and such that T(a, 1) = a 
for all a E [O, 11. 

3.2.5 Copulas and Joint Distribution Functions 

The most important notions for the present chapter are those of the copula and the 
Frbchet bounds. 

Definition 3.2.9 A two-dimensional copula C is a mapping C: [O, 11 x [O, 11 H [O, 11 
such that 

1. C(a, 0) = C(0, a)  = 0 and C(a, 1) = C(1,a) = a for all a E [O, 11. 

2. C(a2, bz) - C(a1, bz) - C(az, bl) + C(al, bl) 2 0 for all al,  az, b ~ ,  b2 E [O, 11 such 
that al < az and bl < bz. 

All copulas satisfy 
W(a, b) l C(a, b) l M(a, b) 

for all (a, b) E [O, 11 x [O, 11, where the t-norms W and M (which are also copulas) 
are given by 

W(a, b) = max(a $ 6  - 1,O) (3.2.2) 



and 
M(a,  b) = min(a, b). 

Copulas link joint distributions with their marginals. Let H be a two dimensional 
distribution function with marginals F and G. Then there exists a copula C such 
that 

H(u, v) = C(F(u), G(v)) (3.2.4) 

for all u, v E X. The inverse relation is 

where F* E Q(F) and G' E Q(G). The copula C contains all the dependency infor- 
mation of H. If C(u, v) = lI(u,v) = UV, then the random variables are independent. 
Equation 3.2.4 is sometimes referred to as the "uniform representation" [210,458]. 

Combining (3.2.1-3.2.4) gives bounds on the joint distribution in terms of the 
marginals: 

These are known as the Fre'chet bounds. A copula is a t-norm if and only if it 
is associative. A t-norm T is a copula if and only if it is 2-increasing; that is, if 
T(az, bz) - T(a1, bz) - T(a1, bz) - T(a2, bl)  + T(a1, h )  2 0 for all al,  a2, bl, b2 [O, 11 
such that a1 I a2 and b1 I b2 (see p.79ff of [718]). 

Definition 3.2.10 Let C be a copula. The dual of C is the function Cd defined by 
Cd(x, y)  = x + y - C(x, y) for all x, y E [0, 11. 

The dual copula should not be confused with the conorm of a t-norm T given by 
T'(x, y) = 1 - T ( l  -x, 1 - Y). The dual of W is wd(u,  v)  = min(u+u, 1). Schweizer 
and Sklar [718] use the notation C for a dual copula. We use the overbar notation 

~ ~ 

for a different purpose below. 

3.2.6 The Triangle Functions T and p and a-convolutions 

The following three operations are of great importance in the sequel. The operations 
T and p are introduced by Schweizer and Sklar [718] because of their properties as 
triangle functions in the theory of probabilistic metric spaces. They are known 
elsewhere as the suprema1 and infimal convolutions. 

Definition 3.2.11 Let C be a copula and let L be a binary operation from Rf x %+ 
onto %+ which is non-decreasing in each place and continuous on %+ x Rt except 
possibly at the points (0, cm) and (cm,O) (we shall call this class of.functions L in 
the sequel). Then T ~ , L  is the function on At x A+ whose value for any F , G  E A+ 
is the function T~ ,L(F ,  G) defied on gt by 



Definition 3.2.12 Let C,  L, F ,  and G be as in definition 3.2.11. Then pcIL(F,G) 
is the function defined by 

p c , ~ ( F ,  G)(x)  = L(U,V)=Z inf [Cd(F(u) ,  G(v) )] .  

Definition 3.2.13 Let C ,  L, F ,  and G be as in definition 3.2.11. Then a c , ~ ( F , G )  
is the function defined b y  

where L{x )  = {(u,v)Iu,v  E X+, L(u,v) < x). 

In the sequel we will write JL(U,,,,, for JLIz). The function UC,L is the distribution of 
L(X ,  Y) where X and Y are random variables with joint distribution Fxu(u,v) = 
C(F(u) ,  G(v)) .  This operation is called a u-convolution for the operation L (the o 
signifies the additive properties of the integral in contradistinction to the infimum 
and supremum operations in the infimal and suprema1 convolutions). The well 
known convolution for C = 11 and L = Sum given by 

is a special case of (3.2.6). For each of the three types of convolution (7, p and o), 
L is sometimes written as an infix operator 0 as in Z = XOY.  Explicit formulae 
for the other arithmetic operations are given by (2.1.9-2.1.12). 

The TC,L, p c , ~  and UC,L operations can actually be defined on the whole of A X  A 
for appropriate L. We use these extended definitions in the sequel. 

3.3 Dependency Bounds and their Properties 

The dependency bounds for the four arithmetic operations of addition, subtraction, 
multiplication and division are now derived and their properties examined. Unless 
otherwise stated, the random variables considered are almost surely positive. In 
other words, their distribution functions are in A+. Bounds on the distribution of 
Z = L ( X ,  Y) are derived, where L E C. It is then shown how to apply these bounds 
to subtraction and division of random variables. Following this, the pointwise best 
possible nature of these bounds for general L E C is shown. This was not proven in 
[277], although our proof is a fairly straightforward generalisation of the proof there 
for L = Sum. Finally a number of examples which have been numerically calculated 
are presented. 



3.3.1 The Dependency Bounds 

Let X and Y be random variables on 32' with d f ( X )  = Fx and d f ( Y )  = Fy such 
that Fx,  Fy E A and let Z = L ( X , Y )  with d f ( Z )  = Fz where L E L. Let GY be 
a lower bound on the copula Cxy.  Then Fz depends on the joint distribution of X 
and Y and will be contained within the bounds 

When GY = W we will simply write ldb and udb. These stand for "lower depen- 
dency bound" and LLupper dependency boundn respectively. 

Theorem 3.3.1 (12771) When GY = W the functions ldb and udb are given by 

and 

udb(Fx, FY, L) (x)  = PW,L(FX, FY)(z)  = L(U,V)=Z inf w ~ ( F x ( u ) ,  FY (v)) .  (3.3.3) 

Sometimes the notation FZ or Fz is used for ldb(Fx, Fy, L )  or udb(Fx, Fy, L )  
respectively when Fx, Fy, and L are clear from the context. 

PROOF. With reference to figure 3.1 and to section 3.2.5, it is clear that for any 
given copula C ,  and any pair of points (ul ,vl) ,  (u2,v2) on the line L(u,v) = x ,  

The proof is completed by observing that TW,L is simply the greatest value of 
W ( F x ( u l ) ,  Fy(v1)) where (ul ,v l )  is on the line L(u,v)  = z. Similarly, p w , ~  is the 
smallest value of Wd(Fx(u2),Fy(v2)) where (u2,v2) is on the line L(u,v)  = x. I 

By a similar argument one can show that the more general bounds 1dbcxy and 
udbcxy are given by (3.3.2) and (3.3.3) with W simply replaced by Cxy. Note that 
since Cxy 2 W always, the bounds of theorem 3.3.1 will always hold. However, as 
we shall see in section 3.5, the bounds for Cxy # W are tighter, and thus provide 
more information about Fz. We will only concern ourselves with Cxy = W in this 
section. Note that knowing an upper bound on Cxy other than M does not allow 
one to construct tighter bounds. 



\ k\ COMPLEMENT OF B\\ 

Figure 3.1: Illustration for the proof of theorem 3.3.1 

Theorem 3.3.1 can be used to bound the distribution of all four arithmetic op- 
erations on almost surely positive random variables. The condition of positivity is 
necessary because product and quotient are only monotonic on ?I- or %+ and not 
over all X. All the results are collected together in the following theorem. 

Theorem 3.3.2 Let X and Y be almost surely positive random variables with dis- 
tributions Fx and Fy, and let Z = XOY, where 0 is one of the four arithmetic 
operations q E {+, -, x ,  t). Then the lower and upper dependency bounds for Fz, 
the distribution of 2, are given b y  

ldb(Fx, FY, -)(x) = SUP (max(Fx(u) - FY(-v), 0)) (3.3.5) 
u+v=z 

udb(Fx, Fy, -)(x) = 1 + inf (min(Fx(u) - Fy(-v), 0)) 
u+v=z 

ldb(Fx, FY, x)(x) = sup(max(Fx(u) + F Y ( ~ )  - 1 , O ) )  
uv=z 

(3.3.6) 

udb(Fx, Fy, x)(x) = inf (min(Fx(u) + Fy(v), 1)) 
uv=z  



ldb(F', Fy, t ) ( x )  = sup (max(Fx(u)  - FY ( l l v ) ,  0 ) )  (3.3.7) 
uv=z 

udb(Fx, Fy, + ) ( x )  = 1 + inf (min(Fx(u)  - F y ( l / v ) ,  0 ) ) .  
uv=z 

PROOF. The Sum and Product cases follow directly from theorem 3.3.1. The 
Difference and Quotient cases can be seen by noting that on $2+ these are both 
monotonic operations; they are increasing in their first argument and decreasing in 
their second. They can be converted to Sum and Product as follows. For Difference 
(2 = X - Y ) ,  let Y' = -Y. Then F Y , ( ~ )  = 1-Fy(-y). Substitution into (3.3.4) and 
some slight rearrangement yields (3.3.5). For Quotient ( Z  = X / Y ) ,  let Y' = 1 / Y .  
Then Fy,(y) = 1 - F y ( l / y ) .  Substitution into (3.3.6) yields (3.3.7). 1 

The bounds for addition and subtraction actually hold for Fx,  Fy A since 
addition and subtraction are monotonic over all R. 

3.3.2 Pointwise Best-Possible Nature of the Bounds 

The bounds in theorem 3.3.1 are the pointwise best possible. The exact meaning of 
this is given by the theorem below which is a generalisation of theorem 3.2 of [277]. 
Theorem 3.3.3 generalises theorem 3.2 of [277] in two ways: it is for general L E L, 
not just L = Sum; and it is for general Gy and not just cXy = W. The proof is 
based on that in [277] but is sufficiently modified to warrant inclusion here. 

Theorem 3.3.3 Let Fx and Fy be distribution functions in  A, let x E R, let L E L 
and let C X y  be a lower bound on  the copula Cxy (W 5 Gy 5 C x y )  Then, 

1. There exists a copula C(t),  dependent only on the value t of 7 C X y , ~ ( F ~ ,  FY) at 
x such that 

UC(~ ,L (FX ,FY) ( " )  = TC -XY  ,L(FX,FY)(X) = t 

if not both Fx and Fy are discontinuous at u and v respectively such that 
L (u ,v )  = 2. 

2. There exists a copula C(') dependent only on the value r of pGxyc(%, Fy)(x+) 
such that 

uc(r,,L(Fx, FY)(x+) = P ~ ~ , , L ( F X ~  FY)(x+) = 1. 

if not both Fx and Fy are discontinuous at u and v respectively such that 
L(u, v )  = x .  

This theorem says that for any dependency bounds there will always be a copula 
such that the true OD-convolution meets the bound at a given point. In other words 
one can not construct bounds any tighter than (3.3.2) and (3.3.3). Thus these 
dependency bounds are the pointwise best possible. 

PROOF. The conditions on the continuity of Fx and Fy will be ignored for now and 



Figure 3.2: Graph of L(u, v) = x. 

their effect discussed later. Consider part 1 of the theorem first. It will be shown 
that if d t ) ( a ,  b) is the copula defined by 

~ ( ' ) ( a ,  b) = 
max(t,Cxy(a, b)) (a, b) E [t, 112, (3.3.8) 
min(a, b) otherwise, 

then CTC(~),L(F~, FY)(x) = t. Note that C('f(a, b) 2 Cxy(a, b) for all (a, b) E [ O ,  11'. 

Since L is continuous and nondecreasing in each argument, for any x, the curve 
L(u,v) = x is continuous and nonincreasing in the u-v plane (see figure 3.2). 
Define A, and B, to be the regions of the extended plane above and below the line 
L(u,v) = 2: 

Firstly observe that in view of theorem 3.3.1, T C ~ ~ , L ( F ~ ,  Fy)(x) = 1 implies that 
cCXy,L(FX, Fy)(x) = 1. Thus it is necessary to show that for t E [O, l ) ,  

The condition is "5 t" and not 'L= t" to cope with discontinuous Fx and Fy: if 
Fx and Fy are discontinuous, then ucct, L(FX, FY) is also, and thus the situation 
depicted in figure 3.3 could arise. In ordei to show (3.3.9), note that for (u, v) E Bz 
(the closure of B,), 



Figure 3.3: A possible uccr,(Fx, Fy) when Fx and Fy have discontinuities. 

Thus using the definition of dt) in (3.3.8), 

From this it is obvious that C(O)(F~(U),F~(V)) = 0 for all (u,v) E Bz and so 
~c(o~,L(Fx,FY)(x) = 0. 

It is now only necessary to consider t E (0,l). Let 

for 0 < t < 1. We show that uo is finite. Since lim,,-, Fx(u) = 0, u0 > -a. 
Regarding whether uo < m, suppose to the contrary that u0 = m and thus that 
Fx(u) < t for all finite u. Now let LA be the two place function defined by 

That is, if L(u,v) = x, then LA(x,u) = v. LA is strictly increasing in its first 
argument and strictly decreasing in its second and if L = Sum, then LA = Difference. 
For finite x and u, 

Fy(LA(x,u)) 5 1. 
Since for any copula C, C(a, 1) = a (see section 3.2.2), and since C is nondecreasing 
in each argument, for any E 2 0, C(a, 1 - E) 5 a. Combining these facts gives 

But 

?Xy'~(FxI FY)(x) = SUP U [CXY (Fx(u), FY(LA(~,~)))1> 

and since u in (3.3.11) is arbitrary (but finite) 



which is a contradiction and thus u0 is finite. 

It is next shown that Fy(v)  2 t whenever v > LA(x ,  u O )  Suppose to the contrary 
that there exists a v' > LA(x,uo) such that FY(v1) < t. Define " L  to be the two 
place function such that 

L("L(x,v) ,v)  = x 

(i.e. L(u,v)  = x implies " L ( x , v )  = u and " L  is strictly increasing in its first argu- 
ment and strictly decreasing in its second). Since "L(x ,v l )  < uo, FX("L(x,v1)) < t. 
Thus for u 5 " L ( x ,  v'), 

and for u 2 AL(x,  v') 

and again 

t = T ~ ~ , L ( F X , F Y ) ( X )  < t. 
This is a contradiction and so Fy(v)  2 t whenever u > LA(x,uo).  

A final fact which is needed is that Fx(uo) 5 t (because Fx(u) < t for u < ug 
and Fx is left-continuous), and thus Fx(u) 2 t for u > uo. Also, Fy(v)  2 t for 
v > LA(x,uo). 

Collecting all the facts in the above three paragraphs and substituting into 
(3.3.8), the definition of c('), gives 

These values of d t ) ( F x ( u ) ,  Fy(v) )  are indicated on figure 3.4. It now becomes fairly 
easy to evaluate ~ ~ ( t ) , ~ ( F x ,  FY). 

Recall that 

Following Frank, Nelsen and Schweizer [277], the (u ,  v )  plane is divided into the five 
regions R1,. . . , R5 given by 

RI = [ -a ,uo-6]  x [vorvo+6], 

R2 = [-a, uo] x [-a, v0], 

R3 = [UO,UO + 61 x [-w,vo - 61, 

R4 = ~ , n { ( u , ~ ) l ~ > ~ ~ + 6 ) ,  

R5 = . U Z n { ( u , ~ ) l u  > u o + 6 ) ,  



Figure 3.4: C(')(Fx(u), Fy (v)). 

where 6 > 0. If 
4 = /Lk ~c(')(Fx(u). FY(~)). 

then 

11 = FX(UO - 6) - min(Fx(u0 - 6), Fy(v0)) , 
12 = min(Fx(uo1, FY (vo)), 

13 = min(Fy(v0 - b), t )  - min(Fx(uo), Fy(v0 - b)), 
I* = 0, 

x5 = 0. 

Both 14 and 15 are zero because both Fx(u) and min(Fy(v), t) are constant in one 
direction of the (u, v) plane. The value stated for 1 2  is obvious, and those for Il and 
Is follow by consideration of the boundaries of R1 and R3 respectively (see figure 
3.4). Since LA is non-increasing in its second argument and continuous, 

OC(~),L(FX,FY)(X) = s-O+ lim(11+12+13) 

There are several points worth noting regarding this theorem. 



1. Since vo = LA(x, uo), the case that Fy(vO) 5 t in the above formula implies 
that u ~ ( L ) , ~ ( F ~ , F Y ) ( x )  has a jump at x = L(uo,vo). This is explained be- 
low. The two cases Fy(vo) = t and Fy(vO) < t are considered separately. 
If Fy(v0) = t then max(Fx(uo),Fy(vo)) = t and so the bound has been 
met. If Fy(vo) < t then Fy has a jump at vo. This can be seen by noting 
that FY(v) > t for v > LA(x,uo) and therefore Fy(v) 2 t for v > VO. But 
Fy(v0) # t and so Fy(v)  > t for v > 00. Thus Fy(vo) < t and Fv(v) > t for 
v > vo; i.e. there is a jump at vo. 

If Fx(uo) = t ,  max(Fx(uo), Fy(vo)) = t and the bound is still met. Assume 
then that Fx(uo) < t. Then by a similar argument, Fx has a jump at uo. 
Now if Fx has a jump at uo and Fy a jump at vo, then since L is continuous, 
u ~ ( ~ ) , ~ ( F ~ ,  FY) has a jump at L(uo, vo) and this is why 

2. The bounds for differences and quotients constructed earlier are pointwise best 
possible also. This is obvious as the difference is determined in terms of a sum 
and the quotient in terms of a product. If one wanted to construct an explicit 
copula analogous to the c(*) in the above proof, one could use the fact (see 
theorem 3.ii.2 of [719]) that if g is a non-increasing function then 

3. The second part of theorem (3.3.3) can be   roved in an entirely analogous 
manner (Frank et al. [277] give some details). The reason for having x+ rather 
than x in part 2 of the theorem is due to Fx and Fy being left-continuous but 
not necessarily right-continuous. 

4. Note that the m(FX,  FY) and pw(Fx, Fy) operations are not distributions of 
some function of X and Y (see [717]). 

3.3.3 Examples 

Some examples illustrating the lower and upper dependency bounds are now pre- 
sented. All of the examples have been calculated numerically, but involve no ap- 
proximation apart from rounding error (which is negligible) and an error due to 
the termination of the search for the infimum or supremum in calculating the T 
and p operations. Frank, Nelsen and Schweizer [277] present a few analytical re- 
sults obtained using the method of Lagrange multipliers. In general it seems rather 
difficult to obtain exact dependency bounds using this technique. In any case, as 
was mentioned in section 3.1, since it is the numerical values that are ultimately of 
interest, there is no real advantage in deriving analytical results if the formulae are 
so complicated that a computer program has to be written to calculate their specific 
values. 



In order to calculate the dependency bounds numerically it is useful to rewrite 
the formulae (3.3.4-3.3.7) in the following form: 

- 
udb(Fx, FY, +)(x) = 1 + [i:f(Fx(u) + Fy(x - u))] , (3.3.13) 

- 
udb(FX, Fy , -)(x) = 1 + - Fy (U - x))] , (3.3.15) 

where [I]+ = max(x,O) and [XI- = min(x,O). From these formulae it becomes 
straightforward to calculate lower and upper dependency bounds if one has a sub- 
routine to calculate Fx(x) and Fy(y). The calculation is simply a search for a 
maximum or minimum of a simple function of Fx and Fy for a given x. This is not 
completely trivial to do numerically as the Fx and Fy are defined on a continuum. 
The techniques developed in section 3.4 are better suited for numerical calculation. 

All of the examples are for random variables with uniform distributions U,,b given 

Ua,b(x) = { X E [a, b] 
1 x E [b,co]. 

The examples are presented in figures 3.5-3.9 and details are provided in the figure 
captions. Some examples of dependency bounds when cXy # W are given in section 
3.5. 

Some points to note about these figures are: 

1. Comparison of figures 3.5 and 3.6 reveals the effect of the spread of the two 
random variables on the distance between the lower and upper dependency 
bounds. In fact, if one of the random variables has zero dispersion (a distri- 
bution function equal to a unit step), then the two bounds are identical. 



Figure 3.5: Lower and upper dependency bounds for X + Y where both X and Y 
are uniformly distributed on [O, 11. 



Figure 3.6: Lower and upper dependency bounds for X + Y where X is uniformly 
distributed on [O, 11 and Y is uniformly distributed on [0.8,1]. 



Figure 3.7: Lower and upper dependency bounds for X x Y where both X and Y 
are uniformly distributed on [1,2]. 



Figure 3.8: Lower and upper dependency bounds for X/Y where X is uniformly 
distributed on [4,6] and Y is uniformly distributed on [1,2]. 

2. The fact that the lower and upper bounds in figures 3.5 and 3.6 are themselves 
of the form Ua,* is not really significant - it is just a peculiarity of the ldb 
and udb formulae for sums (and differences) of uniformly distributed random 
variables. Figure 3.7 shows the dependency bounds for a product. It can be 
seen that these are not uniform. 

3. A comparison of figures 3.8 and 3.9 indicates the effect of identical distributions 
for numerator and denominator on the dependency bounds of their quotient. 
If the random variables are almost surely equal then the distribution of their 
quotient will be a unit step at x = 1. This possibility is contained within the 
bounds of figure 3.9. 

4. The bounds for the following two cases are identical to those in figures 3.5 and 
3.6 respectively: 

(a) Z = X - Y with X distributed UIs2 and Y distributed U O , ~ .  

(b) Z = X - Y with X distributed U,,2 and Y distributed U0,o.z. 

Examples of dependency bounds for random variables with non-uniform distri- 
butions are given in section 3.4. 



Figure 3.9: Lower and. upper dependency bounds for X / Y  where b0th.X and Y are 
uniformly distributed on [I, 21. 



3.3.4 Exclusive Use of Lower and Upper Bounds 

We will now show how it is possible to work only with the dependency bounds them- 
selves, without worrying about the distributions within these bounds (the precise 
meaning of this statement is given by the following theorem). 

Theorem 3.3.4 Let [ zx ,Fx]  and [ z y , F y ]  be two pairs of distributions functions 
such that & ( x )  5 F x ( x )  and E y ( y )  5 F y ( Y )  for all z, y E 3, and let be non- 
decreasing in  each argument. Then for any Fx E [Ex,Fx] and any Fy E Ey ,Fy]  

and 

PROOF. This follows directly from lemma 7.2.2 of [718]. 4 
The only thing that remains to be determined is explicitly how to use the Ex 

and Fx.  But this is very simple. The following formulae are derived by considering 
the increasing or decreasing nature of the operations 0 (for E {x,+) we only 
consider random variables on gf ). 

These formulae provide a consistent and neat method of handling the dependency 
error arising in probabilistic arithmetic. In section 3.4 the numerical implementation 
of these bounds will be discussed. 

3.4 Numerical Representation 

As the examples in section 3.3.3 show, it is possible to use the formulae (3.3.12- 
3.3.19) to calculate the lower and upper dependency bounds numerically. However, 
there are difficulties associated with this scheme. For example the search for the 
supremum and infimum is over a continuum of points without even a bounded 



range. In this section new techniques for both determining the lower and upper 
dependency bounds (the TW,L and PW,L operations) and the calculation of the ordi- 
nary oL-convolutions will be developed. The main tool used is a duality theorem 
relating the operations TW,L and p w , ~  to functions in terms of quasi-inverses of the 
distribution functions involved. The uL-convolutions can also be calculated in terms 
of the quasi-inverses. As well as being computationally simpler for all these calcula- 
tions, this approach provides a neat solution to the problem of representation error 
in the numerical calculation of UL-convolutions. Whilst most other techniques for 
the numerical calculation of oL-convolutions of probability distributions allow one 
to control the error (in the sense that it approaches zero as the number of points 
used to represent the distribution function approaches infinity), they do not allow 
the calculation of rigorous bounds on the error in any given calculation. In contrast, 
the method presented here provides lower and upper bounds between which the 
probability distribution in question must lie. 

The present section is arranged as follows. In subsection 3.4.1 we make use 
of a duality theorem to express the quasi-inverses of dependency bounds in terms 
of quasi-inverses of the distribution functions. In subsection 3.4.2 we introduce 
our numerical representation and develop explicit formulae, using the representa- 
tion, for calculating dependency bounds. Subsection 3.4.3 contains details on how 
oL-convolutions can be calculated using this same numerical representation. In sub- 
section 3.4.4 it is shown how functionals of distribution functions, such as moments, 
can be easily calculated in terms of the numerical representation, and in subsection 
3.4.5 some examples are presented which demonstrate the use of all the techniques 
developed here. 

3.4.1 Duality 

The following duality theorem has been presented in a variety of contexts and in 
a number of different forms. It is the basis of the level-set (or a-cut) formulae for 
implementing the fuzzy number convolutions (see chapter 4). Frank and Schweizer 
[278] have considered the duality in some detail. Their results are summarised in 
theorem 7.7.3 of [718] which is restated below. 

Definition 3.4.1 For any F i n  A+ let FA be the left continuous quasi-inverse of 
F defined in  section 3.2.3. Then V+ is the set {FAIF E A+). 

Definition 3.4.2 For any two place function L and any copula C ,  ~ 6 , ~  is the func- 
tion T:,,: V+ x V+ H V+ given by 

T;,~(F", GA)(x) = inf [L(FA(u), GA(v))]. 
C(u.*)=2 

Definition 3.4.3 For any two place function L and any copula C ,  p$,L is the func- 
tion ~ 2 , ~ :  Vf x V+ H V+ given by 



Theorem 3.4.4 (Theorem 7.7.3 of [718]) Let L be a function L: %+ x iRf H 

%+, with CXJ as its null element, and which is continuous everywhere. Let C be a 
copula. Then for any F,G E A+, 

The advantage of using the duality theorem becomes apparent when a specific 
L is considered. For example, if L = Sum, then the quasi-inverse representation of 
the lower and upper dependency bounds can be calculated in terms of the quasi- 
inverses of the distribution functions of the random variables in question by using 
the following formulae: Let Z = X + Y and let ldb; (FZ) and udb; (FZ) denote 

-X -XY 
the quasi-inverses of ldbcxy(Fx, Fy , +) and udbcXy(Fx, FY, +) respectively. Then 

+ ( ) =  inf (F;(U)+F;(V)), -XY GxY(u,v)== 
(3.4.1) 

The standard dependency bounds (with cXy = W) follow with the appropri- 
ate substitution. Equations 3.4.1 and 3.4.2 are simply the maximum and mini- 
mum of the pointwise sum of quasi-inverses. The functions ldbixy(F2, F$, 0 )  and 
udbg (F;, F$, 0) are quasi-inverses of the lower and upper dependency bounds 

-XY 
and not lower and upper bounds on the quasi-inverses. That is 

is the consequence of 

Note that for L = Sum or Difference, theorem 3.4.4 holds for any F, G E A (and 
not just A+) because in these cases the point x = 0 has no special significance. 

When cxY = W the formulae are particularly simple, and this gives us a very 
simple way of calculating lower and upper dependency bounds. Recalling that 
W(u,  v) = max(u + v - 1,O) and Wd(u, v) = min(u + v, 1) we have 

inf (F$(u) + F$(x - u + 1)) if x # 0, 
ldbA (F;, F$, +) (2) = u~[x , l l  (3.4.4) 

inf (F$(u) + F$(v)) if x = 0. u+v-l<O 

Since F$ and F$ are non-decreasing, the case for x = 0 becomes 



Similarly, 

F$(x - u)) if x # 1, 
udbA (F;, F;, +) (2) = (3.4.5) 

i f x = 1 .  

(The restrictions on the range of the supremum and infimum operations arise from 
the fact that v E [O,1] because dom FA = [O, I].) Likewise, we have 

Fc(x-u+l)) if x # 0, 
ldbA (F;, F;, X)  (x) = (3.4.6) 

if x = O  

sup (F;(u) x F$(x - u)) if x # 1, 
udbA (F;, F;, x) (x) = (3.4.7) 

if x =  1. 

Analogous formulae for ldbA and udbA for E {-, +) can be determined in a 
manner similar to that used to derive (3.3.5) and (3.3.7). Consider the quotient first. 
Let Y' = 1/Y. If Fy has a quasi-inverse FG, what is the quasi-inverse of FYI? It is 
known that F$(x) = y j x = Fy(y) and Fy,(x) = 1-Fy(l/x). Ifx = (1-Fy(l/y)), 
then F$,(x) = y. But 1 - x = Fy(l/y). Therefore F$(1 - x) = lly and so 

Using this and (3.4.6-3.4.7), it can be shown that 

inf (Fi(u)/F$(u -x)) if x # 0, 
ldbA (F;, F$, +) (I) = (3.4.8) 

if x = 0, 

and 

+u-x)) if x # 1, 
udbA (F;, FC, +) (x) = (3.4.9) 

i f x = l .  

Similarly, it can be shown that if Y' = -Y then F$(x) = -F$(1 -I), and so using 
(3.4.4) and (3.4.5) 

inf (F;(u) - F;(u - x)) if x # 0, 
ldbA (F;, FQ, -) (x) = (3.4.10) 

if x = 0, 

and 



Figure 3.10: The copula W .  



Figure 3.11: The numerical representation of probability distributions. 

These formulae for ldb" and udb" can be seen to be slightly simpler than the 
corresponding formulae for ldb and udb (3.3.4-3.3.7). The one disadvantage is the 
special case for x = 0 (for $ and x )  or for x = 1 (for - and +). The reason these 
special cases are necessary becomes apparent upon inspection of figure 3.10 which 
shows the copula W. When W(u,u) = x # 0, the values u and u can take are 
constrained by a linear relationship. However when W(U,V) = 0, u and u can take 
any values within the cross-hatched region. When a numerical representation of the 
quasi-inverses is used these special cases actually disappear. 

3.4.2 Numerical Representation and the Calculation of ldbA 
and udbA 

In order to use equations (3.4.4-3.4.11) to calculate lower and upper dependency 
bounds numerically, it is necessary to have a discrete approximation to probability 
distribution functions defined on a continuum. The approach taken is illustrated in 
figure 3.11. The distribution F is approximated by lower and upper discrete approx- 
imations denoted F and respectively. These are formed by uniformly quantising 
F along the vertical axis (see figure 3.11). This defines the points i and Zi. For a 
single valued F, ; = Zi+l for i =. 1,. . . , n - 1. We retain the two sets of numbers 
{z;) and (2;) for clarity. Interval valued distributions (i .e.  lower and upper bounds 
on F) can result in ; # Zi+l. The end points are 

inf suppF = Zl, 
sup supp F = , .  

The above approximation of F motivates the following numerical approximation 
to FA. Both in anticipation of the exclusive use of upper and lower bounds (to 
contain both dependency and representation error) and to make the ideas clearer, 



Figure 3.12: The quasi-inverse representation of a distribution function. 

the discrete approximations FA and FA to EA and FA are presented in figure 3.12. In 
the following discussion it is not assumed that = F A ,  although the same results 
do apply to this situation which is often the case at the beginning of a calculation 
using probabilistic arithmetic. 

The discrete approximations PA and FA are defined by 

for i = 0, .  . . , N  - 1. Whether the range in these definitions is [ p i , ~ i + ~ )  or ( p ; , ~ ; + ~ ]  
doesn't really make any difference: as long as one choice is used consistently there 
are no problems. N is the number of points required to represent either PA or 
FA. In figure 3.12, N = 6 .  Note that pjv = 1. The quantisation is uniform and so 
p; = i / N  for i = 0, .  . . , N - 1. Explicit array representations of FA and PA suitable 
for computer implementation are given by 

and 

for i = 0 , .  . . , N - 1. Notice the different conventions used for defining F [ ~ ~  and p["] 
in terms of FA and 7". This is necessary because of the nature of the approximation. 
Two special values worth noting are 

and 
F["[N - 11 = EA(p,"J) = F A ( l ) .  

These two values correspond to the points a and b in figure 3.12. Regarding ~ [ " ] [ 0 ] ,  
recall the convention of redefining the value of FA at the end points of the range 



(see section 3.2.3). This convention resulted in FA(0) = inf suppF, and so FIAl[~] 
is set equal to this. 

An important advantage of this representation is that any representation error 
(difference between F and F o r  between7 and E') is rigorously contained within the 
bounds. That is, it is perfectly correct to state that 8 5 F 5 F or FA 2 FA 2 E'" 
although this does not bound F as tightly as stating F 5 F 5 F. By always 
performing any necessary rounding approximations in a manner such that the width 
between and E' is made larger ("outwardly directed rounding"), this property is 
preserved. This is referred to below as the preservation of the representation error 
containment property. The representation error for any given approximation can 
he made arbitrarily small by increasing N. The method of approximation proposed 
here is better than simply using a single function Fa,,,, to approximate F for which 
IFapproz(x) - F(x)I is "small" for ''most" x. 

Now that a numerical representation has been chosen, it is necessary to derive 
the appropriate formulae for 1dbLA1 and udbLA1, the lower and upper dependency 
bounds in terms of the numerical representation. We explicitly derive the four cases 
of the lower and upper dependency bounds for sums and differences. 

Equations 3.4.4 and 3.3.22 give 

IdbA(&,&,+)(x)= inf ( z $ ( u ) + z ; ( x - u + l ) )  ( x f O ) .  
u€[.SI 

i+l  Let x = , and u = & N ' Then 

Using the correspondences (3.4.15) and (3.4.16), this can be written as 

Since it is only required to calculate 1dbW[i] for i = 0 , .  . . , N - 1, the special case 
for x = 0 in (3.4.4) has been avoided (as we mentioned was possible at the end of 
section 3.4.1). 

(ii) ~ d b [ ~ ] ( & ~ ] ,  I$"]], +) 

Equations (3.4.5) and (3.3.22) give 



Let x = i N and = 6. Then 

Using the correspondences (3.4.15) and (3.4.16) gives 

Udb[~l ( F I ~ l  , pbl y , +) [i] = S U P  ( # ~ 1 +  d l [ i  -A) (i # N), (3.4.18) 
1=0, ..., 

for i = 0,. . . , N - 1 and the special case (x = 1) has been avoided. 

(iii) ~ d b [ " ] ( ~ ' ~ ] ,  $I, -) 

From (3.4.10) and (3.3.23), 

I d A  ( -  (x) = i n  ( ( u )  ( u  - x)) (x # 0). 
u€[z,ll 

i+l Set x = - and u = i.fL Then N N ' 

( ( ) )  ( + # o ) .  1 ( -) ( )  = inf ( 
is 1 (Y)€[N 7 ] 

Using the correspondences (3.4.15) and (3.4.16) 

"[A1 . ldb["] (F$'], Fpl, -) [i] = , ,inf ( I  ] - F - I )  (i # - 1  (3.4.19) 
3=,, ...,N- 1 

which is all that is required for i = 0,. . . , N - 1. 

(iv) ~db[~1(FF ' ,  ?$"I, -) 

Using (3.4.11) and (3.3.23), 

A -A udb ( F ~ , E ~ ,  -) (x) = sup (F;(u) - E$(u - x $1)) (x # 1). 
u€[O,zl 

Setting x = and u = i gives 

A -A 
udb (F,,E$, -) (+) = sup ( ($1 - ( - $ + 1 )  (5 # 1) , (A) E [o, jti] 

and thus 

.db[~'] F[E‘] F[AI + A ]  . ( "x I *Y , -) [i] = ,SUP , (Fi b] - cp1[j - i + N - 11) (i # N), (3.4.20) 
j=o, ...,, 

which holds for i = 0,.  . . , N - 1. 



The analogous formulae for product and quotient are 

~ d b [ ~ ] ( F k ] ,  &I, x)[i] = inf (rf1 [j] x &][i - j + N - 11) (i # -1). (3.4.21) 
j=i ,  ..., N-1 

A1 $A1 $A] -[A] . udb[ ( , , , x)  [i] = s u p  , (ppll j]  x Fy [Z - j]) (i # N), (3.4.22) 
3=0, ...,, 

ldb[^] (&I, PF1,+) [[i] = , ,inf ( ~ ~ ] [ j ] / @ ] l j  - i]) (i # - 1  (3.4.23) 
3=,, ..., N-1  

udb["] ( $'IA] x > - Y  FrA] , I . ) [ '  z] = , sup , ( 1 ] / 1 - - ] )  ( i #  N), (3.4.24) 
3=0. ..., t 

All these hold for i = 0,. . . , N- 1. The use of lower and upper bounds alone (instead 
of distributions within the bounds), and whether or pgl should be used in a 
particular instance, is discussed at the end of section 3.3.4. 

Two significant points to note about the above formulae for ldb["] and udbrA1 
are their low computational complexity and their lack of approximation error. To 
calculate a dependency bound with N points in terms of two N point discrete 
approximations requires only O(N2) operations. The results are free from error in 
the two senses of any representation error being rigorously bounded by P'gl and Pgl 
(see above), and the supremum and infimum operations are exact (compared with 
the numerical implementation of the formulae developed in section 3.3 for which 
approximation is required). 

The final point which needs to be settled is how to generate rgl and from 
a iven exact distribution Fx. This is in fact quite simple. One just sets E$(p) = -5 
Fx(p) = F$(p) for p E [O, 1) and uses the definitions (3.4.15) and (3.4.16). The 
only difficulty is finding F$(p) given a formula for Fx(x). While for some simple 
distributions (such as the uniform and triangular distributions) an exact formula for 
F$(p) can be derived, in general one has to perform a numerical search. This will 
give F$(p) to any desired accuracy. This method is described, along with various 
techniques for numerically calculating Fx for some common distributions, in chapter 
5 of [451]. Some examples are given later. When the distribution Fx has unbounded 
support, it is necessary to curtail the distribution so that Pgl[O] and &?][N - 11 are 
finite. 

3.4.3 Numerical Calculation of a-Convolutions 

We now examine the calculation of u-convolutions in terms of our numerical repre- 
sentation. First we determine whether for all Fx E [ I ~ , ~ X ]  and Fy E [Ey,Fy], 

It will be seen that this is indeed the case for arithmetic operations defined on X+. 
To see that (3.4.25) holds for addition and multiplication, it suffices to inspect 

the convolution relations which can be written 



and 

respectively [776]. If Fy is considered as fixed, then since Fx is always greater than 
0, it is apparent that 

Z 

B ( x )  = & & ( x  - t )  dFr( t )  

is always less than or equal to Fz. Likewise for upper bounds Fx, and, by symmetry, 
for Fy as well. In the same manner it can be seen that 

is always less than or equal to Fz if Fy is,considered fixed. Again by symmetry 
this holds for upper bounds and for Fy as well. Similar arguments could be used to 
show that analogous results hold for difference and quotient convolutions. In these 
cases it is necessary to use the lower or upper bounds on Fx and Fy in a manner 
similar to equation 3.3.22. The details are omitted. As well as showing that only 
the lower and upper bounds on a distribution need be considered, the above result 
comes in useful in the "wndensation" procedure which is part of the algorithm for 
calculating o 1  (FF],  @'I). 

The method of calculating apl (F!], F.)']) is best presented in terms of the dis- 

crete frequency functions corresponding to ftl and$]. Thus for the moment, we 
will ignore the use of lower and upper distributions, and we will consider the calcu- 
lation of $ (FYI, F.)']). Other operations L and the complications of using lower 
and upper distributions are considered later on in this subsection. 

Given FF] and of N points each, there are corresponding discrete frequency 
functions f x  and f y  given by 

* if r = fT1[i] for k different i, 
f x ( x )  = { ,N otherwise. 

P if x = f\] [i] for l different i,  
f y ( x )  = { ,N otherwise. 

The discrete frequency function of Z = X + Y is obviously given by 

if x = &"][i] + fF1w for rn different pairs of i and j, (3.4.26) 
otherwise. 

This formula for Fz  follows directly from the laws of probability and has been 
the basis for a number of methods for calculating convolutions in terms of discrete 
frequency functions [423]. 



We thus have the following simple algorithm for calculating F!] (expressed in 
the syntax of the C language [453], with the exception mentioned in section 1.4): 

for(i := 0; i < N ;  i++){ 
for( j  := 0; j < N ;  j++){ 

A ] U  . 
F [z  + j * N ]  := FF1[i] + F$?]L]; 

1 (3.4.27) 

1 

The array F F ] ' ~  is unsorted (hence the U) and is of size N Z .  The array F F ] ' ~  is the 
result of sorting F;']'~ into increasing order (the E stands for Exact). Observe that 

[A] E . it is quite possible for FkIsE[i] = FZ ' [ I ]  for i # j. This does not matter at all: it 
simply results in a bigger jump in the correspondin Fz. An important fact to notice 
is that while FF1 and F$?] have only N points, Ftl'l" has Nz.  This will obviously 
cause severe difficulties if we intend to perform a sequence of operations: the output 
of each operation will be an array considerabl larger than its input. What is 
required is a method for reducing the size of Fil' le  to N without introducing any 
error into the result. The procedure used to do this is called condensation. 

If Fz (or F;) were simply represented by a single discrete version FF1 then it 
would be impossible to approximate FklsE by an array of N points without error. 
However as both lower and upper approximations are available, "directed rounding" 
can be used to produce an approximation to FP1'* that is not in error in the sense 
that the quasi-inverse of the distribution is contained within the bounds. That is, 
it will be true that 

[A1 > F["I.E > F A  > $ [ A 1 3  > $A1 F z  - -z - z -  z - z 
where the inequality is "2" (and not "5") because we are talking about quasi- 
inverses. The method of determining &] and pgl is indicated in figure 3.13. Only 
the procedure for the lower bound is shown there. The rule for condensation is 
simply 

~$'I[i] := ~ ' ~ [ i  x N + N - I] .  

The analogous condensation with "upward rounding" for the upper bound is 
" A] .1 " A h . q  . FL [z]  := FL [z x N ] .  

The overall algorithm (for the distribution of the sum of random variables) becomes 
algorithm 3.4.28 (see below). The algorithm for products is identical apart from 
a replacement of the '+" on the right hand side of lines 3 and 4 by a "x". For 
subtraction, lines 3 and 4 become 

-z [̂ I ['I - $PI ]li] ; ~ [ " ' ~ l [ i  + j * N]  := Ex z 
" A] . [A1 . "[A'U][i + j * N]  := FJ [z]  - Ey b ] ; .  Fz 

The algorithm for quotients is obtained by replacing the subtraction in the above 
two lines by a division. Some examples using these algorithms are presented in 
section 3.4.5. 



7 
Figure 3.13: Illustration of the condensation procedure. 

for(i  := 0 ;  i < N ;  i++){ 
fo r ( j  := 0; j < N ;  j++){ 

A1 . .  & ' " [ i + j * ~ ]  : = F F 1 [ i ] + &  b],  
-[A1 . "'",Y[i + j * N ]  := P k l [ i ]  + Fy b];  Fz 

1 
} 
lpE' := sort (&Y) ; 

:= sort (Fpy)  ; 
for(i  := 0 ;  i < N ;  i++){ 

&I[;] := * N + N - 11; 
" [ A ] .  " h a .  F, [ t ]  := FL' [ t *  N ] ;  

1 

(3.4.28) 

Algorithm 3.4.28 



3.4.4 Calculation of Moments and other Functionals 

We now consider the calculation of moments and other functionals of Fx in terms of 
F ' ]  and j k l .  Using the change of variables result in lemma 4.4.6 of [718] we have 

and 
1 &.':' = 1 (z - px)' dFx(x) = 1 (F$(t) - P X ) ~  df, (3.4.30) 
0 

where px is the mean and p x  = m$). These equations can be used to calculate 
moments in terms of and jgl by replacing the integral by the appropriate 
summation and by realising that we will only be able to calculate lower and upper 
bounds on the moments. Regarding the lower and upper bounds, it is easy to see 
that if 

" W . - A] . 
M [i] = min (F.] [i] - &, Fx [z] - Ex, F$] [i] - Tix, ~4 [z] - PX) , - 

- - A] . - A] . 
M[i] = max(&l[i] -kX,Fx [ [ ] -Ex4x,F$1[i l -~~,~L z [ $ I - F X ) ~  

and M [i] = [ ~ [ i ] , ~ [ i ] ]  , then 

1 N-1 
Il'k' = - C (M[' -x N i=o 

~ 1 ) ~  
1 N-1 

-(k) - - 
Ilx - C 

N i=o 

will be lower and upper bounds on P!' for k = 2,.  . .. The operators (.)k and (.)k are - 
the interval arithmetic lower and upper bounds for exponentiation by an integral 
power. If W = [E,m, then 

[K~ ,v~]  if W > 0 or k is odd, 

[w~ ,K~]  if W < 0 and k is even, 

[0, IWIk] if 0 E W and k is even, 

where (W( = max(lK(, l w ( )  [583]. 

The use of these equations is discussed in section 3.4.5 with reference to some 
examples. Functionals other than moments wuld be calculated in an analogous 
manner. 

3.4.5 Examples 

As an illustration of the ideas developed above we now present some examples. In all 
of these, N (the number of sample values of the lower or upper quasi-inverses) is 50. 



Figure 3.14: Numerical representation of Fy (uniform distribution on [1,2]) with 
N = 50. The moments as calculated by (3.4.31) are p = [1.49,1.51], u2 = 
[0.737,0.937], p(3) = [-0.00501,0.00501], and p(4) = [0.0101,0.0152]. 



Figure 3.15: Numerical representation of Fz, a Gaussian distribution with p = 4 and 
u2 = 1, and which is curtailed at p f 3u. It is represented with N = 50. The values 
of the moments as calculated by (3.4.31) are p = [3.94,4.06], u2 = [0.7538,1.3058], 
p(3) = [-0.7243,0.7243], and pt4) = [1.52,5.583]. 



Figure 3.16: Numerical representation of Fx where X = Y / Z ,  and Y and Z are as 
in figures 3.14 and 3.15 respectively. This was calculated using the u-convolution 
algorithm 

All the results presented here are outputs of computer programs which implement 
the formulae derived above. 

Figures 3.14 and 3.15 show the distributions arising from the numerical represen- 
tation of Y and Z respectively, where Y is uniformly distributed on [1,2] and Z has 
a Gaussian distribution with p = 4,u  = 1 curtailed to f 3 u .  These were generated 
by using the procedure described in section 3.4.2. Note that in each case the lower 
and upper distributions touch each other at  the fifty sample points. Fi ure 3.16 
shows the distribution of X = Y / Z  calculated using the algorithm for uf derived 
earlier. Notice that the lower and upper distributions no longer touch. This is due to 
the outwardly directed rounding in the condensation procedure. The magnitude of 
this effect can be seen from figures 3.17 and 3.18 where we present the distribution 
calculated directly from the exact quasi-inverse of a triangular distribution centred 
at 3 with spread of kl ,  and that of the distribution obtained using the algorithm 
for up1 for the sum of two uniformly distributed random variables on [1,2]. The 
difference between this representation width and the dependency width can be seen 
by examining figure 3.19 where we present the lower and upper dependency bounds 



Figure 3.17: Numerical representation of an exact triangular distribution centred at 
3 with a spread of f 1. 



Figure 3.18: Output of the o+-convolution algorithm for two random variables uni- 
formly distributed on [I, 21. This is exactly the same as figure 3.17 apart from the 
effect of the representation error in the inputs and the outwardly directed rounding 
in the condensation procedure. 



Figure 3.19: Lower and upper dependency bounds for the same calculation 
as for figure 3.16. The values of the moments as calculated by (3.4.31) are 
p = [0.2733,0.5605], u2 = [0.00,0.1935], p(3) = [-0.028,0.1383], and p(4) = 
[0.000,0.2025]. 



for the same calculation as for figure 3.16. 

The effect of the difference between lower and upper distributions on the tight- 
ness of the bounds for the moments can be seen by comparing the various values 
presented. For cases such as that presented in figure 3.19; the bounds on the mo- 
ments are very loose, especially for the higher order moments. This is to be expected 
as one can fit a very wide range of distributions between the lower and upper bounds. 
Thus the bounds for moments would appear to be of little value. 

3.5 Incorporating and Updating Dependency In- 
formation 

3.5.1 General Idea 

So far have shown how to calculate lower and upper bounds on the distribution 
of some arithmetic operation on random variables when it is either known that 
they are completely independent, or there is no knowledge of their dependency 
at all. However there are situations between these two extremes. These are now 
considered. It will be seen that the algorithms rapidly become more complicated 
as more information is taken into account. The methods involved can be organised 
according to the following classification: 

1. Using the 7, p and o operations. 

2. Pairwise bounds on copulas or pairwise measures of dependence. 

3. Pairwise joint distributions. 

4. Either joint distributions of all the variables or combination of all the variables 
at once (rather than pairwise combinations). 

So far in this paper we have only considered type 1. In this section, type 2, and 
in less detail, type 3, will be considered. Type 4 is generally intractable (but see the 
section on graph theory in chapter 4). 

The fact that a lower bound on a copula Cxy other than W can be used to 
calculate dependency bounds was shown in section 3.3.2. The lower bound GxY 
could describe bounds on the dependency of some input random variables, or it 
could arise in the process of a probabilistic arithmetic calculation. Dependency 
bounds based on CXy 2 W are closer together than those based on W. In this 
section we will briefly examine different lower bounds on copulas and their effect on 
the dependency bounds. We will also consider the determination and interpretation 
of lower bounds other than W. * 



Figure 3.20: Lower and upper dependency bounds for the sum of two random vari- 
ables each uniformly distributed on [0,1] when the lower bound on their connecting 
copula is given by Tp for various p. 

3.5.2 Interpretation of Dependencies Implied by Gy # W 

The effect of a c x y  other than W is illustrated in figure 3.20 where lower and upper 
dependency bounds for the sum of X and Y with GY = Tp are presented. Here X 
and Y are both uniformly distributed on [ O , l ] ,  and T, is the parameterised t-norm 
discussed on pp.72-73 of [718] and given by 

for p E (-a, 11. This t-norm is related to W, IT , and M by TI = W, To = II, and 
limp,-, Tp = M. 

Whilst it is possible to calculate these more general dependency bounds, it is 
obviously important that they have a useful interpretation and that the dependency 
induced by GXY # W can be understood. The family of copulas {TpI p 6 (-w, 11) is 
in fact only one of a number of parameterised copulas that provide an infinite number 
of copulas between W and M [718]. All these parameterised copulas are in fact t- 
norms. (They have been also used in fuzzy set theory as generalised intersection 
operators [94,234,465].) Thus the first question we should ask is what probabilistic 



interpretation can be ascribed to copulas that are also t-norms; i.e. what does 
associativity of a copula imply about the dependence of random variables? Schweizer 
and Sklar asked this question in problem 6.7.2 of [718]. A simple argument presented 
in chapter 5 shows that if a copula Cxy is associative and satisfies Cxy(a, a)  < 
a Va 'a (0,l)  (i.e. it is Archimedean), then it is an increasing function of a joint 
distribution of independent random variables: C ~ y ( x , ~ )  = h(Fuv(x,y)) (U and 
V are independent). However it is not apparent what this means probabilistically. 
Nevertheless such ~arameterised copulas have been used in practice. See for example 
[150,162,163,297-299,6261 

We are actually interested in these parameterised copulas for their role as lower 
bounds on the actual unknown copula. We can understand their effect to an extent 
by making use of the following result which is given by Jogdeo [412]. 

Theorem 3.5.1 Let F and G be two bivariate distribution functions such that 
F(x,  Y) 5 G(x, y) Vx, Y 8. Then for every pair of nondecreasing functions f 
and g defined on 8, 

where ~ o v ~ [ f ( X ) , ~ ( Y ) ]  is the covariance of f (X)  and g(Y) given that X and Y 
have joint distribution F .  

This says that stochastic ordering of F and G implies stochastic ordering of the 
associated covariances. For our purposes it allows us to say that 

and so covGxY(X, Y) is a lower bound on the covariance of X and Y. By normalising 
the covariance appropriately we can calculate lower bounds on the correlation coeffi- 
cient of X and Y implied by GY. This gives us an intuitive feel for the dependence 
implied by c x Y .  

The lower bounds on covariance can be calculated as follows. We have the 
formulae 

cov(X, Y) = lm (Fxy (u, v) - Fx (u) Fy (v)) du dv 
-m -m 

= L1b' (CXY(U, V) - UV) ~ F F ~ ( u )  ~ F F ~ ( V )  

(see [388,719]). If we just consider uniform marginals Fx = Fy = U ~ J ,  then the 
lower bound on the correlation coeeficient r(x, y )  is given by 

r(X,  Y) = - /'/I ( G Y ( u ,  v) - uv) du dv, D(X)D(Y) o o 

where D(X) is the standard deviation of X. For Fx = Fy = Uo,,, D(X) = I/&. 
This will be a lower bound on r only for uniform marginals. Other marginal distri- 
butions will give different results. (This is a failing of the correlation coefficent as 



Table 3.1: Lower bounds on the correlation coefficient implied by lower bounds of 
the form Tp on the connecting copula for various p. 

an index of dependence: it is not invariant under transformations of the marginals 
[719].) If Cxu = Tp, 

where 

I = /' J1(rnax(xp + yP - I, o ) ~ / P  dx dy. 
0 0 

The integral I can be calculated exactly for p = 1, t, 0, -1, -2, -m with the aid of 
13361. For example, with p = -1, we have x-' + y-' > 1 V(x,y) E [O, 11' and so 

Using 2.152(1) of [336] we obtain 

The integral I can then be evaluated (using 4.2361 and 4.2313 of [336]) to give 
I = 7r2/3 - 3 and thus r ( X ,  Y) = 47r2 - 39. the other cases are determined similarly 
and the results are summarised in table 3.1. Bounds on other indices of dependence 
can also be calculated. For example, Genest and Mackay [298] have shown that 
Kendall's 7 is given by & for Tp. Note that the interpretation of C X y  = n is 
particularly simple: it says that X and Yare positively quadrant dependent (see [246, 
258,313,459,5061). Statistical tests for positive quadrant dependence are considered 
in [506]. 



3.5.3 Use of Cxr f. W in Probabilistic Arithmetic Calcu- 
lations 

In order to use lower bounds on the connecting copula to calculate tighter depen- 
dency bounds it is necessary to calculate the dependency arising through the course 
of a probabilistic arithmetic calculation. That is, given random variables W, X and 
Y, with Z = X U Y  for some arithmetic operation 0,  calculate Czx, Czy and CZw 
in terms of Fx, Fy and CXy (cf. 16841). If there were other variables U, V etc., it 
would be necessary to calculate Gzu and CZV etc. Since the calculations would be 
of the same form as those for CZw this is not considered further. We will consider 
addition (0 = +) here. The details for other operations are similar. 

The joint distribution of Z and X is given by 

U,,  

where D,, is the region in the (x, y) plane such that x + y < z and 2 < w (see [631, 
pp.201ffl). Thus 

FZX(Z,W) = // ~ C ~ ~ ( F ~ ( ~ ) . I ~ ( Y ) )  
D,, 

and so 
Czx(u.v) = / / ~CXY(FX(~),FY(Y)). (3.5.3) 

DF;("),F;(~) 

This is very similar to a u-convolution. Using an argument along the lines of that 
used to prove theorem 3.3.1, it is clear that 

It is possible to use CXy rather than Cxy by an argument similar to that used to 
prove theorem 3.3.4. Equation 3.5.4 is not as complex computationally as it seems. 
For example, given a value o f t  = CZx(u, v), it is easy to calculate CZx(u, v + 6 )  by 

Obviously CZy can be calculated in a similar manner. 

The calculation of CZw is rather more complicated. The joint distribution of 2 
and W is given by 



where uo(Fx, Fy; v)(z) is simply ao(Fx, FY)(z) for a given v ( i .e .  for W = v). Thus 

Czw(t, u) = 

vSF&(u) 

and 
~ ~ ~ ( t . u )  = / l d b ~ ~ ~ ( ~ x .  F~ .~ :u ) (Fz" ( t ) )dv  (3.5.8) 

u<F&(u) 

where ldbc (Fx, FY, 0 ;  u)  is the lower bound on uo(Fx, FY; 2)) and is given by 
-X Y 

ldbc (Fx, FY, n; q)(x) = ~s,,,o [EX( . ;Q)~~Y( . ;Q)]  ("1 -x Y 
- - T ~ , , , ~  [C~~(E~(.),EW(~)),L~YW(EY(.),E~(~))I (2) (3.5.9) 

= sup GXY [c~~(E~(u),Ew(Q)),CYW(EY(~),FW(Q))I. 
u+v=z 

Upon substituting (with a few changes of variables) one obtains 

Again this is not as computationally complex as it looks because 

Gzw(t ,u+J)  =&MI+ / ( . - . ) d u >  (3.5.10) 
F&(u)<v<F$(u+G) 

where the term in the parenthesis is the same as that in the previous equation. 

The numerical implementation of the above formulae will introduce further com- 
plications. For instance, a numerical representation of Cxy that fits in neatly with 
the representation already adopted for distribution functions will have to be found. 
Further investigation is required to determine the feasability of the approach out- 
lined here. 

3.5.4 Measures of Dependence 

We have seen that different lower bounds on Cxy induce (or imply) different values 
of indices of dependence (e.g. the correlation coefficient). The converse is not nec- 
essarily true: different values of r do not imply unique corresponding lower bounds 
on the copula. Nevertheless, because of the complexity of the approach outlined in 
the previous subsection it seems worthwhile to examine what effect knowledge of 
the values of different measures or indices of dependence can have on the result of 
some operation combining two or more random variables. We simply point to some 
of the literature here. 

Measures of dependence based on copulas are discussed in [719,881,882]. Other 
types of dependence measures are numerous. See for example [313,459,708]. Explicit 



consideration of the effects of convolution on various measures of dependence can 
be found in [87,532,741,821,863] (this is not an exhaustive list). So far we have been 
unable to develop an appropriate method of dealing with operations on random 
variables when some dependence information is available. 

3.6 Use of Mixtures for Nonmonotonic Opera- 
tions 

3.6.1 Introduction and General Approach 

If the random variables to be combined under a division or multiplication opera- 
tion are not sign definite (i .e.  the distributions are not such that F(0) = 0 or I ) ,  
then the required u-convolution can not be calculated using the above techniques 
or simple modifications thereof. In such a case a new approach is called for, and it 
is this which is the subject of the present section. Because of the intricacy of the 
results so far obtained, and because of some remaining problems, the present sec- 
tion gives less detail and is more tentative than other sections in this chapter. The 
general idea of handling nonmonotonic operations is to split the operation up into 
monotonic segments, perform the operation, and then combine the results together 
again. In the case under consideration here, this entails splitting the random vari- 
ables involved into positive and negative parts, combining the various parts under 
the split operation, and then recombining them. The basic concept we use for this 
is a mixture. 

The process is easily explained if we restrict consideration to single valued (rather 
than lower and upper) probability distributions which are defined on W. (The nu- 
merical approximations are considered later.) Let Fx and Fv be the probability 
distributions of two random variables X and Y, neither of which is sign definite. 
Do the following for both X and Y (expressions are only given for X). Split X into 
positive and negative parts. If px is the probability that X is positive, then 

and the distributions of the parts are 

for x > 0. From now on, it will be assumed that Fx and Fr are continuous at x = 0 
and so Fx(O+) = Fx(0). There is no loss of generality in doing this as it is always 
possible to assume that any jump at x = 0 is in fact due to the random variable 
X being a mixture of two random variables: one without the jump, and the other 
consisting solely of the jump (cf. the Lebesgue decomposition theorem [750, p.2021). 



The distribution Fx can easily be recanstructed from F,$ and Fp by 

In order to calculate the result of a convolution or dependency bound in terms 
of the positive and negative parts, it is simply necessary to observe that the positive 
part FZf is, for Z = X x Y or Z = X / Y ,  solely determined by uo(F$,F:) and 
uo(F;, F c )  and that the negative part FF is solely determined by ua(F$, FG) and 
uo(F2, F:). Let pz denote the pobability that Z is positive. Then 

pz = PXPY f (1 - px)(l -Pu) .  

The parts F; and Fc are given by 

1 
F?(z) = - 1-PZ [PX(~ - py)uo(Fxf,F~)(z) + (1 -px)pYu0(~~,~y+)(z)], 

(3.6.6) 
for > 0 and 0 E {x,+). Substituting Z for X in (3.6.3) gives the formula for 
creating Fz from F$ and FF. 

3.6.2 Complications Arising from the use of Lower and 
Upper Probability Distributions 

The above formulae are quite straightforward. However things become more com- 
plicated when the analogous formulae for lower and upper probability distributions 
are considered. The corresponding formulae for (3.6.4), (3.6.2) and (3.6.3) are, re- 
spectively 

Px = 1 - FX(0), 
- (3.6.7) 
PX = 1 -Fx(O), 

G(x) = &(Ex(x) -Ex(O)), 

E ( x )  = &(Fx(x) - Ex(O)), 

&(x) = ~ F X ( O )  - Fx(-x)), (3.6.8) 

- l-zx 

FAX) = *(Fx(o) - 4?x(-x)), 
for x > 0, and 



Substitution of (3.6.8) into (3.6.9) gives EX(.) = Fx(x)  and &(x) = F X ( X )  a s  
one would expect. 

It is apparent that it is possible to calculate the dependency bounds in terms of 
the positive and negative parts in the usual manner. What is not apparent however, 
is whether such results can be combined together using equation (3.6.9) to give a 
meaningful result. Let us first examine how to calculate gz and Bz. Remembering 
the viewpoint adopted regarding the lower and upper distributions EZ and F z  lower 
and upper approximations to a single fixed (but unknown) distribution Fz, it seems 
reasonable to define pz and pZ by 

where 

That is, not both gx and px are used in any one possible choice: px is uniquely 
defined - it is just that its value is not known. 

In order to combine the various 00's together to give &, Ti, &, and pi, it 
must be realised that gx is not necessarily associated with Fx. This is because the 
situations depicted in figure 3.21 can occur. Thus it is necessary to calculate l$, 
Fz ,  E;, and F i ,  by 

- 
( z )  a x  [ - ( g x , y ) , T - x , a T - x y - F x B Y ]  (3.6.14) 

where ?-(px, PY) = pxpy&(F;, F;)(z) S (1 - p ~ ) ( 1 -  py)Eo(Fi, F,f)(z), In all 
of these formulae c is a normalising constant such that Fz(oo) = I. The a and 
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-Y-> ARE POSSlBLE ACTUAL F CONTAINED WITHIN 

THE BOUNDS _Fx AND Fx 

Figure 3.21: Illustration of (i) quantities used in splitting a distribution into positive 
and negative parts; and (ii) the reason why px is not always necessarily associated 
with F x  nor px with Ex. 

- 
o m  functionals are such that the appropriate (lower or upper) component of its 
arguments is chosen (see sections 3.3.4 and 3.4.3). Some information is lost in this 
procedure (because it is not known that px is necessarily associated with F x  etc.), 
and thus the bounds so obtained would not be pointwise best possible (even ignoring 
the ordinary approximation error). Nevertheless, they would appear to be the best 
possible given the approach that has been adopted. The question whether (3.6.9) 
can be used to calculate FZ and Fz from E i ,  z, &, and Ti, will be examined 
below. 

3.6.3 Difficulties Introduced by Using the Numerical Ap- 
proximations 

Unfortunately further difficulties are introduced when the above formulae are imple- 
mented in terms of the numerical approximations of the distribution functions. For 
instance, just the splitting of the probability distribution into positive and negative 
parts causes problems because of the need to maintain both the equispaced quan- 
tisation and the representation error confinement property. One could either form 
positive and negative parts of N points each from an N point initial distribution, or 
one could keep the same points (values of ~ F l l i ] )  resulting in negative and positive 
parts of N -  and N +  points respectively, with N 5 N- + N+ < 2N. The first 
choice results in approximations being necessary in the form of further outwardly 
directed rounding. The second choice has been adopted here, although as will be 
seen below, it is not without problems either. Having done this, it is necessary to 
generalise our algorithms for calculating lower and upper dependency bounds and 
u-convolutions to handle inputs of differing sizes ( i . e .  a different number of points 
used in the approximations). The appropriate equations and algorithms, which are 



presented below, were derived in a fairly straightforward but longwinded manner 
and so the derivations are omitted. 

Let N be the number of points with which FF] is to be represented. Let M 
be the number of points used for FF1 and let P be the number of points used for 
FP]. This is explicitly indicated in the formulae below by writing F F ' ~ ,  FFpP1 and 
~ d b ' " ' ~  or F P ' ~ ] .  The dependency bounds are given by 

inf (FX A [J] (,) + F[~,Pl  -Y 
[ min ( P -  I, \P[(i+l)M-(j+l)N+NMl NM 

j = [ W - l J  ,..., M-I 

(3.6.15) 

. . .  

sup (FpaM1[j] (:) &Y1 [max (0, [w])]) (3.6.16) 
j=o,..., 

inf [h,M] . ( [I] (1) [max (0, [ P r N ( j + ~ ~ M ' i + l " l ) ] )  
(3.6.17) 

j = l w J  ,..., M-I 

for i = 0, ..., N - 1. The symbols (:) and (7) mean that the formulae hold for 
either + or x (or - or +) respectively. Equations 3.6.15-3.6.18 reduce to equations 
(3.4.17-3.4.24) when M = P = N. It is important to calculate the complex index 
expressions in the way they are written here. Otherwise ronndoff error can be 
a problem (because of the floor and ceiling operations). The only floating point 
operation necessary if the formulae are programmed as written here is a division. 
As long as floating point division of an integer by one of its integer divisors gives an 
exact integer as a result, there should be no problems. 

The algorithm for calculating 0,-convolutions needs to be modified also. The 
resulting algorithm for 0 E {+, x)  is presented as algorithm 3.6.19 This algo- 
rithm will only work if N l M P  (i.e. if L is an integer). Otherwise the condensation 
procedure will have to be considerably more complex and, because of necessary ap- 
proximations, it would be less accurate (more outwardly directed rounding would 
be required). The condition N J M P  does not matter however, because, as will be 
shown below, it is natural to adopt the convention that N = min(M, P ) ,  and in this 
case the divisibility condition alwdys holds. The modifications to the go-convolution 
algorithm for E {-, t) are exactly the same. 

The above formulae and algorithms give results which are not at  all surprising. 
The two examples presented in figures 3.22 and 3.23 show that the representation 
error containinerlt property has been preserved. 



Algorithm 3.6.1 9 

3.6.4 Numerical Algorithms for Splitting Distributions into 
Positive and Negative Parts and Recombining Them 

Having dispensed with the above preliminaries, our attention can now be focussed 
on the details of implementing (3.6.7-3.6.14). As was the case with the original am- 

convolution algorithm (section 3.4.3), it will be found simpler to  work directly with 
the algorithms, rather than attempting to determine appropriate formulae first. 

Algorithm 3.6.20 implements (3.6.7) and (3.6.8). Let N be the number of points 
in Fx, and let Nf and N -  be the resulting number of points in F$ and Fi. 
Then algorithm 3.6.20 splits Fx into F$ and FF. An example calculated with this 
algorithm is shown in figures 3.24-3.26. The random variable with the distribution 
given in figure 3.24 was split into positive and negative parts. The two parts are 
shown in figures 3.25 and 3.26. This algorithm results in positive and negative 
parts that have a number of points equal to the number of points used to represent 
the positive and negative values of the original distribution. That  is, if i,i, is the 
minimum value of i such that ~$"[i] > 0, then N+ = N - i,i,; and if j,,, is the 

" ["I . maximum value of j such that Fx [ I ]  < 0, then N -  = j,.,. It is often the case that 
N+ t N- > N because of the difference between px and px. 

Implementing (3.6.5) and (3.6.6) using the numerical representation is rather 
more complicated. Let us first consider how many points should be used to represent 
the results of the various uo-convolutions. Because a smaller number of points used 
to represent an input distribution results in a greater distance between the lower 
and upper output distributions (see the examples presented in figures 3.22 and 3.23), 
it makes sense to restrict the number of points used to represent the output to at 



Figure 3.22: Result of the numerical calculation of a a,-convolution of X and Y. 
The variable X is uniformly distributed on [2,4] and the variable Y has a Gaussian 
distribution with p = 4 and o2 = 2 and is curtailed to p * 20. In both cases 
N y  = 40. The thin line is for Nx = 20, and the thick line for Nx = 50. 



Figure 3.23: The lower and upper dependency bounds for subtraction for the same 
variables as for figure 3.22. Again Nv = 40, and the two cases presented are for 
N,y = 20 and Nx = 50. 



/* First the positive part is constmcted. */ 
for(; := 0; ~ p ] [ i ]  1 0; i++); 

p, := 1 - i /N;  

for(k := 0; i < N; F$[^'[k++] := F'F1[i++]); 

N+ := k;  
-[A]. . for(i := 0; Fx [z] < 0; i++); 

:= 1 - i / N ;  
"+[A] . for( j  := 0; j < N+ - ( N  - i); Fx [J++] := 0); 

-+[A] . -In1 . while(j  < N t )  Fx [I++] := Fx [%++I; 
/* Now the negative part is constructed. */ 

"[A1 . for(i := 0; Fx [z] 5 0; i++); 
N- : = i ;  

- [,'I for(k := 0; i > ~ ; ~ f ; ' ~ ~ [ k + + ]  := -Fx [--i]); 

for(i := 0; fpl[i] < O ; i + + ) ;  
--[A1 fo r ( j  := 0; j < N -  - i; Fx [j++] := 0); 

--[A\ . [A] 
while(j  < N-)Fx []++I := -ex [-A]; 

Algorithm 3.6.20 

most the minimum of the number used to represent the inputs. This is henceforth 
adopted as a convention. It means we do not use an unnecessarily large number of 
points to represent the output of a go-convolution calculation. 

Having done this, equations (3.6.5) and (3.6.6) can be considered to be simply 
of the form 

H(z) = aF(z)  + bG(z). (3.6.21) 

Ignoring for the moment the complications introduced by having all the above quan- 
tities interval valued (see equations 3.6.11-3.6.14), the general approach used to cal- 
culate (3.6.21) is outlined in algorithm 3.6.22. Here it is assumed that H, F, and G 
are all represented by N points. The idea behind the algorithm can be pictured in 
terms of a graph showing both F["] and G["]. Moving along the z-axis from the left to 
the right, a t  each step that is encountered (be it in F or G), an appropriate amount is 
added to H. The variable k keeps track of how high H is and the "while(t < 1/N)" 
loop accumulates sufficient steps in F and G to correspond to a step in H. This 
algorithm is only approximate because of the implicit directed rounding associated 
with-this-while-loop;--A-lgorithm-3;6~.222 gives-the-correctdirected round'mg-for thep 
lower approximation to H. 

When all the additional complications (of a and b being interval valued, and F 
and G being interval valued with a different number of points used to represent them) 
are incorporated, the algorithm becomes rather more complicated. The details are 



Figure 3.24: An example distribution which is to be split into positive and negative 
parts. 



Figure 3.25: The positive part of the distribution in figure 3.24. 



-3.60 1.80 7.20 12.6 18.0 23.4 28.8 34.2 39.6 

Figure 3.26: The negative part of the distribution in figure 3.24. 

f := a / N ;  g := b / N ;  t := 0; k := i  := j := 0; 
whi le (k  < N ) {  

whiIe(t  < 1 / N ) {  
if(FIA] [ i ]  < G [ " ] ~ ] ) {  

x := ~ [ " ] [ i + + ] ;  t+= f; 
} 
else{  

x := ~ [ " ] l j + + ] ;  t+ = g ;  
} 

1 
~ [ " l [ k + + ]  := z; t-=1/N; 

1 

(3.6.22) 

Algorithm 3.6.22 



omitted here as too much space would be required. The main idea used is that 
in (3.6.21), in order to obtain the minimum or maximum at  any given z ,  it is not 
necessary to consider the minimum or maximum obtained at some previous z. This 
allows the calculation to proceed point by point. 

The difficulties mentioned in the above two paragraphs are relatively straight- 
forward to solve when compared with those encountered in attempting to calculate 
(3.6.9) numerically. At first sight it is surprising that this is the case as (3.6.9) seems 
rather simple. The difficulties arise because of the need to represent Ez and Fz by 
the same number of points, and because of the possibility of a "mismatch" either 
side of the x = 0 line, while all the time attempting to preserve the representation 
error containment property. No final solutions to this are offered here. It should 
be remarked however, that this operation of combining the positive and negative 
parts of each of the lower and upper distributions need only be performed if either 
the combination of random variables being performed is the last one in an overall 
probabilistic arithmetic calculation, or if the following operation requires the whole 
distribution. The latter possibility is the case when the following operation is either 
a subtraction or an addition. If a given operation is to be followed by a multiplica- 
tion (say), then there is no need to combine the positive and negative parts as the 
overall distribution would only have to be split up again. 

3.6.5 Conclusions on the use of Mixtures for Nonmono- 
tonic Operations 

The use of mixtures for splitting random variables into positive and negative parts 
for calculating dependency bounds for nonmonotonic operations has been consid- 
ered and many of the details worked out. Because of our desire to maintain the 
representation error containment property, the algorithms have been more complex 
than they would have been otherwise. Further work is needed to see whether the use 
of mixtures can solve all the difficulties associated with nonmonotonic operations. 

3.7 Conclusions 

The idea of ~robabilistic arithmetic which would allow one to work with random 
variables in the same way that one works with ordinary numbers was introduced 
in section 3.1. It was seen that the first step in developing such an arithmetic was 
to examine ways of numerically calculating convolutions of distribution functions. 
The phenomenon of dependency error and a suggested manner of handling it (de- 
pendency bounds) led to a numerical representation of distribution functions. This 
representation was shown to be also suitable for numerically calculating ordinary 
convolutious. The main difference between the representation adopted in this chap- 
ter and other methods that have been suggested is that the present method allows 
the representation error always to be bounded. By the representation error contain- 



ment property of the lower and upper approximations, one always knows that the 
true distribution is contained within the lower and upper bounds. 

Other methods, in comparison, not only have unknown errors (although the or- 
der of magnitude may be known), but often the combination rules are rather more 
complex than those used in this chapter. An example of this is the H-function 
based method described in [164,406,447]. This method is based on the use of rules 
expressing the distribution of certain convolutions of random variables whose distri- 
bution functions are H-functions in terms of other H-functions [776]. Not only is this 
method restricted in the type of distributions it can handle (the standard parametric 
distributions), but its combination rules are very complex and even when an answer 
is calculated (in terms of H-functions), a computer program needs to be used to cal- 
culate the point values of the distribution because its expression is so complicated. 
The method proposed in the present chapter is better than the methods discussed 
in chapter 2. 

Whilst some of the groundwork for a useful probabilistic arithmetic has been laid, 
a good deal of further work is required. As well as the specific points mentioned 
earlier (measures of dependence based on copulas, the use of mixtures for non- 
monotonic operations, and the development of algorithms for implementing other 
operations such as log and exp), it will be necessary to examine methods of using 
the convolution and dependency bound algorithms to calculate the sort of results we 
are after (solutions of random equations). The appropriate point of departure for 
this is the consideration of algorithms which have been used successfully in interval 
arithmetic [17,583]. Since interval arithmetic can be considered as a very crude form 
of probabilistic arithmetic where the only information known about a distribution is 
the smallest closed interval containing its support, it is hoped that ideas that have 
been useful in interval arithmetic will also be of use for more general probabilistic 
arithmetic. 

Another aspect which deserves consideration is the acquisition of lower and upper 
approximations to distribution functions from sample data. A natural idea is to con- 
sider the lower and upper bounds as forming a confidence band. However there are 
many problems which arise with this scheme, such as whether the confidence region 
should be considered pointwise or overall and how one should combine the confi- 
dence levels of two distributions which are combined in the course of a probabilistic 
arithmetic calculation. Further investigation is required here. Also worth pursuing 
is the relationship between the ideas examined in this chapter and recent ideas on 
uncertainty such as fuzzy set theory and generalisations of probability theory (e.g. 
Dempster-Shafer theory [732,868]). This is done in the following chapter. 

It seems that the phenomenon of dependency error may turn out to be the biggest 
obstacle to a successful probabilistic arithmetic. It may be that probabilistic arith- 
metic will be no better in terms of accuracy and computational complexity than 
Monte Carlo simulations followed by statistical estimation of the resultant proba- 
bility distributions. This possible intractability of all methods other than Monte 
Carlo simulation has been considered by several authors in the general context of 



probabilistic theories of physics, especially quantum mechanics [178,265,301,883]. In 
[265], Feynmann argues that the only way to "simulate" some probabilistic systems 
is to use a probabilistic computer. This is because determining all the distribution 
functions and then integrating over those we are not interested in is intractable in 
many cases: 

For example, suppose there are variables in the system that describe the 
whole world ( x A , x ~ )  - the variables XA you're interested in, they're 
"around here"; x~ are the whole result of the world. If you want to know 
the probability that something around here is happening, you would have 
to get that by integrating the total probability of all kinds of possibilities 
over XB. If we had computed this probability, we would still have to do 
the integration 

PA(XA) = / P(XA, XB) ~ X B  

which is a hard job! But if we have imitated the probability, it's very 
simple to do it: you don't have to do anything to do the integration, you 
simply disregard what the values-of XB are, you just look at the region 
X A  [265, p.4731. 

What Feynmann is saying here is that if one calculated some complex joint dis- 
tribution analytically, then in order to determine (not necessarily one-dimensional) 
marginals of this distribution it is necessary to perform the above integration. If, 
instead, the probabilistic processes have been simulated (imitated), one needs only 
to look at  the quantities of interest; it is not necessary to integrate out the other 
variables. This is true regardless of whether the variables are independent or not. 

The non-locality of physical theories can be considered to be analogous to depen- 
dency error arisinn in the course of a probabilistic arithmetic calculation. In such a - 
calculation one needs to keep track explicitly of all the dependencies that arise due 
to common subexpressions, whereas in a Monte Carlo simulation these dependen- 
cies take care of themselves. The course for an improved probabilistic arithmetic is 
thus clear: it will be necessary to develop further methods of handling dependency 
error, making controlled approximations in order to avoid intractability. Recalling 
Manes' result mentioned in section 3.1.3 [540], such a course may prove useful to 
other uncertainty calculi as well. 

In summary then, we have developed new methods for calculating convolutions 
and dependency bounds for the distributions of functions of random variables which 
are better in several respects than previously available methods. We have presented 
examples which show that the methods are feasible and readily implemented. We 
have suggested that these methods might form the basis of a "probabilistic arith- 
metic" suitable for calculating the distribution of functions of random variables. We 
have seen that the biggest obstacle to such an application is the phenomenon of 
dependency error, but we have also shown that the concept of dependency bounds 
can be used to reduce the effect of this error. The properties of these dependency 
bounds are explored further in chapters 4 and 5. 



Chapter 4 

Relationships with 0 t her Ideas 

The only essential knowledge pertains to the 
inter-relatedness of things. 

- Jorge Luis Borges 

[MIy subject does not ezist because subject matters in 
general do not ezist. There are no subject matters; no 

branches of learning - or, rather, of inquiry: there are 
only pmblems, and the urge to solve them. 

- Karl Popper 

4.1 Introduction 

The techniques developed in chapter 3 have a number of interesting connexions with 
other ideas, some new, and others surprisingly old. This chapter is devoted to the 
study of these connexions. In summary, we will discuss the following issues: 

We shall see that simple cases of the analogue of our dependency bounds for 
random events were considered by George Boole in his Investigation of the 
Laws of Thought published some 125 years ago and we shall see how these 
results have been recently extended (section 4.2). 

The prospects of using graph-theoretic techniques for probabilstic arithmetic 
calculations will be considered, and we will review a number of ideas related 
to this (section 4.3). 

* Different theories of interval-valued probabilities will be examined and con- 
trasted with the probability bounds arising in chapter 3. In particular we will 
discuss the Dempster-Shafer theory of evidence. It will be shown that none 
of the methods presented to date (apart from those discussed in section 4.2) 
derive from the same motivation as our methods (section 4.4). 

0 We shall show that the dependency bounds have an intimate connexion with 
the methods of calculating with fuzzy numbers, and thus we will provide a 
probabilistic interpretation of fuzzy set theoretic operations (section 4.5). 



Finally we will discuss two different approaches to probabilistic arithmetic: the 
approach we have taken, and that taken in the study of probabilistic metric 
spaces. We will show that the latter is a more ''positivist'' notion and we will 
argue that our approach is more meaningful, but that it engenders more severe 
mathematical difficulties (section 4.6). 

This chapter became rather larger than the author expected because of the sur- 
prising number of interconnexions that were found. However, for ease of reading 
and comprehension, each of the sections can be read separately, and there is only a 
small amount of cross-referencing between sections. 

4.2 George Boole's Results on F'rhchet Bounds 
and Some Recent Extensions and Applica- 
t ions 

Boole means something that no one has understood yet; 
the world is not ready to understand him. 

- Stanley Jevons 

Boole's treatment of probability bafled his 
contempomries, and I do not pretend to understand 

him fully. 
- Glenn Shafer 

Never clearly understood, and considered anyhow to be 
wrong, Boole's ideas on probability were simply 

bypassed by the history of the subject, which developed 
along other lines. 

- Theodore Hailperin 

The dependency bounds we examined in chapter 3 can be traced back to Frkchet 
[279,280], Salvemini [705], Gini [123] (see 11831) and eventually to George Boole. 
Boole considered problems where no dependency information is known in his book 
"An Investigation of the Laws of Thought, on which are founded the Mathematical 
Theories of Logic and Probabilities" [97]. In this section we will examine Boole's 
results on these problems, and we will describe some recent work which generalises 
his results. Some of these new results suggest directions for further research on our 
"dependency bounds" for functions of random variables. All of these results are 
for probabilities of events, and not for random variables. We shall see that Boole's 
work on probability is not quite as impenetrable or useless as some authors have 
suggested. In fact we shall find that it contains the groundwork for a potentially 
powerful technique of use in Artificial Intelligence systems that have to manage 
uncertain knowledge and inferences. 

We are considerably aided in our study of Boole's work by Hailperin's admirable 
book [355] "Boole's Logic and Probability." Hailperin has presented Boole's results 
in modern notation and has been foremost in extending his results using the modern 
techniques of linear programming. His work is discussed in detail below. 



4.2.1 Boole's Major and Minor Limits of Probabilities 

Boole was unhappy with the need to make many assumptions in the normal appli- 
cation of the calculus of probability. As he puts it in a letter to De Morgan dated 
4th August 1851: 

The grand difficulty in the common theory is to know what hypotheses 
you may lawfully make and what you cannot [765, p.511. 

He was particularly concerned with problems where it was necessary to assume in- 
dependence of the constituent probabilities in order to arrive at a definite answer. 
Interestingly (and confusingly), Boole is not consistent in his approach to such dif- 
ficulties. For example, on page 256 of [97] he says 

When the probabilities of events are given, but all information respecting 
their dependence withheld, the mind regards them as independent. 

Hailperin [355, p.2211 adds that "in the face of a specific problem with material 
content Boole appears to back down from his position." We shall see below that it 
is quite the opposite view which seems appropriate for interpreting Boole's minor 
and major limits. 

The above quoted position of Boole came under criticism by Wilbraham [865] 
(subsequently replied to by Boole [99]), and more recently by Jaynes [409]. Wilbra- 
ham's critcism and Boole's reply are discussed in detail by Hailperin [355, pp.266- 
2781. Jaynes' criticism is by far the most powerful, and, as seems invariably the case 
in arguments about the foundations of statistics, not a little acrimonious. He is quite 
contemptuous of Boole who he takes to task for ill-founded criticism of Laplace's use 
of prior distributions (in Bayesian type inference). (Boole was actually influenced 
quite a lot by Laplace: MacHale [534, p.2041 says Laplace "played a significant part 
in Boole's Development.") Jaynes notes, with irony, that 

Boole, after criticizing Laplace's prior distribution based on the principle 
of indifference, then invokes that principle to defend his own methods 
against the criticisms of Wilbraham. 

He goes on to say that 

[Boole's] own work on probability theory contains ludicruous errors, far 
worse than any committed by Laplace. . . . While Laplace considered real 
problems and got scientifically useful answers, Boole invented artificial 
school-room type problems, and often gave absurd answers [409, pp.241- 
2421. 

Boole made a number of mistakes confusing probabilities of conditionals with con- 
ditional probabilities. His work on minor and major limits is essentially sound in 
principle though (if not in all its details). Nevertheless it seems to have been largely 
ignored up until very recently: 



Surprisingly, however, Boole has been given very little credit for his 
contributions in this area [probability theory] by present-day probability 
theorists and historians of mathematics; many textbooks or even history 
books on the subject do not even mention his name [534, p.2111. 

Boole first examined the type of problems we are concerned with in a paper 
he wrote around 1850, but which was not published until after his death, when 
it was communicated to the Transactions of the Cambridge Philosophical Society 
by his friend Augustus De Morgan [98]. Boole was led to examine bounds on the 
probabilities of certain compound events for which his "general method" for solving 
probability questions gave indeteminate answers. Boole describes these cases by 
saying that the data given "are insufficient to render determinant the value sought" 
and thus "the final expression will contain terms with arbitrary constant coefficients" 
[97, p.171. Under these circumstances, one can either obtain new data (if possible) 
to "render the numerical solution complete," or, "by giving to their constants their 
limiting values 0 and 1, determine the limits within which the probability sought must 
lie independently of all experiencen [97, p.171 (emphasis added). 

Boole obtained "major and minor limits" for the probabilities of certain combi- 
nations of the events in terms of the unconditional event probabilities. On page 299 
of [97] he gives the following bounds for the probability of a conjunction: 

although he does not use this notation (see also [355, p.2601). Boole also obtained 
analogous but rather more complex results for more complicated logical expressions. 
The above bounds are a special case of the more general results considered by Frkchet 
[279] which are given by 

Theorem 4.2.1 Let xl , .  . . ,x, be events with absolute probabilities of occurence of 
pl, .. . ,p, respectively. Then the bounds 

max(pl, pz,. . . > P,) I P(x1 V zz V . . . V x,) < min(l,pl + pz +. . . + p,) (4.2.2) 

and 

max(0, p, + p2 + . . . + p, - (n - 1)) I P(xl A $2 A . .  . A x,) 5 min(pl, pz, . . . , pn) 
(4.2.3) 

are the best possible given no further information. 

PROOF. We will simply prove that the bounds for n = 2 hold. The case for 
general n follows by induction. The best possible nature of the bounds is proved by 
constructing a set of events (for any given set of {pi}) such that the bounds are met 
[279]. The bounds (4.2.2) and (4.2.3) follow from the standard rules of probability 
theory: For events A and B, these state that 



P(A)  = 0 if A = 0, 
P(7A)  = 1 - P(A) ,  

P ( A  V B )  = P(A)  + P(B)  - P ( A  A  B ) ,  
P ( A  A B)  = P(AIB)  x P(B) .  

First we prove the bounds for conjunction. We have P ( A  V B )  = P(A)  + P ( B )  - 
P ( A  A B )  + P ( A  A B )  = P(A) + P(B)  - P ( A  V  B). But P ( A  V B )  5 1, and 
so P ( A  A B )  2 P(A)  + P ( B )  - 1. We also have P ( A  A B )  > 0, and therefore 
P ( A  A B )  2 max(0, P(A)  + P ( B )  - 1) .  The upper bound for P ( A  A B )  follows 
from the fact that P(A A B )  = P(AIB)P(B) = P(B[A)P(A) .  Since P ( A ( B )  I 1 
and P ( B [ A )  < 1, we have P ( A  A B )  5 P ( B )  and P ( A  A B )  5 P(A).  Thus 
P ( A  A B )  5 min(P(A), P ( B ) ) .  

The bounds for disjunction are derived similarly: P ( A  V  B) = P(A)  + P ( B )  - 
P ( A A B )  and P ( A A B )  > 0 imply P ( A V B )  5 P(A)+P(B) .  But P ( A V B )  < 1 and 
so P ( A  V B )  < min(1, P(A)  + P(B) ) .  We also have P ( A  V B )  = 1 - P(-(AV B ) )  = 
1 - P ( Z A B )  2 1 - min(P(x) ,  P ( B ) )  = max(P(A), P ( B ) ) .  I 

It is instructive to examine Boole's interpretation of his results on bounds for the 
probabilities of compound events. One might expect, given the somewhat strange 
motivations for his logic [497], that his interpretation of probability would be pecu- 
liar. Boole has often been accused of psychologism1 in his interpretation of logic. 
Richards [683], following the reading of Boole by Van Evra [839], has argued that 
whilst motivated by psychological considerations originally, Boole "was most cer- 
tainly not a defender of logical psychologism" [683, p.311. As already noted, Boole 
was not consistent in his interpretations. Perhaps the best we can do is to quote 
the following passage from the the introductory chapter to The Laws of Thought 

It will be manifest that the ulterior value of the theory of Probabilities 
must depend very much upon the correct formation of such mediate hy- 
pothesis, where the purely experimental data are insufficient for definite 
solution, and where that further experience indicated by the interpreta- 
tion of the final logical equation is unattainable. Upon the other hand, 
an undue readiness to form hypotheses in subjects which from their very 
nature are placed beyond human ken, must re-act upon the credit of the 
theory of Probabilities, and tend to throw doubt in the general mind 
over its most legitimate conclusions [97, p.20]. 

4.2.2 Hailperin's Reformulation and Extension of Boole's 
Bounds Using Linear Programming Methods 

Hailperin 1353-3551 has considerably extended Boole's results using the modern 
theory of linear programming. His bounds are for general Boolean functions of a set 

'Psychologism is the position that "psychology is the most fundamental branch of science, and 
that all other disciplines are special branches of psychology" [683, pp.19-201 



of events {Ai}:=,. His results do not seem very well known and so we state them in 
the following two theorems [354]. 

Theorem 4.2.2 Given any Boolean expression $(Al, .  . . ,A,): 

1. There are numerical-valued n-ary functions L4 and U4 depending only on the 
(Boolean) structure of 4 ,  such that the inequalities 

hold in any probability algebra for which P ( A i )  = ai ( i  = 1 , .  . . , n ) ;  

2. The bounds in (4.2.4) are the best possible; and 

3. The functions Ld and U4 are effectively determinable (by solving a linearpro- 
gramming from the stwcture of 4. 

Railperin extends this result to the case where only bounds are known (in place of 
the ai = P ( A i ) ) .  He gives 

Theorem 4.2.3 Given Boolean polynomial expressions . . ,4, in the vari- 
ables A1,. . . ,A,: 

1 There are two 2m-ary numerical functions L$+) and u$') depending only on 
the structures of $, 4,, . . . , dm, such that the inequalities 

hold in  any probability algebra for which 

2. The bounds in  (4.2.5) are the best possible; and 

3. The functions L;~' and u$') are effectively determinable (by solving a lineal- 
programming problem) from the structures of $, qh,. . . ,&. 

A particularly useful special case of this theorem occurs when bi(Al,. . . , A,) = A; 
for i = 1,. . . , n = m. In such a case, theorem 4.2.3 says that given bounds of the 
form 

ai I P ( A i )  < bi (i = I,.  . . ,n) ,  (4.2.6) 

it is possible to determine bounds on P ( $ ( A l , .  . . ,A,)) in terms of the intervals 
[a;, bi] 3 P ( A i )  ( i  = 1 , .  . . , n). Theorem 4.2.3 only has content when ( 4 ; )  satisfies 
some consistency constraints. For any given sets {4i), {a i )  and {b i ) ,  the consistency 
is efFectively decidable. 



The proofs of these two theorems are essentially contained in [353]. We omit 
all details of the actual determination of the bounds in terms of the formulation as 
a linear programming problem. However we do remark that it was only through 
clever use of duality theorems that Hailperin obtained his results. Ursic [836] has 
considered the same problems as Hailperin and used similar techniques (linear alge- 
bra and linear programming) in an attempt to solve them. He studies the problem 
of calculating bounds which, although not the best-possible, are easier to compute. 
He describes how one can trade off tightness of the bounds against computational 
tractability. Ursic's results are far too intricate to summarise briefly here. Further 
work is needed to determine the practical value of his results. 

Adams and Levine [7] have also considered problems similar to those studied by 
Hailperin in his development of probability logic (see below). They too (with Ursic) 
seem to be unaware of Hailperin's work in this area. Their results are essentially a 
subset of Hailperin's and are not discussed further. However their interpretation of 
the results is interesting. They use their results to determine the degree to which a 
given uncertain inference is deductive. This allows an objective statement of the va- 
lidity of an inference in terms of uncertain propositions. As Genesereth and Nilsson 
[296] point out, this could he of considerable value in Artificial Intelligence systems 
dealing with uncertain inference. A number of other authors (such as Grosof [341], 
Wise and Henrion [373,875,876], Ruspini et al. [30,580,699,700,824] and Driankov 
[221]) have also considered the use of lower and upper bounds on probabilities along 
the lines of those discussed above. We will examine their work in the following 
subsection. 

4.2.3 Application of the Fr6chet Type Bounds to Proba- 
bility Logic 

Hailperin uses the results in theorem 4.2.3 to develop a probability logic which allows 
inferences in terms of the lower and upper bounds for propositions. For example, 
generalising material implication: If P(A) = p, P(A + B) = q then his results 
imply p(B) E [?, + q - 1, q] under the consistency condition p + q > 1. Hailperin's 
results provide a completely general and rigorous framework for uncertain inference. 
Not only is no new measure of uncertainty required (such as fuzzy sets or belief 
functions), but no interpretation problems are caused by the use of these results: 

The notion of probability is presupposed as part of the semantics, and 
questions as to its nature will play no more role than does the nature of 
truth in usual logic [354, p.2011. 

Hailperin's notion of probability logic seems to be the thing Popper had in mind 
when he discussed "probability logic" [659, p.323]: 

[Tlhere exists a logical interpretation of the probability calculus which 
makes logical derivability a special case of a relation expressible in terms 



of the calculus of probability. Thus I assert the existence of a probability 
logic which is a genuine generalization of deductive 10gic.~ 

The idea of a probabilistic logic can be traced back to Leibniz (see [354, p.1981). 
Since then several authors have examined probabilistic generalisations of logic. Let 
us just mention Scott and Krauss [720], Suppes [802], Rknyi [682], Lewis [518] and 
Calabrese [126]. 

Implications for Dependency Bounds for Random Variables 

Hailperin presented a number of examples of lower and upper bounds on the prob- 
ability of Boolean functions. In many cases these bounds were obtained using his 
"full-blown linear algebra technique" [354, p.2091. However the bounds can often be 
calculated in a simpler manner. For instance, the results of the example mentioned 
above (material implication) follow easily from application of the bounds for V and 
the fact that P(7A) = 1 - P(A), given that A + B - B V -A. This is not always 
the case. As an example, Hailperin considers the determination of an upper bound 
for 

P ( lA1  A Az A A3 V 7AZ A Al A A3 V 7A3 A Al A A*) (4.2.7) 

given P(A;) = a; for i = 1,2,3. The best upper bound is obtained (using the general 
linear programming technique) as 

Hailperin [354, p.2111 observes that this result can not be obtained by composition 
of the simple results for V, A and 1 .  

The reason why the composition techniques fail for (4.2.7) is quite simple but 
important. Equation (4.2.7) can not be rewritten in a form with no repeated vari- 
ables. This is why the probability bounds can not be determined pairwise. Observe 
that this is very reminsiscent of Manes' result [540] mentioned in section 3.1.3. The 

~ ~ 

repeated variables cause the pairwise bounds to be not necessarily the best possible 
because not all possible combinations of probabilities will be allowable - there will 
be certain constraints which will prevent t h k 3  The fact that the pairwise bounds 
are quite loose when repeated variables occur was the reason for Cleary's dissatisfac- 
tion with the use of (2.2) and (2.3) [151, p.1461. Even when there are not repeated 
variables, the bounds can rapidly become quite loose (see the example in [47, p.1341). 
This should not be taken as an argument against the probability bounds technique 
though. What it is does show is the danger, even in simple problems, of assuming 
independence in order to obtain a unique value at the end. 

'Popper was discussing this in order to refute the idea of an inductive probability logic that 
allowed (probabilistic) inductive inferences. 

3Repeated variables do not lmply that the pairwise bounds will not he the best possible: the 
occurence of repeated variables is a necessary but not sufficient condition for this to he the case. 



This result has implications for dependency bounds for functions of random 
variables. Obviously the pairwise composition of bounds will give the best possible 
bounds when there are no repeated variables. This will not necessarily be the 
case when repeated variables occur. (Whether or not, in a particular instance, the 
pairwise bounds are best possible is an open problem.) In such cases the prospects 
for determining the best possible bounds are quite daunting. Whereas Hailperin's 
problem is one of finding functions over !En, the determination of dependency bounds 
for random variables entails finding functions over An. This will be, in general, very 
difficult, and it would seem that the effort would rarely be ju~tified.~ (One may as 
well calculate the actual distribution of the function of random variables in question 
by integrating out the Jacobian of transformation. It was due to the complexity of 
this that we adopted the use of the (pairwise) dependency bounds in the first place.) 

Boole-Frkchet Bounds in Uncertainty in Artificial Intelligence 

The use of the Boole-Frechet bounds for "uncertain deduction" has been proposed 
by a number of workers in a field which has come to be known as "Uncertainty in 
Artificial Intelligence." Two collections of papers have been recently published 1420, 
5111 in the field. 

Quinlan [666] was perhaps the first in the Artificial Intelligence community to 
discuss the use of (4.2.2-4.2.3) in his "Cautious Approach to Uncertain Inference." 
It has most recently been considered by Grosof 13411 who has developed Nilsson's 
ideas further [296,619]. Nilsson [619, p.761 has rederived Hailperin's result on un- 
certain modus ponens.  He was aware (like Hailperin) of the need for LLconsistency 
conditions." Nilsson says 

In principle, the probabilistic entailment problem can be solved by linear 
programming methods, but the size of problems encountered in proba- 
bilistic reasoning is usually much too large to permit a direct solution 
[619, p.791. 

(Nilsson was unaware of Hailperin's use of duality results which reduce the com- 
plexity considerably.) Grosof [341], who only considers the calculation of probability 
bounds for disjunction and conjunction, makes the following points about the use 
of (4.2.2-4.2.3) in a probability bounds logic: 

a The use of probability bounds gives a closed and consistent  uncertain inference 
system. 

a Underdetermined information can be represented. 

a The direct use of lower and upper probabilities gives a more general system 
than the Dempster-Shafer theory (see section 4.4 below). 

4However see our discussion of Haneveld's results on stochastic programming problems below. 



No unjustifiable independence assumptions are required. 

Lower and upper probabilities can be empirically acquired via standard confi- 
dence interval procedures. 

a The combination rules of fuzzy set theory are a special case of the Boole- 
Frkchet bounds (see section 4.5 below). 

Appelbaum and Ruspini [30] and Montogomery [580,699] have also proposed the 
use of Boole-Frkchet bounds. They too [699, ~ . 8 9 ]  say that the use of linear pro- 
gramming in order to find the best possible bounds LLis impractical." They argue 
that the probability bounds approach is preferable to the use of the 'Lprinciple of 
insufficient reason" (assumption of independence given no information to the con- 
trary) because the probability bounds approach is rigorous - the result will always 
be correct. Following Martin-Clouaire and Prade [545], Appelbaum et a!. 130, p.751, 
824, p.691 have considered more general lower and upper bounds on the probability 
of conjunction and disjunction based on t-norms and t-conorms. Neither Martin- 
Clouaire and Prade nor Appelbaum et a[. provide a good justification for these. 
Their discussion is in terms of valuations v and they set 

Appelbaum et al. used T = II and M in their experiments with these formulae and 
found that the upper bounds were of little practical value. A more realistic (proba- 
bilistic) approach would be (in analogy with the dependency bounds for Gv # W) 
along the lines 

(and a similar relationship for v(a V b) in terms of T*). The lower and upper bounds 
on T, when set to W and M would give the standard Boole-Fr6chet bounds. If 
W 5 21 or T 5 M then tighter bounds would be obtained. Other authors (such 
as Bonissone 193-951 and Goodman [330]) have also considered the use of general t- 
norms for the combination of uncertain evidence. Their methods are more subjective 
and non-probabilistic and are of little value to us. 

, Wise and Henrion [373,875,876] have considered the use of the Boole-Fr6chet 
inequalities in a manner similar to that described in the previous paragraph. In 
18761 they consider three separate rules for conjunction and disjunction: 

1. "Maximum Correlation" 



2. "Independence" 

P(AAB) = P(A)P(B) 

P(A V B) = P(A) + P(B) - P(A)P(B) 

3. "Minimum Correlation" 

p(A A B) = max(0, p(A) + p(B) - 1) 

P(A V B) = min(l, P(A) +P(B)). 

We would suggest they be used as in (2.9) thus allowing one to write (if one knew 
events A and B were never 'negatively dependent1') 

P(A)P(B) I P(A A B) I min(p(A), P(B)) 

P(A) + P(B) - P(A)P(B) I P(A V B) I max(p(A), P(B)). 

Wise and Henrion [876, p.741 also consider "probabilistic modus ponens" in the 
same manner as Hailperin. They also note that the 'LMaximum Correlation" rules 
are those of fuzzy set theory (see section 4.5 below). Henrion [373, p.1141 make 
the point (with which we agree) that the representability of some notion of depen- 
dence is a more important feature of uncertainty calculi than the fine details of 
representation of single events or propositions. He also makes a number of other 
points which we will be discussing elsewhere (use of graph models and "local event 
groups" (section 4.3) and Monte-Carlo methods or "logic sampling"). Cooper [I651 
has also used the idea of probability bounds and has combined this with the use of 
a graph to represent conditional dependence information. He is awafe of the linear 
programming formulation of the problem, but is unaware of Hailperin's work on 
using duality results to simplify this. 

Grosof [341] and many other authors (e.9. Hailperin and Shafer) studying lower 
and upper probabilities have made use of the relationship 

which comes from the fact that p(A) +- p(-.A) = 1. Grosof suggests that (4.2.10) 
allows one to work with lower probabilities only (rather than lower and upper) - 
if one knows the lower probability of every event, then one automatically has an 
upper probability for every event. We mention this because it is in fact of no use 
when random variables are considered. To see this consider 

Thus "-.An = LLX 2 x." Assume we know &(x) (the lower bound on the dis- 
tribution function of X). Now P(7A) = P(X > x) = 1 - Fx(x). However 
1 -Fx(x) = Sx(x) (the survival function of X). Thus we can use lower probabilities 
only, if we carry around the lower distribution function and the lower survival func- 
tion. This is equivalent to carrying both the lower and upper distribution function 
and so no advantage is gained. 



4.2.4 Further Results on Distributions known only by their 
Marginals 

We will now review some further recent work on problems where only marginal 
distributions are known. We will briefly look at the problem of compatibility of 
joint distributions and then consider some problems arising in project planning. 
Perhaps the most surprising feature of some of these problems is that the more 
general (and more useful) problem where only the marginal distributions are known 
is easier to solve than the problem where independence is assumed. 

Compatibility of Marginal Distributions and  t h e  Existence of Joint  Dis- 
tributions 

One problem which has attracted a lot of attention is that of the compatibility of 
marginal distribution functions, especially higher dimensional marginals [183]. This 
is related to the general problem of the existence of multivariate distributions with 
given marginals. Let us just mention some of the literature on the topic: [157,288, 
442-445,458,483,611,697,753,782,854,8631. Schweizer and Sklar discuss the compat- 
ibility problem in terms of copulas in [718]. The extension of bivariate results to 
higher dimensions has proved surprisingly difficult. For example the analogue of 
the 2-copula W is in fact the best lower bound on multidimensional distribution 
functions with uniform marginals, but it is not itself a copula. A good (but some- 
what dated) review of the compatibility problem is given by Dall'Aglio [183]. This 
~roblem does not concern us directly and is not discussed any further. It would 
be of considerable importance however if tighter bounds on compound expressions 
involving more than two variables were to be studied further. 

Project  Planning and  Other  Network Problems 

Problems formulated in terms of sets of random variables known only by their 
marginals arise naturally in network problems. Let I  = {I,. . . ,n) be a set of 
nodes and let I,, . . . , Ik be subsets of I such that u:=~I~ = I  and so no two I j  are 
ordered by inclusion ( { I i )  is known as a clutter over I ) .  The blocking clutter to 
{ I j )  is a clutter J1,.  . . , Jl such that I, n J, = 63 Vr, s and Jj  are minimal sets with 
this property. Given a DAG (Directed Acyclic Graph), I  is known as a system and 
{Ii):=, and {Jj)f=, are the paths and cuts of the system. Each node i has a weight 
Xi associated with it. 

The problems we will discuss are various optimal value functions of { X i ) .  These 
include 

P E R T  Critical Path M = max Xi over the clutter of paths.(4.2.11) 
1 S j S k  

Maximum Flow L = min Xi  over the clutter of cuts. (4.2.12) 
l<i<l ieJ, 



Shortest Route S = mjn X; over the clutter of paths. (4.2.13) 
l<,<k 

~€1, 

Reliability System Lifetime T = max minx j  = p i n  maxX,. (4.2.14) 
l<j<k ;€I, rS~<_l iEJ, 

Two special cases are the pure parallel (k  = n, I, = {j} 1 5 j 5 n) in which case 
M = S = T = maxiErXi and L = CiEIXi; and the pure series (lc = 1) in which 
case M = S = xiGI Xi and L = T = rniniE1 Xi. 

Lai and Robbins [496] have considered the determination of E M ,  where M, = 
max(Xl, . . . , X,). They were actually interested in determining EM, when all the 
Xi are independent. Whilst it is known that in this case 

where F is the common marginal distribution of Xi, (4.2.15) is in general 'very 
difficult to evaluate. In the maximally dependent case it can be shown that 

where a, = inf{xl F(x)  2 1 - i}. Lai and Robbins study how close m, and m; are. 
(They turn out to be surprisingly close.) We note that their constructions would be 
a lot simpler if the concept of a copula was used. 

More interesting to us (with regard to probabilistic arithmetic) is the evaluation 
of the distribution of M in the pure series case. Riischendorf [695] has used a 
general duality result obtained in [287] and discussed in [693] in order to obtain 
lower and upper bounds on P { M  5 x]. Riischendorf's results in [695] are similar 
to our-dependency bounds for sums. In describing these bounds he simply writes 
sup,(F(x-) + G(t - x)) and inf,(F(x-) + G(t - I)), obviously implicitly including 
the max and min operations required to keep the result within [0, 11. His results were 
published contemporaneously with Makarov's [536] (the precursor to Frank, Nelsen 
and Schweizer's paper [277]). Riischendorf obtains one explicit result for bounds on 
df(CLl Xi) when df(X;) = Uos (the uniform distribution on [O,l]). These are a 
special case of Alsina's results [23]: 

Riischendorf also gives some results on 

n 

4n(t) = SUP P{CXi I t} 
F . . F  ;=I 

where F, = df ( X i )  for i = 1,. . . , n and F is the joint distribution function. If G 
is a subadditive, strictly isotone function with G o F;'(x) < x for all x E [O, 11, 



then &(t) < ;G(t). If G is a superadditive isotone function with G o  Frl(s) 2 x 
for all x E 10, I], then &(t) 5 $G(t). Riischendorf's results should be compared 
to those in chapter 5 of this thesis where we examine the dependency bounds for 
df(+ CE1 Xi) as N -+ a. Riischendorf did not use copulas and seems unaware of 
the work of Schweizer et al. in this area. Nevertheless he has found the viewpoint 
of copulas or uniform representations useful recently 16981. 

Klein Haneveld's use of Duali ty Results 

Klein Haneveld [464] made use of several duality results and rearrangement tech- 
niques [287,696] in order to determine distributions of project completion times in 
PERT networks. He assumes the marginal distributions of the subproject comple- 
tion times are known, but not the joint distribution. He calculates the worst case 
results over all possible joint distributions. His paper contains a large number of 
detailed results and we can not do it justice in the space available here. 

We note that Klein Haneveld's "inner problem" was of the following form. De- 
termine h(t), where 

M(x) = max C x i ,  
j=l, ..., k . 

lEZj 

x E SRn (the project completion time) and EH denotes the expectation over H. 
This calculates the cost of a "promised completion time" of t .  If independence of 
the random variables is assumed it is possible to obtain bounds for the expected 
value of M(x) 1284,2941 or its distribution function [685,751]. The problems defined 
by (4.2.16) have also been studied by Cambanis et al. [127,128,694]. They have 
determined bounds for EHk(X, Y) where H E 7-l(Fx, Fy)  and k is "quasi-monotone" 
(i .e.  2-increasing like a copula). Whilst these problems are somewhat different to 
the type of problems we have been concerned with, they are of interest because the 
same basic approach has been taken (determining lower and upper bounds assuming 
no dependency information). 

One of Klein Haneveld's most surprising results is his analysis of "worst-case 
marginals." Assume we only know very limited information about the marginal 
distributions. Then what are the worst possible marginals (in terms of project 
completion time) satisfying the known information? Klein Haneveld solves this 
problem for the situation where the support, or the support and mean or mode 
of the marginals are known. He notes that the case of knowing the support and 
mode "is the most interesting, since it contains precisely the information which is 
usually supposed to be known in PERT networks" 1464, p.178]. Using results of 
Zatkovi [901] and Dupatovi [245], Klein Haneveld manages to solve this problem 



in an elegant manner. We will briefly return to a discussion of this in section 4.5 
below where we consider fuzzy PERT networks. Duality in marginal problems was 
also the subject of Kellerer's difficult paper [446]. 

4.3 A Forest of Graph-Theoretical Ideas 
Structure between variables has received too liitle 

attention in statistics.  
- S.L. Lauritzen and D.J. Spiegelhalter 

Probability i s  not really about numbers, i t  is about the 
structure of reasoning. 

- Glenn Shafer 

The use of graphs [359] for representing structural relationships (conditional in- 
dependence) between random quantities is a powerful technique with apparently 
considerable potential for probabilistic reasoning and probabilistic arithmetic. In 
this present section we will review the applications of graph theory to stochastic 
problems and show how it can be used to understand problems arising in proba- 
bilistic arithmetic. Our aim is to explore the possibility of using graph-theoretical 
techniques to aid probabilistic arithmetic. We have already seen (section 4.2.4) the 
study of probabilistic PERT, which is a problem involving random variables on a 
series-parallel graph. 

In subsection 4.3.1 we will see how graphs have been used in studying networks 
of events. Most of this work has appeared in the artificial intelligence literature. 
Subsection 4.3.2 examines analogous ideas for networks of random van'ables. These 
methods have appeared mainly in the statistical, biological and sociological liter- 
ature. They are used in studying causal models. These methods can in fact be 
considered as a rather weak and restricted form of probabilistic arithmetic. A graph - - 

representation aids the understanding of the control layer for probabilistic arithmetic 
calculations. In subsection 4.3.3 we will consider how techniques used by computer 
scientists in the construction of optimizing compilers might be profitably employed 
in probabilistic arithmetic. This is a quite different use of graph-theoretical tech- 
niques. We shall see that whilst certainly providing a clear understanding of the 
problems, unfortunately these methods do not manage to produce solutions for the 
situations we are concerned with. Finally in subsection 4.3.4 we will draw some 
conclusions on the use of graph theoretical ideas for probabilistic arithmetic. 

The one theme that is repeated through this section is the desirability of having a 
graphical structure which is a tree. We have already mentioned (section 3.1) Manes' 
general result [540] which shows this effect for a variety of uncertainty calculi. 



Figure 4.1: Directed graph representation of the expansion (4.3.18) 

4.3.1 Networks of Probabilities of Events: Bayesian Net- 
works, Belief Networks and Influence Diagrams 

Bayesian networks or causal networks or belief networks are a way of representing a 
set of interdependent probabilities by use of directed graphs. Pearl5 [193,194,636- 
6421 has been foremost in developing these methods (see also the recent review by 
Cooper [166]). The basic idea is to use a directed graph to represent the conditional 
independence [I881 properties of the probabilities of a set of events. This is best 
explained by an example. 

Given a joint probability P(xl,  . . . , x,) of n events we can always write 

This expansion can sometimes be simplified. For example we may be able to write 

Equation (4.3.2) can be expressed graphically as in figure (4.1) which describes some 
conditional independence relations. For example x3 is independent  of x2 given xl. 
But x3 may not be independent of x2 given xl and x~ because x6 depends on 25  which 
in turn depends on x2 and x3. It is possible [637, p.2481 to determine conditional 
independence relations solely in terms of the graph model. 

The main advantage of this graphical representation is computational: it allows 
advantage to be taken of conditional independence in order to reduce the wm- 
putational complexity. Whilst theoretically this is of course possible without the 

'The review of Pearl's work below was written before the author could read [641]. This book 
provides a detailed examination of the material summarised below plus a lot of other ideas. It is 
now the preferred reference for this material. 



graphical representation, it is much harder to do so. The graphical representation is 
easily understood in an intuitive manner. Pearl has shown [637,642] how, given a set 
of probabilities with a tree structure (which is unknown), it is possible to determine 
the actual tree structure solely from the pairwise dependencies of the leaves. This 
can be done in O(n log n) time, where n is the number of leaves. Whilst of interest, 
this is not of enormous ~ractical  use because the method is extremelv sensitive to 
errors in the estimates of the correlation coefficients. Furthermore it does not solve 
the (still open) problem of determining good tree structured approximations to sets 
of probabilities that are not in fact tree structured. 

Given a network which is not a tree, there are several approaches which can be 
taken. Brute force methods can always in principle be used to propagate proba- 
bilities, but these are intractable for realistic problems. Instead, one can attempt 
to transform the graph into a tree. Pearl [639] discusses two ways of doing this: 
clustering and conditioning. 

Conditioning (reasoning by assumptions) entails instantiating a node (setting it 
to a fixed value) and then computing the probabilities. One then sets the node 
to a different value and recalculates. The largest probability is then chosen. The 
effectiveness of this method depends to a large extent on the topological properties 
of the network. (It is necessary to instantiate an entire cycle cutset to make the 
network singly connected. This results in a complexity exponential in the size of the 
cyclic cutsets [639, p.1991.) More promising is the clustering approach. This entails 
forming compound events (local event groups) such that the resulting network (of 
clustered events) is a tree. As noticed by Barlow [501, p.202], this is similar to Chat- 
terjee's [I401 modularisation of fault trees6 It is also reminiscent of Downs, Cook 
and Rogers' partitioning approach for the statistical analysis of interconnected sys- 
tems [220]. One method of clustering Pearl has studied in some detail [639], is based 
on the formation of clique-trees using an algorithm of Tarjan and Yannakakis [819]. 
These transformation methods are in fact relevant to a wide variety of problems on 
graphs (we return to this shortly below). 

A method of handling graphs which are not trees which does not involve trans- 
forming the graph is to use stochastic simulation [638]. This uses random samples 
(Monte Carlo methods) in order to estimate propagated probabilities. The method 
has been suggested by several authors [374]. (Pearl [638] gives a brief review of early 
attempts.) Pearl improves the efficiency of the simple application of the method by 
taking some account of the structure of the graph involved. Recall that we have 
already discussed (section 3.7) the use of Monte Carlo simulations to perform prob- 

61n the same volume as Chatterjee's paper there are several other papers, the results of which 
may be profitably applied to belief networks. These include Mazumdar on importance sampling 
[555] (this would increase the efficiency of stochastic simulations of belief networks); Rosenthal 
[690] on the NP-completeness of finding the reliability of the top event when the fault "tree" is not 
in fact a tree (common cause events) - this is an analogue of the NP-completeness results known 
for general belief networks [166]; and Lambert [499] on measures of importance in fault trees and 
cutsets (this might be useful in deciding which nodes in a belief network could be discarded, in 
order to reduce computational complexity, without affecting the final results greatly). 



abilistic arithmetic type calculations. 

Loops in  Networks in  Constraint  Satisfaction Problems 

As well as occurring in probabilistic problems, the presence of loops in a network 
(non-tree structure) causes difficulties in "any problem where globally defined solu- 
tions are produced by local computations, be it probabilistic, deterministic, logical, 
numerical or hybrids thereof" [639, p.1991. Examples of such problems include the 
class of Constraint Satisfaction Problems (CSP) [193,194,640]. A number of prob- 
lems arising in artificial intelligence can be formulated in this manner. Constraint- 
Satisfaction problems are easy if they are "backtrack-free" [193, p.8]. This is equiv- 
alent to their graph being a tree. In 16401 Pearl shows how the propagation of 
probabilities in a belief network can be considered as a CSP. In [I941 he describes 
an algorithm for rearranging a graph in order to make it easier to handle. The algo- 
rithm uses the ideas of triangulating a graph, identification of maximal cliques and 
the notion of a dual graph. Different CSPs soluble by these methods are described 
in [193]. 

Constraint propagation formulations7 of problems similar to those we have been 
studying in this thesis were examined by Davis [187]. The type of problems he 
considers are explained by the following example. Consider three nodes with the 
labels X E [l, 101, Y E [3,8] and Z E [2,7] combined with the constraints X+Y = Z 
and Y 5 X. Davis shows how application of the Waltz algorithm [852] tightens the 
labels to become X E [3,4], Y E [3,4] and Z E [6,7]. This idea has been applied 
to the analysis of electrical circuits [463] and geometrical reasoning [560]. Davis 
encountered exactly the same sort of problems as we have been discussing in this 
section: When the graph representing the structure of the problem is not a tree, then 
the standard methods give poor results 1187, p.306 and 311). Nonlinear constraints 
also cause severe difficulties. In fact Davis concludes rather negatively on the whole 
enterprise: "We have not found any arguments that the partial results computed by 
label inference should be adequate for the purposes of AI" [187, p.3161. 

Influence Diagrams 

Influence diagrams are similar to Pearl's belief networks with the addition of de- 
cision information. Influence diagrams were developed some time ago as an aid 
to automated decision analysis [576] and have been promoted recently by Shachter 
[729-7311 and others. The value of influence diagrams is that they allow a graphi- 
cal means for manipulating and exploiting conditional independence structure. For 
example whilst the fact that 

'Constraint propagation can be considered to be simply a programming style (see [508]). Con- 
straint programming languages are declarative and non-procedural and seem to be a natural and 
simple way of formulating many problems arising in artificial intelligence. 



is equivalent to 

~ ( x > Y ,  t) = P(y)P(xly)P(tly) (4.3.4) 
can be readily determined using the rules of the probability calculus, similar trans- 
formations on larger sets of variables are rather more difficult. The rules for influence 
diagram transformations are simply a way of performing such transformations in a 
manner that is easier to use. 

Apart from being a suitable basis for the construction of expert systems which 
deal with uncertain information [9,10,679], and representing "semantic modularity" 
for plausible reasoning [370], influence diagrams have been used for analysis purposes 
[53,54]. Barlow [52] has suggested them as an alternative to the decision tree for 
Bayesian decision analysis. He describes an application of this idea (calibration of 
a measuring instrument) in [53]. 

The mathematical basis of influence diagrams or belief networks is presented 
most clearly by Smith in [769] where all the relevant theorems are rigorously proved. 
A good recent and general review which does not go into too many details is [767]. 
Another recent (and very detailed) paper with considerable discussion at the end 
is Lauritzen and Spiegelhalter's [501]. At the end of their paper they suggest the 
following extensions as suitable goals for further research: 

1. The incorporation of imprecision in probabilites (lower and upper bounds). 
These bounds could then be propagated through the system in order to provide 
lower and upper bounds for the final result. 

2. Consideration of the LLmeta-level" of control. The point is that global propa- 
gation may be unnecessary because of high level restructuring. 

3. Extension to nodes representing continuous measurements. 

Item 1 above is obviously reminiscent of our probability bounds. Item 2 corresponds 
to Bonissone's [93,94] "control layer." Item 3 was solved to an extent by the recent 
paper [502] which integrates belief networks with covariance structure models. These 
are graphical models which describe interrelationships between continuous random 
variables. They are the topic of the next subsection. Another possible extension 
(suggested by Smith [768, pp.25-261) is the depiction of "weakn relationships - 
i.e. relationships which are "almost" conditionally independent. This is related to 
the use of correlation coefficients in path models (see below) and our preliminary 
attempts at just this problem in section 3.5. 

4.3.2 Path Analysis and Covariance Structure Modelling 

Path analysis is a graphical technique for statistical modelling which Moran [585, 
p.931 has suggested should be regarded "solely as a shorthand aid to the correct use 
of the regression equations such as (4.3.5) and (4.3.6)": 



where the x l j  are constants and 

Nevertheless it is a very useful aid and one that is continuing to find wide application 
in the biological and social sciences. 

The technique involves making the following assumptions: 

1. All the variables in the system under consideration have a joint probability 
distribution with finite first and second moments. (Normality is not assumed 
though.) 

2. The conditional expectations are linear functions of the other variables (4.3.5). 

3. The variates are related by a conditional independence structure. Thus when 
conditioned on the appropriate variates, the conditional distributions are in- 
dependent of all the other variables (which we have not conditioned on). 

Path analysis can be explained simply in terms of a "covariance algebra" [452, 
chapter 21. Writing C(X, Y) for the covariance between X and Y, the rules of this 
are that 

2. C(kX,Y) = kC(X,Y), 

3. C(X, X) = V(X) (the variance), 

If all the variates are standardiseds (zero mean, unit variance) by change of units, 
then we can represent linear models as in the following example: 

and 
X4 = cXl + dX2 + ex3. 

This can be represented as in figure (4.2). The quantities a, b, c, d, e are known as 
path coeficients and plz is the correlation between X1 and X2 (which equals the 

'The advantages of using standardised variables and coefficients are explained in detail by 
Wright in (8891. 



Figure 4.2: Path diagram of the linear model described by (4.3.7) and (4.3.8). 

covariance because of the standardisation). The two main tools of path analysis are 
the first law and the tracing rule. 

The first law says 
PYZ = C P Y X ~ P X ~ Z  

i 

where pyxi is the path coefficient (or "causal parameter") from Xi to Y, p x , ~  is the 
correlation between Xi and 2, and { X i )  is the set of all variables that are "causes" 
of Y. This law follows from rules 2 and 4 of the covariance algebra. 

The tracing rule (which only applies to hierarchical models without loops) is as 
follows: The correlation between Xi and Xi equals the sum of the product of all the 
paths obtained from each of the possible tracings beween i and j .  The set of tracings 
includes all the possible routes from Xi to Xi given that a) the same variable is not 
entered twice, and b) a variable is not both entered through an arrowhead and exited 
through an arrowhead. For the above example this rule says that p,, = a+bp,,. The 
whole point of path analysis in practice is to help determine the causal parameters 
(the p's), although this is sometimes impossible [452, pp.34ffl. 

Path analysis is not intended to be a black box procedure for accomplishing 
the "impossible task of deducing causal relations from the values of the correlation 
coefficients" [887, p.1931 (but see our mention of the recently developed TETRAD 

program below). The theory was originally developed by the geneticist Sewall Wright 
[885-8891 and has since found wide application in the social [27,241,242,371,500] and 
biological [34,70,678] sciences. 

There are, of course, many aspects we have not mentioned in this very concise 
overview of path analysis and covariance structure modelling. These include the dif- 
ferent types of models (recursive versus nonrecursive [783]), difficulties encountered 
when the number of equations is far greater than the number of coefficients to be 
determined [887, p.1931, the problem of estimating the parameters of the models 
[.371,417], and the problem of interpreting the models [243,828,888]. Further details 
can be found in the books on the subject which include [84,244,452]. A good concise 
review is given in 18321. A more recent review is 13211. 

From our point of view (investigating probabilistic arithmetic), the most serious 



problem is the difficulty in handling product terms (XY). Whilst the relationships 
in standard path analysis do not have to be entirely linear, they have to be linear 
over the range of values considered [888, p.20], which of course amounts to the 
same thing. The topic of interaction (as it is called) has "received scant attention" 
[452, p.2541. The term "interaction" is used because the situation considered is 
Y = (a + bZ)X instead of Y = ax. Here Z is another random variable. In his 
original presentation of path diagrams [886, p.5631 Wright recognized "multiplying 
factors [as amongst] the most important." He suggests that if the coefficients of 
variation (ux/pX) are small, then the approximate formula 

could be used (see section 2.2.2). 

Product terms have been considered in more detail in [88,156,312] and ratio terms 
are examined in [714]. Glass [312] has used Pearson's formula [644] for spurious 
correlation (see section 3.1) and [757]) in order to study effects of product terms in 
path models. Cohen 11561 has generalised Glass's results and provides a discussion 

~ ~ 

of the interpretation of product terms as interactions. He also considers powers 
of variables and compound product and polynomial terms. Nevertheless, all these 
efforts will only work well for small coefficients of variation because the formulae 
used are all based on the linearisation of a nonlinear function by a Taylor series 
expansion. In general, nonlinear functions are handled quite poorly. Whether the 
more sophisticated approach outlined in section 3.5 of will prove better is a matter 
for further research. 

Finally let us just mention that graph-theoretical models have received increased 
attention in recent years with the development of sophisticated computer programs 
such as LISREL and TETRAD which allow more complex models to be examined. 
LISREL is described in [521]. It is a method of estimating the parameters of co- 
variance structure models. The more complex task of estimating the structure has 
also received attention. TETRAD [315,316,712] is a program designed to do just this. 
Such a task is obviously a t  the core of scientific research and thus not surprisingly 
there is considerable debate about the philosophy behind this approach. There is a 
wide literature on the philosophy of probabilistic causality. Some of the more recent 
works include 1118,134,217,248-250,253,357,365,394,704,803]. 

There is obviously room for a lot more work to be done in extending the methods 
of path analysis to more general operations and relationships between random vari- 
ables. Perhaps eventually it will be possible to integrate the techniques discussed 
here with the copula based methods discussed in section 3.5. Use of different mea- 
sures of association (instead of the correlation coefficient) would be the first step in 
this direction. 



Figure 4.3: DAG representations for (4.3.10) and (4.3.11). 

4.3.3 Common Subexpression Elimination in Probabilistic 
Arithmetic by DAG Manipulations 

A rather different use of graph-theoretical ideas for probabilistic arithmetic arises in 
the elimination of common subexpressions from arithmetic expressions. An example 
of this is can be found in chapter 7 where we evaluate (by hand) the distribution 
of the elements of the inverse of a random 2 x 2 matrix. The entries of the inverse 
matrix in terms of the entries of the original matrix can be written in the form 

X =  
A 

AD - BC' 

It is not possible to evaluate the distribution of X in terms of pairwise applications 
of the DL-convolution formulae because the A term appears twice. However we can 
see that dividing through by A gives 

which can be analysed in terms of pairwise uL-convolutions. It is the purpose of the 
present subsection to study when and how such transformations can be performed, 
and to consider the prospects for an algorithmic application of these transformations. 

This 
problem 
machine 

goal has arisen before in the field of code generation for compilers. The 
there is, given an expression such as (4.3.10), determine a sequence of 
instructions which will evaluate (4.3.10), preferably in the shortest time 

possible. It is common to use a DAG (Directed Acyclic Graph) representation of 
expressions in order to analyse this problem. We can represent (4.3.10) and (4.3.11) 
by the DAGs in figure 4.3. Note that the direction of the arcs is implicit in these 
diagrams by the ordering vertically down the page. We can immediately see that 



the property of having no common terms (or subexpressions) corresponds to the 
DAG being a tree. For completeness, a straight-line programs implementing (**) is 
given by 

where rl and rz are registers. 

In generating code within a compiler it is usual to not assume that the al- 
gebraic laws (such as distributivity) hold because of the rounding error in floating 
point arithmetic. Nevertheless, the problem of optimal code generation for arbitrary 
expressions (with common subexpressions) is NP-complete [14] (there are still diffi- 
culties in determining the evaluation order over the DAG). The ptoblem is relatively 
easy for trees [13] or "collapsible graphs" [660]. Taking account of associative and 
commutative properties of operators is easy on trees [728] but is difficult otherwise. 

The general problem (which is of interest to us) where both algebraic laws are 
assumed to hold and common subexpressions or repeated terms can occur "has re- 
ceived little attention in the literaturen [324, p.6331. The only papers explicitly 
addressing this issue are [324] and [106]. The second reference simply reports the 
application of a method similar to Horner's rule [466, p.4671. Gonzalez and Ja'Ja' 
[324] have made a detailed and intricate study of the problem. They consider only 
multiplications and additions and assume that the distributive law holds. They de- 
velop an algorithm which will transform an expression DAG into a tree whenever 
this is possible and another which determines whether an expression calculated by 
the new DAG is the same as the original one. Gonzala and Ja'Ja' prove a theorem 
(their theorem 5.1) which characterises when an expression can be transformed into 
a tree. It essentially says that this can occur only when there are no repeated terms 
when expressed in a standard canonical form. (This is hardly surprising.) They also 
present a number of complexity results including the fact that even if the arithmetic 
expressions are of degree 2 (degree of the expression when viewed as a polynomial), 
then determination of an equivalent expression with the minimal number of arith- 
metic operations is NP-hard [323]. Their results are not extendable to the more 
general case we are interested in (arbitrary expressions including subtraction and 
division operations). 

More complex results have been obtained recently by Reif, Lewis and Tarjan 

'Straight-line programs play an important role in computer science, not only practically but 
theoretically as well. Lynch [533] has suggested a number of reasons why straight-line program 
length is a good measure of algorithmic complexity. Straight-line programs have also been used 
a s  a method for representing and manipulating polynomials in symbolic algebra systems [282](see 
also [367]on the optimal evaluation of expressions in such algebra systems). We return to this 
aspect in the following subsection. 



[680,681]. They consider more general program structures (not just straight-line 
programs), and more general arithmetic operations. Their original motivation was 
the "symbolic analysis" of programs. This involves constructing, for each expres- 
sion in a program, a symbolic expression whose value is equal to the value of the 
program expression for all ~ossible executions of the program. Whilst reasonably 
efficient algorithms for a restricted class of programs can be developed [681], the 
general problem, even over the integers, is not only difficult but it is provably un- 
decidable?' Whilst this result only shows the impossibility of general global flow 
problems, it certainly removes some of the hope we may have had for the possibility 
of automatic rearrangement of even simple programs for the purposes of probabilis- 
tic arithmetic. Note that whilst there exist a number of tools and results on more 
general graphical structures for representing programs with control flow (such as the 
program dependence graph [120,397,475,725]), these are unlikely to be of value for 
our purposes. 

Whilst the above results do not help us greatly in solving the problem of repeated 
variables in probabilistic arithmetic, they do provide good understanding of the 
difficulties involved. Manes [540] has made use of a general semantics of flowgraphs 
[32,541] in order to prove his powerful "meta-theoremn on the effect of tree structures 
in uncertainty calculi. There is still some hope for useful results in this area, but 
see our comments in the following subsection. 

4.3.4 Conclusions: The Difficulties of Manipulating Graphs 
of Random Variables 

Having trekked through such forests of trees what can we conclude? Unfortunately 
very little which can not be surnmarised in the motto Trees are trivial; Nets are 
not. We have seen that whether it be belief networks, covariance structure models 
or arithmetic expressions in compiler construction; the existence of a tree structure 
makes the problem feasible." Whilst there are other classes of graphs which tend to 
be relatively easy (such as series-parallel graphs1'), in general non-treelike structures 
cause severe difficulties. 

Ironically, the relationship between graph structures and probability theory (from 
the point of view of rearranging expressions to remove common subexpressions) may - -  - 
welibe in the opposite direction to that which we envisaged. In [282], ~ r e e d a n  i t  
al. have considered the use of straight-line programs as a representation of polyno- 

"In order to prove this important result Reif and Lewis [680, p.3081 make use of Matijasevic's 
[552] negative solution to Hilbert's tenth problem which says that determining whether a polync- 
mial Q(X1, Xz, . . . , X I : )  has a root over the integers is recursively unsolvable. 

"Recently a very wide variety of "easy" problems on graphs have been unified by the notion of 
tree-decomposibility [33]. These problems extend past the implementation of uncertainty calculi. 

12Sahner and Trivedi [702] study probabilistic problems very similar to ours (they consider 
addition, max, min and selection of ktb largest operations on random variables) on seriesparallel 
graphs. Their method of solution, perhaps not surprisingly, entails decomposing the graph into a 
tree using the algorithm in [838]. 



mials in symbolic algebra systems. They often obtain large (greater than 5000 line) 
programs in the course of computations and have investigated ways of optimizing 
these programs in the manner of [15]. A very efficient and clever method they have 
developed to do this is their StraightOpt3 procedure which works as follows: 

All instructions in the program are evaluated at random values for the 
indeterminates modulo a random prime. Then a binary search tree is 
built to sort their values. If a value of a new instruction is found in 
an existing leaf, the corresponding instructions are assumed to compute 
the same function and the new one is eliminated from the program. 
The algorithm is Monte Carlo and its running time is that of sorting, 
essentially O(I1og I ) ,  where I is the length of the [straight-line program], 
since, with high probability, the search tree is well balanced [282, p.227). 

Application of StraightOpt3 to a 11614 line program produced by a factorisation 
algorithm resulted in a 27% saving in instructions. 

Whilst StraightOpt3 is Monte Carlo and thus can be wrong, the probability of 
this occurring could be made arbitrarily low. Thus again we see the advantage 
of Monte Carlo algorithms. Such algorithms have been used for multi-dimensional 
integration for some time now, and have recently found applications in primality 
testing, optimization [213] and other "hard" problems. It is our contention that 
ultimately it will only be Monte Carlo based methods which will be able to handle 
complex system of interacting uncertainties. 

4.4 Other Lower and Upper Probability Meth- 
ods 

O u r  results indicate that an objectivist, frequency- o r  
propensity-oriented, v iew of probability does not 

necessitate an  additive probability concept, and that 
internal-valuedprobability models can represent a type 

of indeterminancy not captured by additive probability. 
- Peter Walley and Terrence Fine 

M y  preference i s  for intervals because they  can be based 
on  objective knowledge of distributions, and because 

this compatibility i s  demonstrable. 
- Henry Kyburg 

The use of dependency bounds or Boole-FrGchet bounds leads to lower and upper 
probability distributions or probabilities. Since there have been a number of pro- 
posed systems utilising lower and upper (or interval-valued) probabilities in recent 
years, it seem worthwhile to compare these models with our use of lower and upper 
probabilities. We will see that interval-valued probabilities have been introduced in 
a wide variety of ways. Some authors have explored epistemic (subjective) proba- 
bilites and credal states in this manner. Others, notably Fine and his co-workers, 
have proposed an objective frequentist interpretation of interval-valued probabili- 



ties and have shown how such effects can arise in real physical systems. We will 
examine these and other systems below. We do not go into these in much detail. In 
some cases (especially Fine's work), there are a lot of very technical results which 
it is impossible to summarise in a couple of pages. Instead we will present a fairly 
non-technical overview. 

4.4.1 The Dempster-Shafer Theory of Belief Functions 
I do not believe in belief. 

- Karl Popper 

First we will examine the Dempster-Shafer theory of belief functions which has 
attracted a lot of attention in recent years. It is based on Shafer's [732-7381 exten- 
sions of Dempster's [198,199,199-2021. The method has found a number of appli- 
cations 185,322,5281, and has been recommended as being suitable for uncertainty 
propagation in expert systems. It has recently been extended by Yager to enable 
representation and arithmetic operations on belief functions representing imprecise 
numbers [892].13 We shall see below that the lower and upper probabilities arising in 
the Dempster-Shafer theory are quite different to those arising from our dependency 
bounds. The main difference is that we consider the bounds to be secondary to the 
primary notion of a single valued probability. Lower and upper probabilities arise 
in Dempster-Shafer theory because of imprecise assignment of the probabilities in 
the sample space: probabilities are assigned to subsets of the sample space rather 
than single elements of it. Thus they are more of a primary notion. 

T h e  Elements of t h e  Dempster-Shafer Theory of Evidence 

The following brief summary is based on that appearing in [893]. Let X be the 
universe of discourse (akin to the sample space). We assume X = {XI, xz, . . . , x,] 
is finite, although most results can be extended to infinite spaces [735]. Let m be a 
measure on 2X (the power set of X) such that 

3. m(A) = 1. 
ACX 

13Yager's work can be considered to  be a straight-forward analogue of the histogram or DPD 
methods for calculating functions of random variables in terms of discrete representations of their 
distribution functions (see section 2.4). Yager does not consider methods of condensation of the 
resultant belief structures (although this would not be difficult to do). In this sense Yager's results 
are trivial, and since he has not described any applications of the method, it seems to be of little 
interest to us here. Of course this is not to say that it does not have the potential to be useful. 
Indeed, this is why we are examining the basis of the Dempster-Shafer theory. 



The measure m is called a basic probability assignment (bpa) function. A focal 
element is any subset A of X such that m(A) > 0. If all the focal elements are 
singletons, then the belief structure is called a Bayesian belief structure and all the 
results reduce to the standard rules of probability theory. The union of all the focal 
elements of a belief function is called the core. 

The Belief and Plausibility functions defined by 

Bel(B) = m(A) A C B C X (4.4.1) 
ACB 

and 
PI(B)= m(A) A , B C X  (4.4.2) 

AnB#0 

are important in the theory and behave like lower and upper bounds on P(A) (we 
always have Bel(A) 5 P(A) 5 Pl(A)). Writing the complement of B as B = X \ B,  
we can state an important property of Be1 and P1 as 

This can be rewritten as 

If the belief structure is Bayesian then Bel(A) = P(A) = Pl(A). Equations 4.4.3 
and 4.4.4 are why the theory is called nonadditive. Shafer [734,736] sets considerable 
store by this, arguing that it is a more accurate model of human reasoning under 
uncertainty. Berres [71, pp.493ffl has shown how the "degree of nonadditivity" of 
a belief function can be measured in terms of an integral defined over the belief 
function. 

The point of the above constructions is to allow a Urnore uncertain" assignment of 
probabilities to events. Instead of specifying an exact probability of an event, one can 
assign some probability to a subset A c X without specifying how the probability 
mass is to be distributed within A. It is argued that this gives a more realistic 
representation of total ignorance than the assignment of a uniform or noninformative 
prior in the ordinary Bayesian probability model. 

Combination of Belief Functions 

When we have two pieces of evidence represented by belief functions we may wish 
to "combinen them in to one piece of evidence. The usual method of doing this 
is to use Dempster's rule of combination [732], although alternative rules do exist. 
Dempster's rule is also called the orthogonal sum ($) of belief functions. The 
operator is essentially "anding" independent belief structures. Let m and m' be the 



bpa's of the belief functions Be1 and Belt with cores {Al , .  . . , A,} and {Bl , .  . . , B,) 
respectively. Then 

and (rn $ ml)(0) = 0. Since p and q are of the order of 2Ix1, this rule can have a 
very high computational complexity. Very recently approximations to (4.4.5) which 
reduce its complexity have been considered [844]. Dempster's combination rule can 
be represented in terms of the theory of Markov chains. Norton [622] has used this 
representation to study the limiting effect of updating belief functions with (4.4.5). 
(That is, he studies lia,, @:="=,rn;.) His results can be summarised by saying 
that evidential support tends to converge to single focal elements (or small groups 
of them). The actual details depend on the specifics of the corresponding Markov 
model used. 

The assumption of indepedence of the separate pieces of evidence is important 
for (4.4.5) to be valid. This assumption has been criticised by a number of authors 
[235,849]. Williams 18681 has argued that not only should independence not be 
assumed (for epistemic probabilities), but that the very notion of independence "is 
not defineable within the terms of the theory given its view of the nature of evidence" 
1868, p.3871. Errors resulting from repeated nodes (common cause events) in a fault 
"tree" when analysed using Dempster-Shafer theory have been reported by Guth 
[347]. His suggested solution to this amounts to the computation of a global belief 
function (akin to working with the complete joint distribution). However, as he 
confesses in a footnote, this scheme is impractical (computationally): for even a 
small example it was necessary to resort to Monte Carlo simulation. Dempster and 
Kong [203] have made some progress in applying the ideas of Lauritzen, Spiegelhalter 
and Pearl (see the previous section)14 on graph theoretical techniques for handling 
complex probability structures to the Dempster-Shafer framework. They use the 
idea of trees of cliques in order to be able to independently combine subgroupings 
of nodes. Nevertheless, they too conclude: "We expect, however, that realistic 
practice will quickly drive us to Monte Carlo approximations, the study of which 
is just beginning" [203, p.3671 Further work on more complex structures of belief 
functions has been reported by Kohlas [469] and Shafer and Logan [739]. 

Further  Problems with  t h e  Dempster-Shafer Theory  and  i t s  Relationship 
t o  Classical Probabili ty Theory 

As well as the difficulties of independence in combinations reported above, the 
Dempster-Shafer theory has been criticised in terms of the empirical acquisition 

14Pearl [636] has compared the Dempster-Shafer theory with Bayesian probability structures 
on trees and has argued in favour of the latter. 



of belief functions. Whilst introduced by Dempster in the context of sampling in- 
ference [198,200,202], there are many difficulties still to be resolved. Lemmer [510] 
has said that there is 

strong support for the conjecture that Dempster-Shafer theory cannot, 
in principle, be empirically interpreted as a calculus applicable to sample 
spaces, if the belief functions about these sample spaces arise from the 
real world by any sort of reasonably error free process of observation. 
Thus though the numbers produced by this theory are often termed 
probabilities, they cannot be interpreted as probabilities about sample 
spaces [510, p.1181. 

Statistical aspects of Dempster-Shafer theory have recently begun to receive further 
attention [283,399]. 

It is tempting to ask whether the problems associated with Dempster-Shafer 
theory are simply a result of it masquerading as ordinary probability theory. In 
any case it is interesting to examine to what extent the procedures of the theory 
can be derived from the standard basis of probability theory (based on Bayesian 
belief structures).15 Baron [56] has examined Dempster-Shafer theory in the light 
of "second-order probabilities" (probabilities of probabilities), and has shown that 
Dempster's rule of combination is a special case of a more general rule for combining 
second order probabilities. This general rule is derived using just the usual basis 
for probability. Baron considers belief functions to be a special case of second-order 
probabilities. 

Falmagne [259] has studied the embedding of belief functions in higher-order 
probability spaces and has shown that "the values of the belief function have . . . an 
interpretation in terms of events, in the embedding space, involving random vari- 
ables" [259 p.35]. He proves a theorem (his theorem 4) which gives a representation 
of a belief function Be1 over a finite set X in terms of a collection {Pol 6' E X )  of 
jointly distributed random variables. In this representation, the belief in B C X is 
interpreted as the random event 

{max{Pol 0 E B) > 0 > rnax{Pb16' E (X \ B ) ) )  . (4.4.6) 

Falmagne explains how (4.4.6) can be understood in terms of a random utility model. 

Kyburg, Suppes, Zanotti and t h e  Relationship Between Dependency 
Bounds a n d  Belief Functions 

Of more interest to us is the work of Kyburg [493] and Suppes and Zanotti [808]. 
Kyburg proves the following theorem: 

"The question of whether Dempster-Shafer theory is better than ordinary probability theory for 
some problem is a different matter altogether. We will briefly discuss this below in the context of 
other uncertainty calculi as well. For now just note that Smets [761] has constructed an example 
problem which he solves with both theories. The reader is then invited to choose which answer he 
likes best and thus choose the appropriate theory! 



Theorem 4.4.1 Let m be a probability mass function defined over a frame of dis- 
cernment Q. Let Be1 be the corresponding belief function, Bel(X) = Cacxm(A). 
Then there is a closed, convex set of classical probability functions Sp defined over 
the atoms of Q such that for every subset X of 0 ,  

Bel(X) = min P(X) .  
PESp 

This theorem says that any belief function can be represented as a lower probability. 
The converse is not true without a further restriction. That is, not every lower 
probability is a belief function. Sufficient conditions are given by Kyburg's theorem 
(A.2): 

Theorem 4.4.2 If Sp is a closed convex set of classical probability functions defined 
over the atoms of 0 ,  and for every Al,. . . ,A, C 0, 

min P(A1 U . . . U A,) < (-1)111+' min P (4.4.7) 
IC{l, ..., "1 

then there is a mass function m defined over the subsets of 0 such that for every X 
in 8, the corresponding Be1 function satisfies 

Bel(X) = min P(X) .  
PESp 

This says that for a lower probability function to be a belief function it must be a 
capacity of infinite order [139,144]. (The right-hand side of equation 4.4.7 describes 
a capacity of order n, which is the highest order possible here.) Not all lower 
probabilities satisfy this. For example, Suppes and Zanotti [808, p.4371 point out 
that if 'P is some arbitrary but nonempty set of probability measures, then 

P(A) = inf P(A) - 
PEP 

is not a capacity of infinite order, and LLthus cannot be generated by a random 
relation on a probability space." 

The result of this is that belief functions are special types of lower probabilities. 
Lower probabilities defined by (4.4.8) (and the analogous upper probabilites defined 
by F(A) = S U ~ ~ ~ . ~  P(A)) are not belief and plausibility functions. Since we feel that 
it is these lower and upper probabilities that are of the most interest (they are how 
the dependency bounds arise), the theory of belief functions has little to contribute 
to the theory of dependency bounds and the lower and upper probabilities generated 
by them. 

Dempster-Shafer Theory as an  Alternative Uncertainty Calculus 

Although Dempster-Shafer theory is of no apparent value for our dependency bound 
studies, it does have a number of other advantages for the purposes of a general cal- 
culus of uncertainty. We do not have the space (or the motive) to review this here. 



Instead we simply refer the reader to some recent reviews on this topic. Bonissone 
and Tong [96] and Pang e t  al. [629] have both presented brief reviews of different 
methods. Two better reviews giving a lot more detail are [320,372]. These pa- 
pers compare Bayesian probability, Dempster-Shafer theory, Fuzzy set theory and 
the MYCIN certainty factors. The conclusions drawn include the fact that each 
method has advantages and disadvantages and thus no one method is best in all 
circumstances; in some applications it does not seem to matter much which is used, 
although in others it does; and all four methods are quite closely related (see es- 
pecially [372, p.7111). Relationships between belief functions and other uncertainty 
calculi have also been explored in [340,738]. 

4.4.2 Fine's Interval-Valued Probabilities 

Fine [268,339,422,484,630,850,851,880] and his co-workers have developed a theory of 
interval-valued probability which has some elements similar to the Dempster-Shafer 
theory. However Fine's motivation was rather different to Shafer's. Whereas Shafer's 
theory was developed from the point of view of epistemic (subjective) probability 
judgements, Fine has worked closer to the objective interpretations of probability. 
This is not to say he discards epistemological uncertainties. In fact he suggests 
that his model can handle both ontological and epistemological indeterminancies 
[851]. Elsewhere, Wolfenson and Fine [880] have considered the decision theoretic 
viewpoint (instead of the inferential). 

From an engineering point of view one of the most interesting applications of 
the theory is the construction of stochastic models for empirical processes that are 
stationary but have fluctuating (diverging) time averages. These can not be mod- 
elled by a standard probability model (by the Ergodic theorem), but they can be 
modelled by interval-valued probability models [339,484]. An example of this is the 
modelling of flicker noise in quartz crystal oscillators. We do not have the space to 
provide any technical details on Fine's work here. A very good recent review article 
has been published by Fine [268]. In any case, the main point is that he considers 
lower and upper probabilities which arise in circumstances quite different to those 
we study (which arise from dependency bounds). However there seems to be no 
reason why these two approaches could not be integrated, although further research 
is needed in order to achieve this. What we feel is the most surprising aspect of 
Fine's theories is that they do not appear to have been adopted and studied further 
by other authors. It is not just a matter of developing a nice theory for its own sake. 
As Fine has said 

Overall, our objective is not the creation of yet another anemic math- 
ematical 'theory'. Rather we wish to come to grips, through selected 
probability-like structures, with certain features of naturally occurring 
nondeterministic phenomena so that we can better understand and make 
use of these phenomena. 



4.4.3 Other LowerlUpper Probability Theories 

There have been a wide variety of other lower/upper probability theories proposed 
over the years. We just mention some of them briefly. 

Epistemic theories of interval-valued probabilities have been studied by Koopman 
[472,473], Smith [762,763] and Suppes [805,806]. Higher-order probabilities (the 
probability of a probability) are discussed by Skyrms [760], Cyranski [179], and Good 
1326,3271. Models of comparative probability (instead of numerical probability) have 
also been suggested as being more suitable for modelling human judgement [269, 
8501. Issues regarding making decisions based on probability bounds or lower/upper 
probabilities are discussed in [522,535]. (There is in fact no great difficulty in making 
decisions based on interval-valued probabilities.) Some good general discussions of 
the idea of "intervalism" (use of lower and upper probabilities in preference to single 
valued ones) can be found in [492,494,513-515,5231. Levi's discussion in [514, section 
9.81 is particularly relevant with a regard to our earlier remarks comparing the two 
approaches of taking probability intervals as primary or secondary objects. Levi 
takes convex sets of credal states and derives lower and upper probability envelopes. 
He argues (page 200) that this is preferable to beginning with an interval-valued 
probability measure and then developing other notions in terms of it. 

Because of the amount of literature on the topic (we have not been at all exhaus- 
tive in our above citations), we do not make any further attempt to synthesise or 
summatise what are in many cases quite divergent opinions. We feel however that 
the main aim of the section has been achieved: to show that there is a wide variety of 
lower/upper probability theories, but in all cases the lower/upper probability arise 
in quite a different manner to our dependency bounds. 

4.5 Fuzzy Arithmetic of Fuzzy Numbers 
The concept of fuzzy numbers is expected to play 

important roles in solving problems describing 
ambiguous systems such as mathematical programming 

and deterministic systems as is applied to fizzy 
language probability, fuzzy programs, fuzzy neurons etc. 

- Masaharu Mizumoto and Kokichi Tanaka (1976) 

Algebraic calculus on real fuzzy sets is devoted [sic] to 
play a central role in the development of the theory of 

fuzzy sets and its applications to systems science. 
- Didier Dubois and Henri Prade (1979) 

A great amount of work has already been accomplished. 
However, the ability to apply fuzzy concepts to practical 
problems requires a somewhat deeper understanding of 

the specificity of Zadeh's theory. 
- Didier Dubois and Henri Prade (1980) 



It i s  still too early t o  u t ter  definite judgements about 
the actual benefit of introducing fuzzy numbers in 

topology or  random variable theories, as well as the 
usefulness of this concept in engineering applications. 

- Didier Dubois and Henri Prade (1987) 

Fuzzy arithmetic is a topic, rather similar to probabilistic arithmetic, which has 
received considerable attention in recent years. In this section we will compare these 
two ideas in some detail. We will study the differences between the two ideas in terms 
of their philosophical basis and interpretations, practical computation methods and 
practical efficacy. We will show that the fuzzy arithmetic combination rules are 
in fact almost identical to the dependency bounds we developed in the previous 
chapter. This allows a probabilistic interpretation of fuzzy set operations. Much 
of what we have to say may be considered controversial to some, but we feel our 
arguments are sound and there is a only a very small amount of speculation (and 
this is clearly indicated as such). We begin with an outline of fuzzy sets. 

Given some universe U, a fuzzy set F 18961 on U is an imprecise subset of U .  
The set F is described by its membership function p~ which takes values on [0,1]. 
Thus if U = E, then for some x E U ,  if pF(x) = 1, then x is definitely in F; if 
p ~ ( x )  = 0, then x is definitely not in F. The value of px(x) expresses the "degree 
of membership" of x in F. As long as there is at least one x such that p ~ ( x )  = 1, 
then F is said to be normal. A fuzzy set is usually considered to represent linguistic 
vagueness rather than stochastic uncertainty. However this is not always the case. 

Fuzzy sets can be combined under the normal set-theoretic operations as follows: 

Intersection p ~ n ~ ( x )  = min(p~(x) ,  p ~ ( x ) )  

union PF~G(X) = max(p~(x) ,  PG(X)) 
Complement pF(x) = 1 - pF(x). 

Alternative combination rules defined in terms of t-norms and t-conorms have also 
been considered. We will discuss these below. Many other operations can be per- 
formed on fuzzy sets, but as we shall see there is considerable dispute about' the 
correct definitions and interpretations for many of these. Of most interest to us 
is the situation where the fuzzy set represents an imprecise number. In this case 
one can define rules for arithmetic operations on these fuzzy numbers. This is the 
subject matter of fuzzy arithmetic and is the focus of the present section. 

There are two main types of fuzzy numbers which we will discuss. (Whilst 
Dijkman et al. 12141 talk of several different types, they can all be considered to 
be variations of the two types we will consider.) The first type, studied by Hohle, 
Klement, Lowen and others [390,391,465], considers a fuzzy number to be defined 
by a nondecreasing membership function (which looks like a probability distribution 
function). This approach is very similar to the use of distribution functions in 
probabilistic metric spaces [718]. We will briefly return to this idea of a fuzzy 
number below where we compare it with the other (more widespread) notion. 

Fuzzy numbers are considered by Dubois and Prade and others [239,432,579, 
8971 to be a fuzzy generalisation of the notion of an interval in interval analysis: 



they are fuzzy sets of real numbers. We say X is a fuzzy number if its fuzzy 
membership function px  is normalised (sup,px(x) = 1) and is pseudo-convex or 
quasi-convex [529,833] (px(y) 2 min(px(x),px(z)) Vy 6 [x,z] C %). (Note that 
pseudo-convexity, otherwise known as unimodality, has sometimes erroneously been 
called simply "convexity" in the fuzzy set literature. Of course convexity is inti- 
mately related to unimodality: see [211].) 

By an analogy with the method of calculating functions of random variables, 
the extension principlei6 [897, p.2361 is used to calculate the membership function 
of Z = f (Xi, .  . . , X,) where Xi are fuzzy numbers with membership functions 
pxir i = 1,. . . , n. This says that 

When n = 2 and f = +, we have the "sup-min convolution" 

The min operator is the fuzzy set intersection operator and it can be replaced [26] 
by a general t-norm T. We then obtain the more general extension principle (for 
n = 2 \ a s  

This is obviously very similar to the TT,~ .  operations we have encountered in studying 
dependency bounds. The difference is mostly in interpretation (although there is 
the minor difference that px is unimodal whereas Fx is monotonic - this leads to 
only slight changes in the procedures used to numerically calculate (4.5.2)). The 
theory of fuzzy numbers outlined above is nowadays described in terms of "possibility 
theory" and "possibility distributions." We shall return to this topic after we have 
examined the general interpretation of the modal terms "possible," "probable," and 
'Lnecessary." A review of the theory of fuzzy numbers including work up to  1987 is 
given by Dubois and Prade in [239]. 

The rest of this section will cover the following material: 

1. Numerical methods for calculating the fuzzy number combinations described 
by the extension principle. We will also consider the notion of interactivity of 
fuzzy numbers which is an analogue of dependence for random variables. 

16Manes [539, p.6041 has said that "Mathematicians do not usually feel that the existence of 
such formulas deservqs to be called a 'principle' . . .". He goes on to point out a number of severe 
deficiencies in the mathematical basis of fuzzy set theory and contrasts it with Topos theory and 
his general distributional set theories (see [540]). We do not have space here to describe Manes' 
substantial results and we simply remark that his work should be classed amongst the major 
contributions of the field. 

Some authors have given derivations of the extension principle [605,853], but these are quite 
different to Manes's and their interpretations of fuzzy sets have a number of shortcomings. 



2. A general critical discussion of the interpretations of the modd terms "possi- 
ble," "probable," and "necessary." This was undertaken because of the recent 
appeal by fuzzy set theorists to a "theory of possibility" on which fuzzy num- 
bers are based. We show that the modal logic interpretations of LLpossible" 
which they use to support their development of posibility theory are not the 
only valid ones, and that a probabilistic semantics for modal terms is preferable 
for a number of reasons. 

3. We also present a general discussion of the relationship between fuzzy set 
theory and probability. This contentious issue is as old as the theory of fuzzy 
sets. We aim to restrict ourselves to a concise review of the arguments on this 
topic and try to add something of our own. 

4. The relationships between interval fuzzy numbers, especially in terms of pos- 
sibility and necessity measures, and confidence curves is then examined. Con- 
fidence curves are an old but rarely used statistical technique which we show 
are very similar in their form and intuitive interpretation to fuzzy numbers. 

5. Finally we summarise what we see as the relationships between fuzzy numbers 
and random variables in the light of the dependency bound operations. 

This section is rather longer than most in this chapter (and thesis) solely for the 
reason that there is now an enormous literature (over 5000 papers) on the theory of 
fuzzy sets, and thus there are many different points to discuss. 

In a single sentence, our conclusions wuld be put as follows: The theory of 
fuzzy numbers, as developed to date, does essentially nothing new compared to the 
theory of random variables (when proper account is taken of missing independence 
information), and would appear to  be of little value in  engineering applications. 

4.5.1 Numerical Methods for Fuzzy Convolutions and the 
Notion of Interactive Fuzzy Variables 

There are a variety of methods available for numerically calculating fuzzy arithmetic 
convolutions (5.1). They can be classified into three basic types: 

Trapezoidal, triangular and G R  fuzzy numbers [113,224-226,228,239,4321: 
These are all parametric methods. The idea is that a fuzzy number is repre- 
sented by 2, 3 or 4 parameters and the arithmetic operations are implemented 
in terms of operations on the parameters. The implicit assumption in these 
methods is that these few (4) parameters "are adequate to capture the fuzzy 
uncertainties in human intuition" [512, p.471. The formulae for products and 
quotients are necessarily approximate. The only reason the sum and differ- 
ence formulae are exact is because the t-norm Min is used and so there is a 
"shape-preservation" effect. We discuss this in detail later on. 



The basic idea of L-R fuzzy numbers is to represent the membership function 
px of a fuzzy number by 

here [nz,%] is the core and [a- a,=+ $1 is the support of px. The functions 
L and R from !I2 onto [0,1] are known as shape-functions. Fuzzy number 
arithmetic operations can be determined (sometimes exactly) in terms of m, 
5Fi, a and P for the fuzzy numbers involved. 

Sampling along t h e  x-axis ( to  represent px(x)) [407,408,544]: 
This simple technique which entails only using values px(xi) for some set 
{x;)y="=,s related to Baekeland and Kerre's piecewise linear fuzzy quantities 
[42] and the DPD method 1423,4251 for calculating convolutions of probability 
densities, and suffers from the same sorts of problems. It should be said 
however that the problems can be circumvented in similar ways. For example, 
one of Dubois and Prade's [223] criticisms of Jain's method [407,408] can be 
solved by using the condensation procedure as used by Kaplan in [423] or by 
us in chapter 3 [873]. 

Interval Arithmetic on t h e  Level Sets [137,138,218,431,480,669]: 
This is perhaps the most interesting method. We examine it below and show 
that 

1. It is particularly simple for T = M for a good reason and it can be 
extended to other t-norm intersection operators. 

2. The apparent success and simplicity of the method are not sufficient jus- 
tification for the claim that fuzzy arithmetic is the natural generalisation 
of interval arithmetic. 

3. The "fundamental result" that allows calculation of fuzzy number convo- 
lutions in terms of level sets is a special case of a duality result that has 
been known for some time. 

Let us write Fe for the a-cut or a-level set of some fuzzy set F with membership 
function p ~ .  That is, F, = {x E %(pF(x) 2 a). Dubois and Prade [240, p.391 
state the following "fundamental result:" Let M and N be two fuzzy intervals 
with upper semi-continuous membership functions and assume that Me C R and 
No C !I2 for a > 0. Let f :  3' H % be continuous and order-preserving (that is, 
Vu 2 u', Vv >_ v' f(u,v) 2 f(u1,v')). Then, for all a > 0, 

This means that f (M, N)  can be calculated in terms of interval arithmetic on the 
a-cuts of M and N.  Dubois and Prade credit this result to Nguyen [614] who says 
the original idea was due to Mizumota and Tanaka [579]. 



Fenchel's Duality Theorem 

We will now show that (4.5.3) is in fact a special case of a more general duality result 
[278] which we made use of in chapter 3 to calculate dependency bounds numerically 
in an efficient manner. Let @(p, q; r, s)  denote the set of all non-decreasing functions 
from [ P , ~ ]  into [r,s] satisfying @(P) = r and = s, where p < q, r < s and 
p,q,r ,s  E 82' = 8 U {-w,w}. Recall the definition of the quasi-inverse FA of a 
function F E @(p,  q; r , s )  [278,718]: 

Define the binary operation T , $ ~  on the space of quasi-inverses of the elements of 

Theorem 4.5.1 Let C E C, L E L, F, G E @(p, q; r,s). Then 

Upon letting C = M, it can be seen that (4.5.5) says the same thing as the "funda- 
mental result" (4.5.3). This is because the infimum in (4.5.4) will always occur at 
u = v = x since L, F and G are non-decreasing. In other words we can write 

When L = Sum, (4.5.6) reduces to 

This was proved directly by Sherwood and Taylor in 1974 [743] (see their proposition 
4 on page 1258) and used by Klement in [465] who was only aware of the result for 
T = M and L = + and could not see how it could be extended. Equation (4.5.5) 
can be used for calculating fuzzy number convolutions by decomposing membership 
functions into an increasing part and a decreasing part and operating on two parts 
separately (see chapter 6 below). In fact this duality result can be traced back to a 
result of Fenchel [263] in the theory of convex functions. 

Fenchel's duality theorem is best explained with the aid of some diagrams. This is 
not done in 16871 nor in Fenchel's original paper [263]. We shall follow Luenberger's 
presentation [530] which does contain diagrams. The main idea we require is that 
of a dual functional on the dual space of some linear vector space. We consider 
a convex function f over a convex domain C. The dual space G* and the dual 
functional f* are given by 

c' = {x* E X*l sup[(x,x*) - f(x)] < -a}, 
ZEC 

and 



Figure 4.4: Illustration of a convex functyon f on C E X and its conjugate dual f' 
on the dual space X*. 

where (I, x*) denotes the value of the functional x* corresponding to x. (Note that 
x* is a functional, even when x is a point.) The space X' is called the dual space 
of a linear vector space X. It comprises the linear functionals on X and is itself a 
linear vector space. 

This should be much clearer upon consideration of figure (4.4) which depicts a 
convex region C with a convex function f defined over it. The conjugate function 
f* is a functional defined over the space X* of dual functionals. In the example 
we consider, f'(x*) is a hyperplane. In other words, for each point f(x) there 
corresponds a line f*(x*) = (x, x*) - r .  We refer to the set [f,G] as the epigraph 
of f over C. The set [f, C] is itself convex i f f  and C are. One can similarly define 
conjugate concave functionals of concave functionals of concave functions g on a 
concave set D: We have 

D* = {x* E X*l inf [(x,x*) - g(x)] > -m), 
XED 

and 
g*(x*) = inf [(x, x*) - g(x)]. 

XED 

These conjugate functions are useful in solving optimization problems [72,530]. 
Consider determining 

where f is convex over C and g is concave over D. Examination of figure (4.5) shows 
this entails finding the length of the shortest dashed line in that figure - i.e. the 
smallest vertical distance between [f, C] and [g, Dl. The Fenchel duality theorem 
allows this problem to be solved in terms of the conjugate functionals f' and g*: 

Theorem 4.5.2 Assume that f and g are, respectively, convex and concave func- 
t ional~  on the convex sets G and D in a normed space X .  Assume that C n D 





X 

Figure 4.6: The idea behind Fenchel's duality theorem. 

contains points in the relative interior of C and D and that either i f ,  C ]  or [g,  Dl 
has a nonempty interior. Suppose further that p = inf [ f ( x )  - g(x ) ]  is finite. 

xECnD 
Then 

p = inf [ f  ( x )  - g ( x ) ]  = .ma. [g*(x*) - f*(x*)] 
Z E C ~ D  z €C*nD* 

where the maximum on the right side is achieved for sone xg E C* n D*. If the 
infimum on the left is achieved by  some so E C n D, then 

and 

S ~ " l ( x ,  4) - g(x)1 = ( X O ,  2:) - g(x0). 

The idea behind this theorem is shown in figure (4.6). The minimum vertical dis- 
tance between f and g is the maximum vertical distance between the two parallel 
hyperplanes separating [ f ,  C ]  and b, Dl. 



The relationship between this theorem and theorem (4.5.1) is only sketched here. 
Firstly consider the more general optimization problem 

Setting v = x - u and assuming the conditions u E C and v E D implicitly, this can 
be written as 

d(x) = i;f[f ("1 - s(x - u)l. 

If we now set h(x) = - g ( x )  (so h is concave), and apply an exponential transfor- 
mation (letting F(x) = ef(") and H(x) = eh(")), we obtain 

@(x) = inf [F(u)H(x - u)]. 
u - 

Finally, by use of the multiplicative generator representation of Archimedian t-norms 
(or t-conorms), this can be transformed into something of the form17 

@(I) = inf T*(F(u), H(x - u)). 
U 

This is the dependency bound formula and the fuzzy number convolution formula. 

The Fenchel duality theorem is very closely related to the Maximum transform 
developed by Bellman and Karush [64-681. They developed their results indepen- 
dently of Fenchel (see [65, p.5511). The maximum transform is the basis for the 
T-conjugate transform studied in chapter 5. 

We expect that the duality theorems discussed above will prove useful in a num- 
ber of different ways. We also feel there are several new results possible. One idea 
which we briefly examine in chapter 6 is the discrete T-conjugate transform which 
we think will enable an even more efficient numerical calculation of dependency 
bounds and fuzzy number convolutions. 

The duality theorem (theorem 4.5.1) presented above is for general t-norms. 
Whilst not as simple for the case of T = min, it is still useful. The theory of 73. 

convolutions and T-conjugate transforms developed by Moynihan [591-5951 appears 
to offer some promise of improved methods for numerically calculating fuzzy number 
convolutions under general t-norm intersection operators [465,872]. A different gen- 
eralisation of (4.5.6) is given by Hijhle [390]. Hohle's proposition 4.7 (p.101), which 
we will not quote here, can be viewed as "a generalisation of [(4.5.6)] to the scope 
of Brouwerian lattices whose duals are also Brouwerian." Interpreting his results, 
Hohle says 

There always exists a stochastic model in which L-fuzzy quantities ad- 
mit an interpretation of abstract valued random variables, and the binary 

"It is only "of the form" as there are a number of complications we have glossed over here. 
Further details can be found in chapter 5 and 15941. 



operations T*, correspond to the usual multiplication of random vari- 
ables. Thus contrary to the widespread opinion there exists a point of 
view from which the theory of [O,l]-fuzzy concepts can be regarded as a 
part of probability theory [390, p.1061. 

Hohle's T, and 6 operations are generalisations of 71. and p~ to completely distribu- 
tive complete lattices. As Dubois and Prade point out [237], HGhle's approach to 
"fuzzy numbers" is quite different to theirs (see also [391] and [236, p.2901). We will 
compare Hohle's more positivist approach with ours and others in more detail in 
section 4.6. 

Shape Invariance of Fuzzy Number  Addition under  Min Intersection a n d  
its Effects 

A feature of the sup-min fuzzy number addition that is presented as an advantage 
is its shape invariance: 

Addition of fuzzy numbers is remarkably shape-invariant contrary to 
random variable convolution: adding triangular distributions yields tri- 
angular distributions, adding parabolic distributions yields paraboles etc. 
[233]. 

Dubois and Prade [233] conclude from this that fuzzy arithmetic is better than a 
stochastic approach for finding the shortest path of a graph [754]: 

As soon as we allow distances between vertices to be random, we are 
faced with many difficulties among which are the intricate dependency 
of paths, the necessity of performing repeated convolutions of random 
variables. 

Viewing the sup-min convolution as the convolution of completely positively de- 
pendent random variables provides the understanding of what is happening here. 
The pairwise dependence problem is ignored (because all the variables are com- 
pletely positively dependent upon one another), and therefore the variables can be 
combined simply pairwise. Similar arguments have been given by Yazenin [894]. 

The ironic thing is that whilst the ~roblem of determining stochastic shortest 
routes when all the variables are independent is in fact difficult, the more general and 
more useful problem of determining bounds on the shortest routes when the joint 
dependence structure is unknown is computationally simpler. This is explained in 
detail in Klein Haneveld's excellent paper [464] (see the discussion of this in section 
2.4 above). ,Thus the claimed advantages of using fuzzy numbers for uncertain 
network problems are overstated. The more difficult but more useful stochastic 
problem can be solved using appropriate techniques. We feel that Klein Haneveld's 
work in particular demonstrates that the stochastic approach to operations research 



problems is feasible and that the benefits of the fuzzy approach [113,196,431,491, 
531,6691 have been exaggerated (but see the review by Zimrnerman [903], especially 
his discussion of the lack of duality results for fuzzy programming (p.56)). 

Relationships with Interval Arithmetic 

We turn now to a brief examination of the relationship between fuzzy arithmetic, 
probabilistic arithmetic and interval arithmetic. Our main point is that the fol- 
lowing point of view (due to Dubois and Prade) is at best quite misleading, and, 
in our opinion, completely wrong. Dubois and Prade [228,240] contend that fuzzy 
arithmetic is the natural generdisation of interval arithmetic 117,582,5831: 

The all-or-nothing nature of interval analysis, in contrast to probabil- 
ity theory, which admits gradations, introduces an asymmetry between 
them, which one would like to remove. It is clear that the latter does 
not generalize the former, since a function of a uniformly distributed 
random variable (the probabilistic counterpart of an error interval) does 
not in general itself have a uniform distribution. One of the major con- 
tributions of this book is to propose a canonical generalization of interval 
analysis that admits of appropriate gradations [240, p.61. 

Our argument runs as follows: The shape-preservation property (see above) which 
holds when T = M should be considered as a point against fuzzy arithmetic. If the 
shapes of the initial membership functions are preserved so well, then one may as well 
dispense with the function all together and simply work with the support interval. 
The fact that adding two independent uniformly distributed random variables results 
in a triangular distribution shows that we have somehow included some information 
about the addition operation. The most important point though is the trivial fact 
that random variable addition does naturally generalise interval arithmetic if one 
considers the support of tLe distributions of the random variables involved. In 
fact, one can think of the probability distributions describing the distribution of 
values within the support interval: Consider two random variables X and Y with 
distribution functions Fx and Fy, having support [ex, ux] and [&,uy] respectively. 
If FZ = d f ( Z  = X + Y), then 

This is simply the interval arithmetic addition of supp Fx and supp Fy. Thus it 
is incorrect to maintain that "a probabilistic approach to extend (4.5.9) [interval 
addition] would fail" [228, p.9331. See also our discussion of the relationship between 
probabilistic arithmetic and interval arithmetic in [871]. We return to the topic of 
intervals in section 4.5.4 where we examine nested sets of confidence intervals. 



Noninteraction of Fuzzy Variables 

One of our dissatisfactions with fuzzy arithmetic is that there has been little careful 
consideration of dependency. We have already mentioned the connection between 
the use of min intersection operators in the extension principle and complete positive 
dependence of random variables. Like Suppes, we feel that the concept of indepen- 
dence (and hence dependence) "is one of the most ~rofound and fundamental ideas 
not only of probability theory but of science in general" [803, p.1091 and thus de- 
serves careful consideration in any uncertainty calculus. Manes [540] has shown that 
the phenomenon of dependency error 18731 will arise in a large class of uncertainty 
calculi. Smith [767-7691 (see especially section 3 of [769]) has argued that the notion 
of conditional independence explicated with the use of directed graphs is useful for 
a number of different uncertainty calculi. (We have examined the use of graphs in 
probability theory in section 3 above.) For now we shall explore the fuzzy set ana- 
logues of probabilistic independence. We shall see that not only is the analogue of 
independence still poorly interpreted, but the analogues of dependence and measures 
of dependence have barely been considered. 

The analogue of probabilistic independence in the theory of fuzzy variables is 
called noninteractivity [228,239] or unrelatedness [605,673]. Noninteractivity has 
been assumed implicitly in our discussion of extension principle in the introductory 
comments to this section above. Noninteractivity is defined in terms of a "joint 
membership function." If 

(or the equivalent statement in terms of possibility distributions), then X and Y are 
noninteractive. The interpretation of noninteractivity is rather more problematic 
than its definition. Dubois and Prade argue as follows: 

Noninteraction plays the same role in possibility theory as independence 
in probability theory, but they do not convey the same meaning at all: 
interaction simply means a lack of functional links between the variables 
while, in the frequentistic view of probability, an event A is said to be 
independent from B if, asymptotically, A is observed as often whether 
it simultaneously occurs with B or B [239, p.81. 

This passage would seem to mean that noninteraction is a much weaker notion 
than independence. It is certainly not an entirely satisfactory explanation of how 
noninteraction is to be understood. Perhaps the main difficulty is that there is no 
analogue of a fuzzy event (although some authors have tried to define this [605]). 
In probability theory the idea of a functional link is something which may cause 
stochastic dependence, but is not considered to be equivalent to it (see studies on 
probabilistic causality 18031 and section 4.3 on graphical ideas). Noninteraction of 
fuzzy variables is also discussed in [102,380,381,670]. 

Statistical independence arises in the theory of fuzzy variables when membership 
functions (or possibility distributions) are determined from statistical experiments: 



Possibility measures usually refer to non-statistical types of imprecision, 
such as the one pervading natural language and subjective knowledge. 
Recently, however, a statistical interpretation of possibility measures has 
been proposed in the framework of random experiments yielding impre- 
cise outcomes; however, the concept of statistical independence under 
imprecise measurements has yet to be defined 1239, p.81. 

Since the notion of independence is logically prior to that of a statistical experiment 
[659], the above deficiency is a serious problem. 

Four Types of Interaction of Fuzzy Variables 

There are at least four types of interaction of fuzzy variables which have been dis- 
cussed in the literature to date. We will now examine each of these in turn and we 
will note their relationships with each other and with the statistical concepts from 
which they were motivated. 

The first type we consider is more accurately described as a generalisation of 
the noninteractivity defined by (4.5.10). Two fuzzy variables X and Y are weakly 
noninteractive [228] or T-noninteractive [869] or *-independent [41] if 

where T is some t-norm other than min. Whilst it is easy to define, very little com- 
putation seems to have been done with weakly noninteractive fuzzy variables. The 
"extension principle" for T-noninteractive fuzzy variables is the general form (4.5.2). 
Dubois and Prade [228, pp.931-9331 have derived some properties of additions of 
T-noninteractive L-R fuzzy numbers for T = 2, W and II but have not made much 
use of them. It is in fact possible to calculate arbitrarily good approximations to 
the sup-T convolutions using the discretisation of the quantiles and the additive or 
multiplicative generator decomposition of an Archimedean t-norm. We will study 
T-noninteractive fuzzy additions further in chapter 6. 

The idea of strong non-fizzy interaction is to restrict the joint membership fuc- 
tion as follows: 

This can be trivially extended to higher dimensions. Dubois and Prade [228] 
have used this idea to determine sums of "fuzzy probabilities" (under the restric- 
tion that probabilities always must sum to one). Strong non-fuzzy interaction is 
equivalent to the recently introduced statistical idea of regional dependence [396]. 
Given two random variables U and V with Frr = df(U) and Fv = df(V), the 
idea of regional dependence is where the joint distribution Fuv is only equal to 
the product of the marginals on some limited region: Fuv(u,v) = Fv(u)Fv(u) for 
(u ,  u) E D c supp FU x supp Fv. Thus U and V are "independent on D." Regionally 
dependent random variables can exhibit many of the characteristics of independence 



such a s  zero correlation, constant regression functions and zero "local dependence" 
(see [%5]). Strongly non-fuzzily interactive fuzzy variables have also been studied 
by Dong and Wong [219] who have very briefly considered how the "vertex method" 
[218] (a generalisation of simple interval arithmetic on the level sets of member- 
ship functions) can handle such interactions which arise in the solution of certain 
equations. 

Strong fuzzy interaction is a further generalisation of strong non-fuzzy interaction 
where the region D is a fuzzy set. In this case the joint membership function is given 
by 

The fuzzy set p~ is called a fuzzy relation. Although Dubois and Prade [239,p.23 
240, p.541 discuss the possibility of calculating functions of strongly fuzzily interac- 
tive fuzzy variables using a generalisation of the extension principle such as 

they say that "the study of the properties, and even more the calculation, of 
f ( X ,  Y; D) are in general very difficult" (240, p.541. We are unaware of any ex- 
amples of such calculations in the literature, although very recently Sarna [710] has 
considered the fast calculation of the related but simpler formula 

where px  and py are rectangular or triangular fuzzy numbers and 

with p~(0 ,O)  = 1. His results appear to be of little value for our purposes. 

The fourth type of interaction is a further generalisation of (4.5.11) which has 
only really been noted in passing. Two fuzzy variables are weakly fuzzily interactive 
[228, p.9291 if 

CIXY(X, Y )  = T(~~~(PX(X),PY(Y)),PD(~~Y)). (4.5.16) 

No examples using this have been presented. 

Before we leave the topic of interactive fuzzy variables let us briefly examine 
the idea of measures of association. By analogy with measures of association in 
probability theory (such as the correlation coefficient), Buckley has considered the 
use of a single, or perhaps interval, parameter describing the LLdegree of association" 
between two fuzzy variables. Buckley and Siler have used LLprobabilistic analogies 
rather freely" [ I l l ,  p.2271 to develop an ad hoe measure of association between 
two fuzzy sets (not fuzzy numbers). Their measure of association R is defined 
"implicitly" [ I l l ,  p.222] by a strongly probabilistic analogy. They consider the lower 



and upper Frkchet bounds for AND and OR operations and use R as a parameter 
taking on values within [-I, $11 to give a mixture of the extreme rules. (This is 
very similar to the parameterised families of bivariate probability distributions). 

Our criticism of Buckley and Siler's approach is that they have effectively "put 
the cart before the horse." They have suggested a way of using R to vary the 
combination rules withoutlS saying where the values of R are to come from. Of 
course an appeal a u l d  always be made to "subjective intuitive judgement" - a 
common panacea of subjective methods! Buckley has used these ideas in an expert 
system [112]. He has more recently turned his attention to interactive fuzzy numbers 
[114,115] where he just defines the correlation coefficient (but does not use it) and 
considers the effects of strong nonfuzzy interaction on sums and products of fuzzy 
numbers. He considers the region D to be defined by the intersection of supppx x 
supp py and a quadrilateral region. His results seem to be of little value. 

Our conclusion upon examining this material can be put as follows: The idea of . 

dependence (or interaction) is more important in uncertain reasoning than the purely 
"distributional" effects. In other words, dependence (or interactivity) is something 

~~ ~. 

arising in uncertain reasoning which has no real counterpart in the deterministic case. 
Until acceptable theories of dependence are available, the theory of fuzzy variables 
will remain deficient. This is true even for purely subjective interpretations. Under 
these interpretations there are still further difficulties in considering what is meant 
by independenceldependence. See the discussion of this matter with regard to 
subjective theories of probability in Popper's Realism and the Aim of Science 16591: 
the idea of independence turns out to be contradictory under such an interpretation. 

4.5.2 The Modalities "Possible" and "Probable" and their 
Relationship to Fuzzy Set Theory and Possibility 
Theory 

It is natural to admit degrees ofpossibility and of 
necessity as for probability. 

- Didier Dubois and Henri Prade 
There can be degrees ofprobability, but not of 

possibility. 
-Alan White 

The use of fuzzy numbers has lately been advocated in terms of their basis in 
possibility theory, which is said to be quite different to probability theory. We will 
now present an analysis of the notions "possible" and "probable" and will suggest 
that it is incorrect to talk about degrees of possibility in the manner of the advocates 
of fuzzy set theory. The following review of interpretations of the modalities possible 
and probable was motivated by the apparent lack of balance in fuzzy set theorists' 
discussions of the topic. 

"Their unsupported statement that "The proposed measures [of association] does [sic] seem to  
offer a convenient way t o  estimate prior associations" [Ill, p.2271 notwithstanding. 



Our main thesis is that the discussion to date on the interpretation of possibility 
has been quite confused and mostly wrong. We will argue that the subjective empha- 
sis is misplaced or overrated and that clear and consistent objective interpretations 
of possibility are available. Furthermore such interpretations clear up the distinction 
between possibility and probability and make clear the fact that possibility does not 
admit degrees. That is, it is pointless to talk of "degrees of possibility." The main 
point to keep in mind is that the split between epistemic and physical possibilities 
closely mirrors that between epistemic and physical probabilities. We do not try to 
argue for one or the other here (such arguments in the past have not resolved the 
on-going debate), but rather point out some advantages and disadvantages of these 
two approaches. Our own preference is for the physical point of view. 

All Kinds of Possibilities 

Proponents of fuzzy set based possibility theories often allude to the 'Lpossibility" 
of modal logic [398], stressing the distinction between these two concepts. Thus 
Zadeh, in his well known paper Fuzzy Sets as a Basis for a Theory of Possibility, 
says "The interpretation of the concept of possibility in the theory of possibility 
[based on fuzzy sets] is quite different from that of modal logic." Four years later, in 
a paper presented (appropriately enoughlg) at the Sixth International Wittgenstein 
symposium, he says: 

The possibility theory which serves as a basis for test-score semantics is 
distinct from - but not totally unrelated to - the possibility theories 
related to modal logic and possible world semantics [899, p.2541. 

Dubois and Prade 1222,2401 have appealed to modal logic, and in particular Aristo- 
tle's definition of necessity in terms of possibility (see below). They do not make a 
clear distinction between their notion of possibility (based on fuzzy sets) and that of 
ordinary modal logic. However they do distinguish between epistemic and physical 
possibility. We examine this distinction further below. 

Our purpose here is not to answer the question "What is possibility?" or "What 
is the true meaning or essence of possibility?" Like Popper [655-657,6591, we dismiss 
such essentialist questions as being irrelevant. In any case, as Morgan has argued, 

To ask for the "true" meaning of necessity and possibility is parallel to 
asking for the true meaning of negation. Such notions have no universally 
constant meaning other than the minimal way they interact with our 
acceptance of propositions of various sorts [587, p.521. 

'9"Appropriately enough" because Wittgenstein developed a philosophy based on the meaning 
of words. (Recall fuzzy set theory's linguistic basis.) Hi famous blue book 18771 opens with the 
question: "What is the meaning of a word?" A number of philosophers, the most eminent being 
Karl Popper, have explicitky argued against such a conception of philosophy 157,6561. 



Instead, we will examine the distinctions between a number of different concepts of 
possibility. Hacking [350] distinguishes between many different kinds of possibility. 
(A different classification is given by Lacey [495]). The main distinction, which 
is of medieval origin, is between de re modalities and de dicto modalities. This 
division, which is still controversial, is explained as follows: De re modalities refer to 
properties of things, whereas de dicto modalities refer to properties of propositions. 
Thus we could talk of physical modalities (de re) and epistemic (de dicto) modalities. 
Plantinga has discussed this distinction in some detail in [648]. 

The notion of possibility is interpreted in modal logic by means of Kripkean 
[478] lLpossible worlds semantics" [524]. This amounts to postulating an infinity of 
"possible worlds" and explaining modal terms with respect to identity and common 
properties (or accessibility [587, pp.35-36]) across all possible worlds. An obvious 
criticism of this, as Loux recognises, runs as follows [524]: 

The trouble with possible worlds, we want to say, is that they represent 
an exotic piece of metaphysical machinery, the armchair invention of a 
speculative ontologist lacking what Bertrand Russell called "a robust 
sense of reality." 

Another difficulty is that interpreting "possibility" in terms of possible worlds comes 
very close to being a circular argument. We need not concern ourselves with possible 
worlds further here (but see Morgan's probabilistic semantics of modal terms below), 
and we simply refer the reader to [467,525] for the history of the subject. The 
idea of possible worlds has been combined with the idea of fuzzy sets by Forbes in 
chapter 7 of [271]. Noting what appears (to us) to be a devastating self-criticism by 
Forbes [271, p.961 ("The role of modal logic is more to make the theses absolutely 
precise than to facilitate any substantial consequences from them.. ."), we simply 
state that Forbes attempts to use the idea of degree of membership in the possible 
worlds setting to examine some sorites type modal paradoxes associated with vague 
transworld identity relations. We state his conclusions in his own words as we are 
unable to follow his reasoning sufficiently to make them any clearer: 

Thus while every de dicto modal thesis about identity has the same truth 
value in the present framework as it has in the classical framework, a 
difference emerges over the de re, not because identity somehow becomes 
fuzzy, but because de re sentences introduce a new fuzzy relation, that 
of counterparthood which in turn gives rise to degrees of possibility [271, 
p.1791. 

T h e  Relationship between Possibility and  Probability 

Fuzzy set theorists often talk about the dual notions of possibility and necessity. 
We shall see below that their idea of the interrelationship between possibility and 
necessity is not shared by everyone. The duality they refer to is due to Aristotle and 



is widely accepted in modal logic. It says that a proposition is necessary as soon as 
the converse proposition is not possible. We will only concern ourselves here with 
possibility. 

The notion of possibility is hardly new in a probabilistic context. Recall the 
equipossible definitions of probability [349,351]. It is interesting to note that whilst 
the Greeks (e.g. Aristotle) did have a notion of empirical (as opposed to logical) 
possibility, and thus "believed in the existence of real contingency" [707, p.391, 
they did not develop a notion of the probable, nor did they observe the long run 
stability of relative frequencies [706, pp.179-181]. This is quite surprising given their 
penchant for gambling and given the similarities of their views otherwise. Sambursky 
(7071 notes that the Stoics, who were, like Laplace, rigid determinists, interpreted 
possibility in terms of equal ignorance. Hacking [349] recalls a remark of Boudet 
[I031 that the "perennial question about probability is whether it is de re or de dicto" 
[349, p.3421. Thus we can distinguish between de dicto (epistemic) probability and 
de re (physical) probability. 

The mapping of the distinction between possibilities to probabilities and the 
widespread distinction between the two types of probability is considered by Hacking 
in [348]. Such a carrying across to probability of the distinctions between possibilities 
makes sense if one can in fact define probabilities in terms of possibilities. However, 
as Hacking and others have observed, this is ultimately a circular exercise: to say 
that some events are equipossible is simply to say that they are equally probable. 
All this reinforces our view that it is pointless to talk of degrees of possibility. If 
probability is interpreted as relative frequencies, or in terms of propensities [653, 
654,6591, such a circularity does not arise. The probability so defined is definitely 
physical (de re). The role of possibility in such a context is discussed below. Hacking 
observes that Laplace, the champion of the epistemic view of probability, does in 
fact make the de relde dicto distinction: 

When he [Laplace] needs a word to refer to an unknown physical char- 
acteristic he picks on LLpossibility" using it in the old de re sense. This 
was the language of his early papers. When he wants to emphasise the 
epistemological concept which finally captivated him, he uses "possibil- 
ity" in what he makes clear is the de dicto, epistemological sense [349, 
pp.353-35. 

We will now consider the place of possibility within objective theories of prob- 
ability. Three authors' views on the matter are examined in some detail. We will 
progress from the less to the more formal and rigorous, beginning with White [862]. 

White's Problematic a n d  Existential Possibilities 

White ~ ~ ~ ~ [862] ~ ~ ~ ,~~ ~~~~ actually ~~~~~~ ~~~ distinguishes ~ between ~ -~~ e~xistentigl~and probiematzc~probability 
(p.16). He distinguishes these two concepts in terms of the possibility of "can" and 
that of "may:" 



Existential possibility: It is possible for X to V (can). 
Problematic possibility: It is possible that X Vs (may). 

He argues that it is problematic ("may") possibility which is relevant to proba- 
bility. White's views on the relationship between possibility and probability are 
summarised by saying: 

Probability enters at this stage which is intermediate between the exclu- 
sion of the possibility of something and the exclusion of the possibility 
of its opposite . . . There can be degrees of probability, but not of possi- 
bility: Something can be highly probable or extremely improbable, but 
not highly possible or extremely impossible. One thing can be more or 
less probable but not more or less possible than another. The probabil- 
ity, but not the possibility, of something can increase or decrease. Its 
possibility can only appear or vanish [862, pp.59-601. 

White's interpretation of probability is objective and he rejects both the epistemic 
degrees of belief interpretation and the Keynesian propositional interpretation [58, 
4541. White says "The relation of probability to possibility is parallel with that of 
confidence to belief.. .". Furthermore "Just as there can be degrees of probability, 
but not of possibility, so one can have degrees of confidence but not of belief" 1862, 
p.601. The notion of possibility is not, for White, the opposite of necessity, but rather 
it is the opposite of certainty. White also examines the de relde dicto distinctions 
and argues that de dicto modalities do not exist: 

In the sense discussed, there is no such thing as modality de dicto. As 
we saw in detail, a wide variety of things can be qualified by different 
modals; but it is a variety which can all be classed as de re. The danger 
of the thesis that modality is de dicto is that it tempts one, particularly 
with such modalities as necessity, possibility, probability and certainty, 
to embrace subjective theories of modality according to which modality 
is a characteristic of thought rather than that which can be thought 
about [862, p.1711. 

Bunge's Probabilistic Degrees of Possibility a n d  Necessity 

Bunge [I171 has views quite similar to those of White. Bunge argues that Aristotle's 
definition of necessity in terms of possibility is not applicable to physical possibility 
because it ignores the component of circumstance (p.19). Bunge interprets proba- 
bility in terms of propensities, but differs with Popper 16541 in some respects. He 
says that "Probability exactifies possibility but not everything possible can be as- 
signed a probability." Ignoring a number of points Bunge makes in his discussion of 
the interpretation of possibility and probability, we can present his view simply by 
reproducing table 1. Bunge notes with respect to this table that "Whereas in modal 
logic there is a gap between possibility and necessity, in a probabilistic context there 



Table 4.1: Bunge's probabilistic interpretation of modal terms [117]. 

Modal Language 
x is possible 
x is contingent 
x is necessary 
x is impossible 
x is almost impossible 
x is almost necessary 

is a continuum between them" (117, pp.30-31]. He also remarks on what is essen- 
tially Aristotle's statistical interpretation of modality (although he does not call it 
this: see [377]). This is the simple fact that 'LWhat is merely possible in the short 
run (for a small sample or a short run of trials) may become necessary or nearly so 
in the long run" [117, p.311. Finally note that "real possibility cannot be given an 
'operational definition,' say in terms of frequency" because whatever is measured is 
actual, and not just possible. Probability as a degree of possibility was also consid- 
ered by Kattsoff [147,428], who, however, used a Keynesian [454] propositional logic 
framework. Hart [362] considered relative frequencies across possible worlds to give 
degrees of possibility. Since this is based on the Kripkean possible worlds semantics 
(see above) it is of little interest to us. 

Exact (Probabilistic) Language. 
There is a scientific theory in which Pr(x) 1 0. 
There is a scientific theory in which 0 < Pr(x) < 1. 
There is a scientific theory in which Pr(x) = 1. 
There is no scientific theory in which Pr(x) 2 0. 
There is a scientific theory in which Pr(x)  z 0. 
There is a scientific theory in which Pr(x)  z 1. 

Morgan's Probabilistic Semantics for Modal Terms 

Morgan 15881 has developed a probabilistic semantics for propositional modal log- 
ics. His motivation for doing this was a dissatisfaction with the standard "possible - - 
worlds" intepretation, which, apart from being circular (interpreting "possibility" 
in terms of possible worlds). does not admit a rigorous quantitative foundation. , , - 
Morgan's starting point is Popper's work on conditional probability (see appendices 
*ii-*iv of [657] and also [342,360,504,505]). We will not attempt to present Morgan's 
rather technical results in the limited space we have available here. Let us just say 
that his probabilistic model of standard modal logic is provably sound and complete 
and is a strict generalisation of any possible worlds model. Morgan also discusses 
the mechanisms of belief updating and the choice of alternative logics. Although 
arguing that his probabilistic semantics has considerable advantages (over the pos- 
sible worlds semantics), Morgan does not present his model as the only possible 
solution. As well as having a greater computational complexity, the probabilistic 
model (as currently developed) only allows the changes in the belief of the necessity 
of a proposition to occur in "rather large jumps" 1588, p.115]. In any case, Mor- 
gan has said elsewhere [587, p.531 that a single unique and correct interpretation of 
modality is unlikely: 



Our confusion and uncertainties with regard to many modal proposi- 
tions and many arguments containing the modalities is certainly strong 
evidence in favour of the semantically underdetermined character of ne- 
cessity and possibility. 

Possibility as a Degree of Effort 

An alternative objective interpretation of possibility is due to von Mises. On page 
67 of [577] Von Mises says how LLordinary speech rewgnises different degrees of 
possibility." He interprets possibility in terms of the varying degrees of "effort" 
involved in producing a particular outcome. This seems to be the sort of thing 
Zadeh [899] had in mind when he spoke of the possibility of squeezing a certain 
number of tennis balls into a box. The larger the number of balls, the lesser is the 
possibility of doing it: the greater the degree of effort is required. Unfortunately 
there does not seem to be much we can do with such an interpretation because the 
"degree of effort" does not seem to be adequately formalizable. Nevertheless it does 
seem to be the concept of possibility that has been adopted by some proponents of 
fuzzy set theory: 

With a probabilistic type model we are answering a question about what 
percentage of the number of times we perform an experiment will a given 
outcome occur. Whereas with possibility we are addressing questions 
about how easy it is for a particular outcome to occur [891, p.2471. 

Yager [891] does not define or explain his notion of possibility apart from saying 
that "In many instances the information with respect to the possibility distribution 
associated with a variable can be inferred from information conveyed via natural 
language." In other words, the degree of possibility is to be determined in terms of 
membership functions of fuzzy sets. 

Taking all the above into account, it still seems that von Mises' interpretation 
of possibility as "the degree of ease" is probability in disguise. Consider how we 
think it is "hard" ("requires a lot of effort") to throw 3 bullseyes in a game of darts. 
Considered in terms of scatter properties, this is just another way of saying that 
with the given experimental arrangement, the probability of achieving this situation 
is low. Thus the degree of ease interpretation seems quite useless for any practical 
purposes. 

Some Fuzzy Set  Theorists' Views 

, We now examine some fuzzy set theorists' views on the modalities of possible and 
probable [222,229,233,661]. Dubois and Prade [233] distinguish between physical 
and epistemic possibility: 



The former pertains to whether it is difficult or not to perform some 
action, i.e. questions suchps "is it possible to squeeze eight tennis balls 
in this box?" [233, p.3461 

This obviously parallels the von Misian interpretation mentioned above. Dubois and 
Prade are really only interested in epistemic subjective interpretations, and agree 
with Zadeh that "epistemic possibility can be related to imprecise verbal state- 
ments." Although they are ultimately interested in the subjective possibilities, they 
do argue that "natural language statements are not the only reasonable source of 
knowledge about the possibility of occurence of events." Thus "episternic possibility 
and statistical data are not completely unrelated" (although as we shall see below, 
their supposed relationship is by no means clear). Dubois and Prade go on to wn- 
sider this relationship in more detail. Perhaps their clearest statement of how they 
view the two concepts of possibility and probability is the following: 

P(A)  denotes the probability of A, understood as how frequent A is. 
?r(A) denotes the possibility of A, i .e .  a number assessing someone's 
knowledge about this possibility, in rely to the question 'may A occur?'. 

Later they say (p. 347) 

Possibility is thus a weak notion of evidence. In [particular] what is 
probable must be possible but not conversely, so that we may require 
grades of probability to act as lower bounds on grades of possibility. 

We shall discuss Dubois and Prade's possibility and necessity measures below in 
section 4.5.4. This idea of possibility as an upper bound for probability has been 
developed further by Giles. We will now examine his arguments. 

Giles' Interpretation of Possibility as  a n  Upper  Bound on  Probability 

Giles [304-3071 has made a careful study of the relationship between possibility, 
probability and necessity in fuzzy set theory and has developed an interpretation 
along the same lines as ours in that he makes use of lower and upper probabilities. 

Giles' motivation for his work is that the "ordinary" approach to fuzzy sets 

gives no indication ofhow one is to decide what particular numerical 
value to assign to a grade of membership (possibility etc.) in a given 
situation, or of how one should use such values in (for instance) decision 
making. As a result, the grounds for application of the resulting theory 
are, to say the least, very insecure [306, p.4011. 

Ile goes on to develop a definition of grades of membership in terms of "test- 
procedures." A grade of membership is defined in terms of bets on the outcome 
of these test-procedures. 



Giles' betting interpretation, which is based on the Bayesian ideas of de Finetti, 
Lindley and Savage, is more general than their methods because "we are not obliged 
to retain the assumption that every rational agent should be a 'Bayesian agent'." 
Thus Giles' interpretation (partially) answers the criticisms of the betting interpre- 
tation of probability put forward by Popper [655, p.791. Giles also admits [306, 
p.4041 that his interpretation is not the only correct or valid one. 

Giles' interpretation is of particular interest to us because of his consideration 
of possibility in terms of lower and upper probabilities. He introduces these ideas 
as follows: 

Any rational agent behaves as though he believes that each proposition 
A has some "true" probability, but he is not himself aware of its value, 
knowing only that it lies in the dosed interval k!(A),p,(A)]. 

Perhaps the best exposition of Giles' ideas is his paper [305]. In this he says how 
"we interpret the assignment of a degree of possibility to A as an assignment of an 
upper bound on the probability of A." Most interesting for us are Giles' results 
characterising possibility functions. Without presenting all the definitions and in- 
troductory material necessary for a complete understanding of his results, we can 
give an idea of their flavour [305, p.1891: 

(Theorem 3) If {?r;l i E I) is a set of possibility functions then a, where, 
for every proposition A n(a) = sup{ni li E I), is also a possibility func- 
tion. 
(Example 3) Let P be any nonempty set of probability measures on 
[some Boolean algebra] B 

then P is a possibility function. [This example] is very important, for 
every possibility function arises in this way: 
(Theorem 4) If n is any possibility function then there exists a nonempty 
set P of probability measures on T [a totally disconnected compact Haus- 
dorff space such that B is isomorphic to the Boolean algebra of all closed 
and open subsets of T] such that a = rp, where P is defined by (4.5.17). 

He interprets theorem 4 as saying that 

every rational agent behaves as though he believes each proposition A has 
some objective probability p(A) of being true; the probability assignment 
p, however, not being known precisely, but known only to be in a subset 
of P of all probability assignments. For he who has such a belief will 
offer to bet only if he would not expect to lose no matter where p lies in 
P. (p. 190) 



This use of lower and upper bounds on probabilities is identical to that which we 
advocated in chapter 3. Note that one can adopt this interpretation without neces- 
sarily talking of a betting interpretation of probability. The probability of an event 
(which we assume to be an objective quantity) is unknown. We know bounds on 
this though, and we work with these bounds in much the same manner that we use 
ordinary interval arithmetic for calculating with simple quantities, when we only 
know lower and upper bounds on the quantities. 

An important departure from Giles' interpretation occurs however when we con- 
sider the combination operations. We have already seen that in fuzzy set theory 
possibility measures are combined using the 71. operations. These correspond to our 
lower dependency bounds. The upper bounds are combined and calculated with 
the p~ operations. However we use these operations without introducing the idea 
of "possibility." Furthermore; for the oft used special case of T = M, we have the 
fact that p r  = TT [718, theorem 7.5.61. In this case our lower and upper dependency 
bounds are identical. 

Giles has also briefly mentioned the more general idea of belief structures (set 
of all acceptable bets) of rational agents corresponding to closed convex sets of 
probability measures [305, p.192]. This idea has been discussed in more detail in 
section 4.4 where we discuss the work of Kyburg and others on lower and upper 
probabilities. 

Some Possible Conclusions, o r  T h e  Necessity of Probable Possibility 

What can we conclude from this general discussion of the modal terms "possible" 
and "probable"? Firstly it is apparent that there is no consensus as to how these 
terms are related and what role the various notions should play in the examination 
of uncertainty. Secondly, the "degrees of possibilityn that fuzzy set theorists talk 
about only make sense if possibility and probability are considered in an epistemic 
sense. We have also seen that the epistemic/objective (de dicto/de re) distinction 
applies equally well to possibility and probability. Furthermore, if an objective 
interpretation is accepted, then probability is the degree or measure of possibility. 
The notion of degree of possibility as somehow corresponding to a degree of effort or 
difficulty does not seem tenable. Nor do the "possible worlds semantics" seem very 
valuable in this regard. We have also seen attempts (Giles) to consider possibility 
and probability in terms of bounds. We have examined this idea elsewhere (sections 
4.2 and 4.4) where we review work along the same lines as our interpretation of the 
fuzzy set theoretic operations in terms of dependency bounds. 



4.5.3 The Relationship Between Probability Theory and 
Fuzzy Set Theory 

Ultimately we may think of bridging the gap between 
fuzzy interval arithmetic and the calculus of random 
variables, i .e .  embedding both into a unique setting. 

- Didier Dubois and Henri Prade 
Arlificial Intelligence is philosophical ezplication turned 

into computer programs. 
- Clark Glymour 

We will now attempt to briefly review various arguments on the topic of proba- 
bility theory versusz0 fuzzy set theory, and their general interrelationship. This is, 
after twenty-five years, still a contentious topic. We have certainly not aimed for 
completeness (that would require far more space), but we have aimed to be rea- 
sonably representative. Although our preference should quickly become apparent 
anyway, let us explicitly state our opinions here: W e  feel that fuzzy set theory is 
of little value in  engineering applications. Our reasons for this conclusion are sev- 
eral, but the main two are the philosophical basis (which we believe to be confused 
and wrong), and the practical efficacy (apparently ciose to zero, when reasonably 
compared with probability theory). Since we do not have space to fully develop 
our arguments, we do not expect to convert many people in the following text. 
Nevertheless we feel the issue too important to pass over in silence. 

A lot of the debate between proponents of probability and fuzzy set theory is 
essentially philosophical. Whilst the immediate reaction of the engineer is to avoid 
this (just get on with building something that works), it turns out that this is neither 
desirable nor possible. This is especially true given that one of the main application 
areas for the methods we have been discussing is Artificial Intelligence. We agree 
with Glymour who says that artificial intelligence is philosophy. He argues that 

Since A1 is philosophy, the philosophical theory a program implements 
should be explicit. Any claim that a program solves some well-studied 
problem, . . . but doesn't say how, should be disbelieved [314, p.2061. 

We aim to show, inter alia, that the philosophical basis of fuzzy set theory is inad- 
equate for engineering and artificial intelligence problems. 

One of the difficulties in critically discussing fuzzy set theory was explained by 
Cheeseman as follows: 

Unfortunately this [the comparison between fuzzy and non-fuzzy theo- 
ries] is not as easy as it sounds because the "fuzzy approach" is itself 
fuzzy - there are fuzzy sets, fuzzy logic, possibility theory and various 

''As many people have observed, the question is really less a matter of probability versus fuzzy 
set theory than a balanced comparison of their merits. The point is that the two approaches can 
be, and have been, combined in a number of different ways. Nevertheless, since it is the purpose of 
the present section to highlight the differences, asking the question in the above form is reasonable. 



higher order generalisations of these (e.9. fuzzy numbers within fuzzy 
set theory). This diversity complicates the task of critiquing the fuzzy 
approach [141, p.971. 

Toth [825] has recently tried to clarify some of the distinctions, and to develop a 
more rigorous foundation for fuzzy set-theory. The reason we mention Cheeseman's 
complaint is that because of the variety of different views, it is difficult to know 
which to criticise: any criticism can be deflected by changing ground slightly. In 
general we will refrain from attacking the most absurd and the weakest arguments 
in favour of fuzzy set theory, and we will concentrate on what appears to be the 
most useful material." 

To us, the two most convincing arguments are as follows. 

1. The whole enterprise of fuzzy set theory is based on the "inherent imprecision 
of natural language." This is supposed to be an "uncertainty" of a completely 
different kind to the uncertainty of probability theory. It has its roots in 
sorites type paradoxes [81,82,701]. Arbib [31] has presented a simple argument 
against this. He observes that although "people can certainly draw a 'degree 
of tallness' curve if pushed to it, . . . this does not show that our concept of 
tallness has such a form'' [31, p.9471. He goes on to note that vague terms 
are normally context sensitive (a notion fuzzy set theory either ignores, or 
handles in a very poor manner), and that natural language is not "inherently 
imprecise," although it may be used imprecisely in some circumstances: 

Perhaps the most distressing mistake of fuzzy set theorists is to be- 
lieve that a natural language like English is imprecise. The fact that 
many people use English badly is no proof of inherent imprecision 
[31, p.9481. 

In any case, the point a t  issue, for practical purposes, is the referent of a word 
(what the word describes), rather than the word itself. A concentration on 
linguistic aspects was the cause for severe difficulties in a stream of twentieth 
century philosophy which followed Ludwig Wittgenstein (see [57]). 

2. Our second argument is more appealing to the engineer: Fuzzy set theory based 
methods do not work. More precisely, it seems generally fair to say that fuzzy 
set theory has not been used to develop any methods for any problems that 
are demonstrably better than probabilistic or non-fuzzy methods. Although 
numerous applications have been reported, the "fuzziness" of the methods is 
not essential to any success they may have. Furthermore there has been very 

"We allow ourselves one irresistable exception, namely Goguen's argument for the "social nature 
of truth" [319]. Goguen, upon realising the difficulties in actually determining grades of member- 
ship or degrees of truth, suggested that the notion of objective truth was not as useful as one based 
on social consensus: T h i s  paper suggests we must abandon classical presuppositions about truth, 
and view assertions in their social context" [319, p.651. Whilst this may appeal to totalitarian 
governments, it has little to recommend it otherwise! 



little hard-headed and honest comparison with non-fuzzy techniques. We will 
use the example of fuzzy control to illustrate this point below. 

Regarding the general applicability of fuzzy set theory, Zeleny [902, p.3021 has 
argued that apart from human decision making and judgement, "there are no 
other areas of application." We agree with this, but would even question the 
applicability to human decision making.22 

Fuzzy Control  

An example of a suggested engineering application of fuzzy set theory is fuzzy con- 
trol. The idea of this, which seems to have been first studied by Mamdami [538], 
is to develop automatic controllers for dynamic plants by using linguistic informa- 
tion obtained by questioning human operators of the plant. That is, one asks the 
operator how he controls the plant, and then incorporates these "fuzzy rules" into 
an automatic controller. It is suggested that this approach (which does still seem 
to show some promise) is suitable for highly non-linear plants which it is difficult to 
model explicitly. A survey of fuzzy control is given by Sugeno [789]. Fuzzy control 
is considered to be one of the most developed and "successful application[s] of the 
theory of fuzzy sets" [898, p.421]: Sugeno argues that "Fuzzy control is without 
doubt one of the most exciting and promising fields in fuzzy engineering" [790]. 
Not only are the fuzzy controllers rarely compared with the classical designs, but 
when they are, it is only with the simplest PID (Proportional, Integral, Derivative) 
controllers and little advantage (if any) is claimed [181]. The main disadvantage of 
fuzzy control (and this is admitted by Sugeno in his survey [789, p.781) is that there 
are no analytical tools to test the stability of these controllers. Furthermore, as has 
been recently shown by Buckley and Ying [116], many fuzzy wntrollers are more 
closely related to linear wntrollers than previously thought. As the number of rules 
in a fuzzy linear controller is increased, its behaviour approaches that of a simple 
linear controller. 

We argue that it is more the structure of the fuzzy wntrollers (such as those 
discussed in [742,817,818]) rather than the use of fuzziness per se that contributes 
to their performance. In fact, there exists a little known probabilistic analogue to 
these fuzzy wntrollers. Black [79,80] has developed a method based on conditional 
expectation arrays which would appear to be a considerable advance over the fuzzy 
controllers (for the application areas envisaged). The aim of Black's work is similar: 
control of plants which can not be readily modelled, but which seem to be control- 

"Some authors consider fuzzy set theory as a purely mathematical theory and suggest that it 
be judged on its mathematical merits. Whilst we admit that there has been some very interesting 
mathematical work (especially by Hohle, Lowen and others), we generally agree with MacLane's 
assessment (see [527] and the papers following) that mosl of fuzzy mathematics is valueless. It  is 
believed that there are far too many mistakes and that mast of the results are trivial. (A cynic 
might say that the same argument applies to all modern mathematics, to which we would reply 
"perhaps, but it applies more so to fuzzy mathematics"). See also Johnstone's open letter to Ian 
Graham: "Fuzzy mathematics is NOT an excuse for fuzzy thinking" [414]. 



lable by a human operator. Not only do Black's methods appear to perform better, 
but they have a sounder basis: Rather than implementing what the operator says he 
does, the conditional expectation controller observes what he actually does, and im- 
plements control laws based on these observations. Although some fuzzy controllers 
which adapt according to the operator's actions have been reported [814] (see also 
[789, ~ .70 ] ) ,  these are the exception to the rule. Czogala [180] has suggested the use 
of combined fuzzy and probabilistic control rules. Further work is needed in order 
to determine the practical value of this. 

To sum up: fuzzy controllers, if one of the most successful applications of fuzzy 
set theory, are not a good case for the practical value of fuzzy set theory for engineer- 
ing applications. Whilst the methods do seem to work, they are little or no better 
than alternative approaches, and perhaps more importantly, there are no analytical 
means to test stability and robustness. (Admittedly the second point applies equally 
to Black's fuzzy expectation array controllers at present.) A more detailed compar- 
ison of fuzzy set based methods and probabilistic methods for a specific engineering 
problem can be found in (7791. 

Discussions of t h e  Relationship between Fuzzy Set  Theory and  Probabil- 
i ty  Theory  in t h e  Literature 

Let us now note some of the.previous literature which compares fuzzy set theory 
with probability theory, and which discusses the foundations of fuzzy set theory. 
There does not yet appear to exist a comprehensive (and balanced) discussion of 
these topics. 

Several authors [195,610] feel that there is value in saying that, to an extent, 
probability and possibility (fuzzy set theory) convey "roughlyn the same information. 
(This is sometimes called the LLpossibility-probability consistency principle.n23) Muir 
[600] has shown that restricting fuzzy set theory in order to save the law of excluded 
middle results in a probabilistic Boolean algebra. In [601, p.2591 he gives a more 
discursive account of these matters. He notes (as we have done already -see section 
4.5.1) that fuzzy set theory does not  tov vide sufficient mechanisms for dealing with 
relationships (dependence). 

Ralsecu [668] has argued that probability and fuzzy set theory can be combined 
by considering fuzzy random variables [489,490] (random variables taking on inexact 
values). Goodman [329] has considered interconnections between fuzzy sets and 
random sets. This provides a bridge between fuzzy sets and probability theory. It 
is along quite different lines to that which we have proceeded. 

An interesting episode is the discussion of Cox's theorem, by Zadeh and others 
[369,409,519]. Cox's theorem [170] says that under a number of reasonable assump- 
tions (including additivity), probability is the only measure of uncertainty. (In other 

23''This informal principle may be translated as: the degree of possibility of an event is greater 
than or equal to its degree of probability, which must be itself greater than or equal to its degree 
of necessity" [227, p.1381. 



words, given a few reasonable axioms for a measure of uncertainty, probability is 
the only one which satisfies all of them.) Lindley [519] argues along similar lines 
and concludes that no reasonable "scoring rule" will lead to the combination laws of 
fuzzy sets. Zadeh's reply [519, ~~ .23 -24 ]  is of considerable interest. Zadeh says that 
he would agree with Lindley's conclusions were it not for the necessary assumption 
of additivity: "There would be no issue to argue about if Professor Lindley's pa- 
per were 'Scoring rules and the inevitability of probability under additivity'." (See 
also page 104 of [goo]). Since we (and others) have shown that the (non-additive) 
fuzzy set theoretic combination rules arise naturally in probability theory when one 
makes no independence assumptions, Zadeh's comment seems to imply a tacit agree- 
ment with our conclusion: Fuzzy set theory is effectively no different to the use of 
probability theory when independence is not assumed. 

Some Further  Discussions: Hisdal, Cheeseman and  Others  

Hisdal is another author who has examined the relationship between fuzzy sets and 
probability and has studied the interpretation of grades of membership [382-3861. 
She has developed an alternative foundation for fuzzy set theory which she calls the 
TEE model (Threshold, Error, and assumption of Equivalence) [382,383]. This was 
developed in response to a number of perceived inadequacies of the standard theory 
[386] (such as the ad hoc modifications often necessary to the combination rules, 
the plethora of combination operators that have been proposed [48], the lack of con- 
sensus on the interpretation of membership functions, and questions on the place 
of probability in fuzzy set theory [384,386]). We do not have space to summarise 
Hisdal's rather intricate model. Let it suffice to say that Hisdal seems unaware of 
the probabilistic Boole-Frbchet bound interpretation of the standard fuzzy set com- 
bination operators. In fact she derives (to the credit of her TEE model) combination 
formulae different to the standard min-max rules. 

A number of authors have noticed the connexion between the Boole-Frbchet 
bounds and the fuzzy set operators. We have already discussed this point in section 
4.2.3. Let us now just make a few additional remarks. Cheeseman [141], who 
has noticed the connexion, has gone on to argue that one can use probabilities 
to do things which fuzzy set theorists maintain can only be done with fuzzy sets. 
The important point, be says, is that a strict frequentist view of probability is not 
always necessary. By admitting subjective probabilities, many LLf~zzy" problems 
are solvable by probabilistic means. Cheeseman argues that probability theory is 
a richer and more powerful framework than fuzzy set theory because it allows the 
rigorous representation of dependencies. He agrees with Stallings [779] that for any 
given problem, probability based methods seem at least as good as, or better than, 
fuzzy set based methods. Zadeh's reply [900] to Cheeseman is weakly argued and 
essentially comprises proof by example and proof by vehement assertion (see [28]). 

Grosof [340,341] and Heckerman [368] have both shown how a large number of 
measures of uncertainty (including fuzzy sets) which have been proposed recently 
can be given straight-forward probabilistic intepretations. Wise, Henrion, Ruspini, 



Appelbaum and others have also compared fuzzy set theory with probability. See 
our discussion of their work in section 4.2.3. Henrion [373] has presented a closely 
reasoned argument in favour of probabilistic methods for handling uncertainty in ar- 
tificial intelligence. As well as pointing out that probabilities can be used in a wider 
range of problems than sometimes stated, he notes several advantages of probabilis- 
tic schemes over non-probabilistic ones (including fuzzy set methods). These include 
the ability to take account of the non-independence of different sources of evidence. 
Whilst there are computational problems with probabilistic methods (see the con- 
cluding chapter of this thesis), these can be overcome by Monte-Carlo methods (his 
"logic sampling"). This points out another disadvantage of fuzzy methods: There 
is no way one can simulate the correct result to check the validity of a proposed 
computation method. 

Concluding Remarks 

Fuzzy set theory is based on the misguided premise that "People reason with words, 
not numbers" [361, p.891 (they do neither: they reason with ideas). Thus the lin- 
guistic basis is the wrong starting point even for purely human problems. Even if 
this first point is not admitted, then fuzzy sets are still of very little use for engi- 
neering problems. Recall the example of fuzzy control. It seems to be much better 
engineering to observe what an operator does than to ask him to say what he does. 
In any case, there is still no convincing argument that fuzzy sets are either correct 
or necessary in dealing with the "inherent imprecision" of natural language. When 
one considers the practical efficacy of fuzzy methods the story is the same: there is 
no evidence for superiority over probabilistic methods, neither in the breadth of the 
possible domains of application nor in the performance in a given domain. Finally, 
we have the argument which we feel clinches the matter: the fuzzy set theory combi- 
nation operations can be explained simply in probabilistic terms by considering the 
situation where no dependency information is available. The other supposed advan- 
tages of fuzzy set theory over probability theory are also untenable. For example, 
it is often said that the frequentist interpretation of probability theory severely re- 
stricts its domain of application to repeatable experiments. This is incorrect. Either 
the subjective or the propensity interpretations of probability can assign meaning 
to the probability of singular events. 

We conclude by speculating that one of the reasons for the appeal of fuzzy set 
theory, particularly in the field of artificial intelligence, is that naive introspection 
can lead one to believe that fuzzy sets do accurately model human thinking. The 
goal of A1 at present seems to be to mimic or implement human thinking on a 
computer. We suggest, following Lem [509], in fact the wrong goal, for engineering 
applications. Certainly intelligent machines are desired, but that does not mean they 
have to have anything in common with human intelligence. Lem has noted (in a 
retrospective review of military history of the 21st century) that artificial intelligence 
"became a force to be reckoned with precisely because it did not become the machine 
embodiment of the human mind" [509, pp.37-381. 



4.5.4 Confidence Curves, Possibility and Necessity Mea- 
sures and Interval Fuzzy Numbers 

There is a little known statistical technique known as confidence curves which seems 
to be surprisingly closely related to fuzzy numbers. We will now explore this rela- 
tionship. Our aim is not to show that they are identical (they are not), but rather 
to show that the '&intuitive informationn they capture is nearly identical. 

Confidence Curves: Their  Definition a n d  Application 

Confidence curves were introduced by Cox 11691 in 1958. They were developed 
further by Birnbaum [76,77] but have received very little attention since.24 The 
basic idea of confidence curves is to have a set of nested confidence intervals for 
some parameter at different confidence levels. Cox's motivation for this was that 
the ordinary confidence intervals do not give any measure of the "informativeness" 
of a sample: 

[Wlhen we write down the confidence interval 

for a completely unknown normal mean, there is certainly a sense in 
which the unknown mean 6' is likely to lie near the centre of the interval, 
and rather unlikely to lie near the ends and in which, in this case, even if 
6' does lie outside the interval, it is probably not far outside. The usual 
theory of confidence intervals gives no direct expression of these facts 
[169, p.3631. 

Birnbaum [76] defines confidence curves as follows: 

For each c, 0 < c 5 0.5, let OL(t, c) and BU(t, c) respectively, denote lower 
and upper confidence limits for an unknown parameter 6' a t  the 1 - c 
level, based on the observed value of some suitable statistic t. Such a 
pair of estimates also represents a 1 - 2c level confidence interval. In 
the (0,c) plane, for each c < 0.5 plot the two points (O~(t,c),c) and 
(0u(t, c), c). For c = 0.5, we have OL(t, c) = BU(t, c), which is a median- 
unbiased point estimate of 8, represented by the point (BL(t,0.5), 0.5). . . 
We denote this graph, or the function of 6' which it represents, by c(0, t ) .  
In most problems of interest such a graph is continuous and resembles 
that in figure 4.7 176, p.2471. 

Z4Consultation of the Science Citation Index revealed the only references to Birnbaum's two 
papers were 1. By Birnbaum, but not concerned with confidence curves; 2. Irrelevant (said 
nothing of value with regard to confidence curves); or 3. The papers by Kiefer [456] and Mau 
15531 which we discuss below. 



Figure 4.7: A typical confidence curve (after Birnbaum [76]). 

Birnbaum [77, p.1181 gives the following simple example of a confidence curve. Con- 
sider an estimate of 8, the mean of a normally distributed random variable with unit 
variance. Then 

- w < B < x  
c(8, x) = (4.5.18) 

There are many problems which arise in the use of confidence curves, particularly 
admissibility. These are considered by Birnbaum in some detail in [77]. 

Further  Work on  Confidence Curves for Statistical Inference 

We will now examine Kiefer and Mau's comments on confidence curves. (This con- 
stitutes a comprehensive literature review of the topic!) Kiefer [456] mentioned 
confidence curves in his criticism of the general theory of confidence intervals. His 
main complaint can be best described by the following simple example (see [686]): 
Choose between two hypotheses Ho: df (X) = N(0, l )  and HI: d f ( X )  = N(3, l )  on 
the basis of a single observation x of X. The standard procedure would be to not 
reject Ho ("accept") if x 5 1.5 and accept HI if x > 1.5, the probability being 
0.933 that a correct decison will follow from this procedure. Kiefer's complaint is 
that given two different observations x = 1.6 or x = 3.6, the same degree of con- 
clusiveness is expressed by the test. Similar complaints have been voiced by other 
authors [328,554,723,724,775], and it is often said that confidence intervals give good 
estimates of the validity of conclusion before the data has been seen, but not after- 
wards. Kiefer's solution is to use conditional confidence intervals [110,456,457]. For 
the above problem, this would involve partitioning the sample space into (for ex- 
ample) three sets: (-m,O] U (3, w ) ,  (O,l] U (2,3] and (1,2]. The probability of the 
correctness of the decision to accept or reject Ho is now conditional on which of 
these sets the sample value x falls within. The probabilities are 0.9973, 0.951 and 
0.676 respectively. Kiefer says [456, p.7921 that the method of nested confidence sets 
(confidence curves), although it "does have the frequentist interpretation of confi- 
dence," without conditioning "it suffers from the the same defect as [the example 



a b  c 
Figure 4.8: A Fuzzy Number (FN) and a Flat Fuzzy Number (FFN) 

above]." This is not necessarily true (although considerable further research is re- 
quired to resolve the problem completely). Birnbaum [77, p.1321 has given different 
confidence curves for different sample values x. The intuitively "more informative 
sample" gives a narrower confidence curve, reflecting a more conclusive result.25 It 
is surprising that these ideas have received such little attention in the literature. 

Mau [553] has recently examined the use of confidence curves (he calls them 
confidence distributions). He carefully derives some of the properties of confidence 
distributions and shows how their use "quantifies the strength of evidence against a 
null hypothesis in the light of given data" 1553, p.3501 He also develops properties of 
central and symmetric confidence distributions. One of the most interesting points 
Mau makes is that confidence distribution procedures are very similar to Bayesian 
procedures. In fact, with one restriction, Mau's formula for updating a confidence 
distribution (in the process of accumulating data) is essentially Bayes's formula. 
This connexion between the two sides of statistical inference is very interesting and 
deserves further research. 

Relationship Between Confidence Curves and  Fuzzy Numbers  

Our motivation for examining the relationship between confidence curves and fuzzy 
numbers comes from comparing figure (4.8) with figure (4.7). Apart from the factor 
of two difference in the vertical scaling, these two graphical representations are very 
similar. Furthermore the confidence curve is very directly related to the distribution 
function of the quantity in question. (Recall equation 4.5.18.) There are several 
different approaches for developing a tighter analogy between the two concepts. We 
will examine the possibility of conditional confidence curves as an analogy of flat 
fuzzy numbers below. For now, let us consider two ideas relating fuzzy numbers and 
statistical data. 

Z5Birnbaum's example is for a two sample test of the difference between two quantities. 



8 - - - - - - - - . 
Figure 4.9: Membership function constructed from histogram data 

Dubois and Prade [233, pp.354-3551 have discussed how to determine member- 
ship functions (possibility distributions) from statistical data. They begin with a 
nested set of intervals {I;}:=l such that 

b] I1 C 1 2  C . . . C I, = [A, B1. (4.5.19) 

They consider a series of q "imprecise" experiments for which the outcome is an 
interval [ak, bk] (k = 1,. . . , q). They impose a consistency requirement that 

[ai, b;] = [a, bl # 0 
;=I, ..., q 

and let [A, B] = Ui,l,...,q[a;, b;]. Then they construct a LLpossibility distribution" or 
membership function pF(x) along the following lines (although their notation and 
presentation is rather different): 

if x $I, 

l{kl l  5 k 5 9 ,  [ak, bk] E Ij \ Ij-l}l if x I,, I ,  (4.5.21) 

if x E Il 

The result is a membership function which looks something like figure (4.9). Apart 
from the maximum value being 1 rather than 0.5, this is identical to the confidence 
curve procedure - the vertical scale being L'degree of membership" rather than 
"confidence." Thus at least for L'statistical data" the fuzzy set method provides no 
more information or insight than the classical probabilistic methods. (Admittedly 
this is not the domain of application that proponents of fuzzy set theory have aimed 
for. We return to this later.) 



Dubois and Prade go on to suggest the use of possibility and necessity measures 
based on the above acquistion procedure. McCain [556] has also considered a con- 
fidence interval interpretation of fuzzy numbers. However his hard to follow paper 
says very little of substance. The construction of membership functions from statis- 
tical data has also been considered by Civanlar and Trussell [l48]. Their conclusions 
are of negligible value. 

Interval Fuzzy Numbers, Possibility and  Necessity Measures, Lower and 
Upper  Probability Distributions and  Higher Order Fuzzy Numbers 

We will now examine Dubois and Prade's possibility and necessity measures and 
their relationship with lower and upper probability distributions. We will follow the 
presentation in [240]. More detail can be found in [231]. Further work on "interval 
valued fuzzy numbers" and higher order fuzzy sets (a related idea) can be found in 
[333-335,337,618,8451. 

Possibility and necessity measures are LLconfidence measures" that satisfy 

and 
N(A n B) = min(N(A), N(B)) 

respectively for any "events" A and B. They are related by 

Given a "possibility distribution" a(w) (corresponding to a membership function 
~ ( w ) )  this means that 

11(A) = sup{a(w)l w E a )  

and 
N(A) =inf{l -?r(w)lw $ A). (4.5.23) 

The relationship between possibility distributions and possibility measures is con- 
sidered to be analogous to the relationship between probability densities and prob- 
ability distributions. Possibility measures have the property that II(UiEr Ai) = 
supiEln(Ai). Dubois and Prade show that possibility and necessity measures are 
related to probability by 

N(A) I P(A) < n(A). 

They present the theory of fuzzy numbers in terms of possibility theory and show 
how a fuzzy number (or, as they prefer to say, a fuzzy interval) describes lower and 
upper probability distributions as follows: 



Figure 4.10: Lower and upper probability distributions for which there is no corre- 
sponding normal fuzzy number 

and 

The fuzzy quantity Q has a membership function with a Vlat" in the interval [ q l ,  q2] 
(corresponding to the region b in figure (4.8). When there is no flat (ql = q z ) ,  there 
is only one value of x (x = q,) such that F,(x) = 0 and F*(x) = 1. Since the lower 
and probability distributions are derived from normal fuzzy numbers, the situation 
depicted in figure (4.10) can never occur. Admittedly, by sacrificing normality, one 
could stretch the analogy to cover this case. We feel that taking the lower and 
upper probability distributions as primary (as bounds on some inaccurately known 
probability distribution) is preferable to the above approach. 

Finally we note in passing that Dubois and Prade have used the connexion 
between possibility and necessity measures and lower and upper probability distri- 
butions in order to define and study the properties of the "mean value" of a fuzzy 
number [236]. They define expectations of fuzzy numbers in terms of the expecta- 
tions of random variables which have the lower and upper probability distributions. 
They also note some connexions with the.theory of random sets [551,613]. Dubois 
and Prade's [236, p.2981 suggestions for further research include a study of the de- 
termination of P(M $ N)  in terms of P ( M )  and P ( N )  where 

P(Q) = {PI VA measurable, II(A) 2: P(A) 2 N(A)) 

for some fuzzy number Q, where $ denotes the sup-min convolution and n(A) and 
N(A) are defined above. Our dependency bounds in chapter 3 essentially answer 
this question for a more general class of probability measures. Dubois and Prade 



[236, p.2901 also discuss the relationship between their notion of afuzzy number and 
Hohle's (and others - see the beginning of section 4.5 and section 4.6). Dubois and 
Prade's conclusion is of some interest to us. They say that "Ultimately we may think 
of bridging the gap between fuzzy interval arithmetic and the calculus of random 
variables, i .e.  embedding both into a unique settingn [236, p.2981. This has been our 
aim in the present section. We conclude by saying that there is a reasonably close 
correspondence between membership functions and confidence curves. This par- 
allels the correspondence between possibility/necessity measures and lower/upper 
distribution functions. 

4.6 General Interpretations - Positivist vs Re- 
alist 

All the things in fact, that we approached by our senses 
reason or  intellect are so different from one another 

Ihat there is no precise equality between them. 
- Nicolas Cusanus (1401-1464) 

Elaboration of this idea leads to the concept of a space 
in which a distribution function rather than a definiie 

number is associated with every pair of elements. 
- Karl Menger 

The object of this section is to compare two points of view for using distribu- 
tion functions as a generalisation of numbers. One approach is that which we have 
adopted. This entails taking the view of random variables of orthodox (Kolmogorov) 
probability theory. The random variables are the primary entities and they are ma- 
nipulated in terms of their distribution functions. The other viewpoint is that taken 
in the development of probabilistic metric spaces. In this case the distribution func- 
tions are considered primary and operations are performed on distribution functions 
without reference to any underlying random variables. 

We shall see that one of the advantages of the latter viewpoint no longer holds. 
It was originally adopted for two reasons. The first was the severe mathematical 
difficulties arising in the random variable viewpoint because of intricate dependency 
relations. The second was that there were many functions of distribution functions 
which were not expressible in terms of random variables.26 The interpretation of 
the rT,L and p ~ , r ,  operations as dependency bounds changes this, because now these 
operations can be interpreted in terms of random variables. 

26Historically this statement is not true - the reasons why the development of probabilistic 
metric spaces went the way it did are more complex than the few sentences above would indicate. 
However, the main point (that the random variable viewpoint did not allow all operations) is true. 



4.6.1 Probabilistic Metric Spaces 

We now present a very brief outline of the theory of probabilistic metric spaces. 
More details can be found in the excellent book by Schweizer and Sklar [718]. See 
also the review of the book by Brooke [I081 who mentions some of the possible 
physical applications of the theory. Rosen [688,689] has also considered the idea 
and suggested uses in physics. 

The original idea of probabilistic metric spaces was proposed by Menger [562, 
5641 who was motivated by Poincark's paradox [650,651] (see also [130, p.5431). 
Poincar6 noted that for physical measurements, given that A = B and B = C, one 
could not necessarily conclude that A = C when the equality relation is interpreted 
physically. Menger suggested that a distribution function be associated with each 
pair of quantities, thus providing a generalisation of the notion of a metric space 
(first introduced by Frkchet in 1906): 

The distribution function associated with two elements of a statistical 
metric space might be said to give, for every x ,  the probability that the 
distance between the two points in question does not exceed x [564]. 

Menger subsequently developed his ideas further in [563] where he suggested that 
the theory could be applied to psychophysics and physics (both microscopic and 
macroscopic). 

Menger's original proposal was for triangle functions T such that, inter alia, the 
triangle inequality 

F P ~ X  + Y) > T(F,,(x), F ~ ~ ' ( Y ) )  (4.6.1) 

would hold (Fpr is the distance distribution function for the two points p and r ) .  
Wald [848] suggested that (4.6.1) could be replaced by 

where * denotes convolution. This has the simple probabilistic interpretation that 
the probability that the distance from p to r is less than x is at least as large as the 
probability that the sum of the distances from p to q and from q to T ,  regarded as 
independent, is less than x.  These Wald spaces have not generated much interest or 
many results because of the severe mathematical difficulties caused by the complex 
dependency structure induced on the underlying random variables. 

The majority of the work on probabilistic metric spaces has taken the original 
approach of Menger, and studied a variety of different triangle functions. One of 
these is the operation given by 

for some t-norm T. An important result due to Schweizer and Sklar [717] is that 
apart from L = max and T = min the function TT,L is not derivable from a function 



on random variables. (See also Schweizer's recent remark in [716].) This means 
that for any F and G in A+ there do not exist random variables X and Y where 
F = df (X) and G = df ( Y ) ,  and a Bore1 measurable function V: %+ x LR+ H LRf such 
that df(V(X, Y)) = TT,L(F,G). This implies that the viewpoint taking distribution 
functions as primary is in a sense more powerful. However, as we have seen (and in 
fact as Schweizer et al. were the first to show), the T T , ~ ,  operations do arise naturally 
as dependency bounds for functions of random variables. The impact of this on the 
development of probabilistic metric spaces remains to be seen. It is certainly a topic 
which deserves further investigation. 

4.6.2 Philosophical Aspects of Probabilistic Metric Spaces 

Menger developed a number of philosophical ideas from his work on probabilistic 
metric spaces.27 His general view of the theory was that it was a "positivist geom- 
etry" [570,571]. Positivism, or rather logical positivism, is a philosophical doctrine 
which can trace its roots to Hume's empiricism. It holds that no propositions should 
be considered to be true unless verified by direct sense experience. It has been shown 
by a number of authors, most notably Karl Popper [657], that the whole scheme 
is fundamentally flawed. It is fair to say that positivism is dead. Menger's use of 
the term was to indicate that the objects of geometry which we perceive and can 
"verify" are not the ideal points or lines of Platonic geometry, but rather the blobs 
and fuzzy regions of a probabilistic geometry. This seems to  be the appropriate 
viewpoint for interpreting current work on probabilisitic metric spaces.28 

The viewpoint we adopt is that random variables are randomly varying quan- 
tities. We would prefer the quantities to be not varying, in which case we could 
readily calculate the functions of interest. Instead, the best we can do is to try 
to determine the distribution of the functions of interest, given the distribution of 
the random variables. This viewpoint seems similar to that necessary for interpret- 
ing a random metric space (see chapter 9 of [718]). Random metric spaces, first 
introduced by Spatek [772,773], have been shown by Schweizer and Sklar [718] to 
in fact be LLa proper part of the theory of probabilistic metric spaces." Calabrese's 
investigations in this area seem potentially useful [125]. He shows that when the 
standard (distribution based) approach is examined in terms of random variabes, 
quite peculiar effects can arise. We feel that there is considerable scope for further 
research in this area, especially if the dependency bound viewpoint is adopted. We 
hope to pursue some of these issues ourselves at  a later date. 

27Amongst those which we do not discuss here, perhaps the most interesting and promising is 
his very careful analysis of the idea of a random variable from the point of view of a general theory 
of variables or fluents [567]. He developed new improved notation for the concepts of variables 
and functions [565,568,569,572] (see also [561]), which he used in a calculus textbook [566]. This 
aspect of his work has received little attention in the literature since. 

"It is no accident that the standard probabilistic metric space structure has been adopted by 
some fuzzy set theorists - the goals and techniques are the same: both sidestep the issue of 
dependence. See for example the works by Hijhle, Klement, Lowen and others [135,389,391-393, 
465,5271. 



4.7 General Conclusions 

We have seen a surprisingly large number of connexions between the material we 
developed in chapter 3 and other ideas. Some of these connnexions have suggested 
areas for future research, and others have shown that some results that have been 
presented in the literature duplicate earlier work. The most useful connexions and 
directions for future research are as follows: 

a The extensions by Hailperin of the Boole-Frhchet bounds using the techniques 
of linear programming suggest the similar application of general mathematical 
programming ideas to dependency bounds for functions of random variables. 
This would generalise the bounds to functions of more than two variables. 

a Graph-theoretic techniques may be of use in probabilistic arithmetic. There 
are two issues: the control of calculations (using the structure of the graph) and 
determination and approximation of complex stochastic dependencies using 
graph theoretic methods; and the possibility of transforming expression DAGs 
in order to make determination of distribution functions easier. As we saw 
however, the prospects for the latter are not very good. 

a Our viewpoint taken in interpreting our bounds on probability distribution 
functions is quite different to that taken in most contemporary theories of 
lower/upper probabilities. However it seems that it might be possible to inte- 
grate our approach with other theories. In particular, Fine's theories of lower 
probabilities deserve more attention. 

a The theory and practice of fuzzy arithmetic and fuzzy numbers has a lot in 
common with probabilistic arithmetic which makes use of dependency bounds. 
The duality theory we used to develop our numerical methods encompasses 
the results used in calculating operations on fuzzy numbers and shows how 
extensions are possible. The intuitive ideas captured by fuzzy numbers can 
be equally well represented using probabilistic techniques such as confidence 
curves. 

a Our viewpoint is somewhat different to that adopted in the theory of prob- 
abilistic metric spaces, although there is some scope for integrating the two 
approaches. 

To summarise the chapter as briefly as possible: There are numerous connexions with 
other results: some apparently of no use at all; some of 'interest'; some immediately 
useful i n  other areas; and some potentially useful and suitable subjects for further 
research. 



Chapter 5 

An Extreme Limit Theorem for 
Dependency Bounds of 
Normalised Sums of Random 
Variables 

This becomes clearer when you reslrict your 
considerntions to  the maximum and minimum of 

puanlaty. 
- Nicolas Cusanaus 

This chapter presents a new result on the behaviour of dependency bounds of 
iterated normalised sums. We show that the dependency bounds converge to step 
functions as the number of summands increases. The step functions are positioned 
at points which depend only on the extremes of the supports of the summand's 
distribution functions. With very minor differences, this chapter will appear in 
Information Sciences (with the same title as this chapter). In order to make this 
chapter self-contained there is some reiteration of material covered in chapter 3. 
Since most of this material is not widely known, this does no harm. 

5.1 Introduction 

Dependency bounds are lower and upper bounds on the distribution of functions 
of random variables when all that is known about the random variables is their 
marginal distributions. They have been recently studied by Frank, Nelsen and 
Schweizer [277] who showed that Makarov's solution [536] to a question originally 
posed by Kolmogorov follows naturally from the theory of copulas [718,759]. Depen- 
dency bounds arise in the development of probabilistic arithmetic (see chapter 3), 
and it is in this context which we study the question of limit results for dependency 
bounds of normalised sums. 

If we write ldb(SN) and udb(SN) for the lower and upper dependency bounds 



of SN = zEI X,, and {X,) is a sequence of random variables with distribution 
functions E::, then we show that as N approaches infinity, ldb(SN) and udb(SN) 
approach unit step functions. The position of the step functions depends only on the 
support of the F, and this is why we refer to our result as an eztrerne limit theorem. 
(Note that our result is actually more analogous to the law of large numbers than 
the central limit theorem. The central limit theorem describes the behaviour of 
1 - , zE, Xi.) 

We prove our result in a fairly straightforward manner by making use of the 
properties of T-conjugate transforms. These transforms, which play a role analogous 
to the Laplace-Stieltjes transform in the central limit theorem for sums of random 
variables [520], have been developed by Richard Moynihan [594,595]. Apart from 
being mathematically interesting, our limit theorem has a practical interpretation 
with regard to the suitability of interval arithmetic for certain problems. We show 
that if one has to calculate the dependency bounds for the sum of a large number 
of random variables, then one can use interval arithmetic from the outset (using 
just the endpoints of the supports of the distributions) because one will lose little 
information in doing so. 

The reason why one would want to calculate dependency bounds rather than 
ordinary convolutions can be explained by considering probabilistic arithmetic. The 
aim of this is to replace the ordinary arithmetic operations on numbers by appropri- 
ate convolutions of probability distribution functions of random variables. However, 
when one does this, the phenomenon of dependency error occurs. This is caused 
by stochastic dependencies arising between intermediate results of a calculation. In 
order to avoid errors in the calculations, one has to take cognizance of these depen- 
dencies when they exist. If, as seems to be the case practically with probabilistic 
arithmetic, one can only determine whether or not two quantities are independent 
(and not any measure of dependence if they are not), then one has to assume the 
worst and calculate dependency bounds. 

The rest of this chapter is organised as follows. Section 5.2 contains all the 
preliminary information we require in order to prove our main result in section 5.3. 
We formally define the notions of dependency bounds, copulas, t - n o m ,  the TT and 
p~ operations, and T-conjugate transforms as well as discussing the representation 
of Archimedean t-norms and the characterisation of associative copulas. Section 5.3 
is devoted to the proof of our main result (theorem 5.3.1) and section 5.4 gives an 
explicit formula for ldb(SN) for a special case. This enables us to examine the rate of 
convergence for theorem 5.3.1. In section 5.5 we present some examples illustrating 
the results of sections 5.3 and 5.4. These examples are calculated using the numerical 
representations and algorithms developed in chapter 3. Finally, section 5.6 draws 
some general conclusions from the results of this chapter. 



5.2 Definitions and Other Preliminaries 

We now introduce the notation and results needed to prove our result in section 5.3 
in sufficient detail to make this chapter self contained. The general references for 
this section are [594,595,718]. We will often write inequalities between two functions 
F and G as F < G. This is to be interpreted as meaning F(x)  < G(x) for all x in 
the common domains of F and G. A convex function f defined on some set A is 
one which satisfies 

for all XI, 2 2  E A and all (Y E (0,l) .  If the above inequality is reversed then f is 
concave. We write "iff" for "if and only if". 

5.2.1 Distribution Functions 

The distribution function of a random variable X is denoted df(X) and is given by 

and is a left continuous function from R onto I (I = [O, 11). The set of all distribution 
functions is denoted A. The subset A+, defined by 

is the set of distribution functions of random variables that are almost surely positive. 
The support of a distribution function is defined by 

where 

and 

eF = inf { X I  F (x)  > 0) 

UF = suP{xI F(x) < 1). 

Three subsets of A are defined by 

and 
ALU = AL n A,. 

We also have 

A$ = {F E A+ 1 UF < m), 

A t  = {FE AfleF>O) ,  



and 
ALu = A; n A;. 

The step function 6 ,  E A is defined by 

5.2.2 Triangular Norms 

A t-norm (triangular norm) T is a two place function T: I x I ++ I which is sym- 
metric, associative, non-decreasing in each place and has 1 as a unit (i.e. T(a, a) = 
T ( l ,  a)  = a Va E I). An Archimedean t-norm is one which satisfies T(a, a)  < a Va E 
(0,l).  A strict t-norm is one which is continuous on 1' and is strictly increasing in 
each place on (0, 112. All t-norms T satisfy Z I T 5 M, where 

and 
M(x, y) = min(x, y) x, y E I. 

Two other t-norms we will use are W and II given by 

and 
n(x,  Y) = XY. 

These four t-norms have the following properties: 

Z is Archimedean, but not continuous. 

W is Archimedean and continuous, but not strict. 

M is continuous, but neither Archimedean nor strict. 

II is continuous, strict and Archimedean. 

Any strict t-norm is Archimedean. We define 7 by 

'T = {TIT is a continuous t-norm), 

and I, by 
= {T E 'TIT is Archimedean). 

If T is a t-norm, then T' defined by 

Te(x,y) = 1 - T(1 -  x, 1 - y)  

is known as a t-conom (see section 5.7 of [718]). 



5.2.3 Representation of Archimedean t-norms 

Archimedean t-norms are of special interest because of the following representation 
theorems [718]. 

Theorem 5.2.1 A t-norm T is continuous and Archimedean iff 

T ( x ,  Y )  = ~ T ( S T ( X )  + S T ( Y ) ) ,  

where 

1. gr is a continuous strictly decreasing function from I into Sf with g T ( l )  = 0.  

2. f~ is a continuous function from sf onto I such that it is strictly decreasing 
on [ 0 , g ~ ( O ) ]  and such that f ~ ( x )  = 0 V x  2 g ~ ( 0 ) .  

3. fr is a quasi-inverse of gT (see section 3.2 of this thesis). 

The functions f~ and g~ are known as the outer and inner additive generators of T 
and are unique up to a multiplicative constant. If we set h T ( x )  = fT(- logx) and 
k T ( x )  = e x p ( - g ~ ( x ) )  we obtain a multiplicative analogue: 

Theorem 5.2.2 A t-norm T is continuous and Amhimedean iff 

T ( x , Y )  = ~ T ( ~ T ( x ) ~ T ( Y ) ) ,  

where 

1. kT is a continuous strictly increasing hnct ion  from I into I with k T ( l )  = 1. 

2. hT is a continuous function from I onto I that is strictly increasing on [ k ~ ( o ) ,  11 
and such that h T ( x )  = 0 V x  E [0, kT(0)].  

3. h~ is a quasi-inverse of kT 

The functions hT and kT are known as the outer and inner multiplicative generators 
of T and are unique up to an exponentiation. T is strict iff h~ = k ~ l  and k ~ ( 0 )  = 0. 
For any T E la, h~ and k~ satisfy 

~f T = W we have h w ( x )  = max(1 + log X ,  0 )  and k w ( ~ )  = 



5.2.4 Copulas 

A 2-copula (or just copula) is a mapping C:  I 2  H I such that 0 is the null element, 
1 the unit and C is 2-increasing: 

C(az,  bz) - C(a1, b z )  - C(az ,  bl) + C(al ,  b )  2 0 

for all al ,  a*, b ~ ,  bz E I such that a1 5 a2 and bl 5 bz. The set of all copulas is 
denoted C. All copulas satisfy W 5 C 5 M and are continuous. 

Copulas link joint distribution functions with their marginals. If H: 32' H I is a 
two dimensional joint distribution function corresponding to the random variables 
X and Y (i.e. H ( x , y )  = P { X  < x , Y  < y} ) ,  and F = d f ( X )  and G = d f ( Y )  are 
the marginals, then 

H ( x ,  Y )  = C ( F ( x ) ,  G ( Y ) )  

for some copula C ,  known as the connecting copula for X and Y. The copula 
contains the dependency information relating the random variables X and Y. If 
C = n, then X and Y are independent. 

The dual of a copula, written C d ,  is defined by 

For any C E C, the operations and pc from A x A onto A are defined pointwise 

by 
r c ( F , G ) ( x ) =  sup C ( F ( u ) , G ( v ) )  

u+u=z 

and 
pc(F, G ) ( x )  = inf C d ( F ( u ) ,  ~ ( v ) ) .  

u+u=z 

These operations have been studied because of their properties as triangle functions 
when C E 7 in the theory of probabilistic metric spaces [718]. If C E 7, then .re 

~ - 

and pc are associative. They are also non-decreasing in each place (lemma 7.2.2 of 

[7181). 
The only additional requirement on C E C for C to also be in 7 is associativity. 

In fact, under one weak condition, C must be Archimedean: 

Theorem 5.2.3 Let T E 7 n C be such that T ( x ,  y )  # min(x, y )  V ( x ,  y) E ( 0 ,  
Then T E TA. 

PROOF. This follows at  once from theorem 5.3.8 of [718] and the fact that C 5 M 
for all C E C. I 
We define the set of T that satisfies the condition of theorem 5.2.3 as Tc C 7 n C. 

Since we will restrict ourselves to associative copulas in this chapter, it is of 
interest to have a probabilistic characterisation of them. This is part of problem 
6.7.2 of [718]. Archimedean copulas have been studied by Genest and MacKay [299] 



who have looked at stochastic orderings and sequences of copulas, and have used 
their results to develop new parameterised families of copulas satisfying certain 
conditions. Schweizer and Sklar [718] present the following two theorems (their 
theorems 6.3.2 and 6.3.3): 

Theorem 5.2.4 A t-norm T is a copula iff 

T(c, b) - T(a, b) 5 c - a Va, b, c E I, with a 5 c. 

Theorem 5.2.5 ~ e t  T 6 TA, then T E C iff either fT o r g r  (the additive generators 
of T j  is convex. 

Restricting C to be associative restricts the type of dependency structure two ran- 
dom variables X and Y can have. Noting that if C is a copula, it can be considered 
as the joint distribution function of X and Y, where X and Y have uniform marginal 
distributions on [O, I], we can proceed as follows. If C is Archimedean, then 

where Il is the joint distribution function of two independent random variables with 
uniform marginals on I. Therefore 

where Fuv is the joint distribution function of U and V, U = hc(X), and V = 
hc(Y). We thus have 

C(X,Y) = hc(Fuv(x,y)). 

Noting that U and V are independent (because X and Y are), we have shown 
that if C is associative then it is an increasing function of a joint distribution of 
independent random variables. This demonstrates the restriction on the types of 
dependencies an associative copula can represent, but is not a wholly satisfying 
characterisation because there seems to be no natural probabilistic interpretation of 
such a dependence structure. 

5.2.5 Dependency Bounds 

We now formally define dependency bounds and show how they are related to the 
TC and pc operations. We firstly consider sums of two random variables and then 
examine when we can extend the results to sums of N random variables. 

Let X and Y be two random variables with distribution functions F = d f ( X )  
and G = df(Y). Let their joint distribution function be given by H(x,y) = 



C(F(x), G(y)) where C is the connecting copula for X and Y. Then the lower 
and upper dependency bounds ldbc - and udbc - on df(X + Y) are such that 

for all C 2 C < W. The function C is the lower bound on the connecting copula 
C. The crucial result we need is given by 

Theorem 5.2.6 

and 
udbc(F, G) = pc - (F, G),  

and these bounds are the pointwise best possible. 

PROOF. See chapter 3 and [277]. 

An analogue of this theorem holds for operations other than addition on random 
variables. (See chapter 3.) We will be interested in the case that C E 7c in which 
case we will write T instead of C. 

These dependency bounds can be extended to sums of the form 

where { X i ) z l  is a set of random variables with distribution functions F, = df(X;) 
and such that for all i # j (2, j = 1 , .  . . , N ) ,  

where Cxixj is the connecting copula for the pair of random variables (Xi,Xj). 
In such a case, because addition is associative and commutative, and because any 
T E Tc is also, we find that TT and p~ are as well and we can write [277, p.2111, 

The N-place functions T$~) and p$N) are given by 



and 

P!?(F, G )  = PT(F, G )  
(N-1) piN)(F1, . . . , F N )  = pT(F1, pkN-')(F2,. . . , F N ) )  = PT(PT (E l , .  . . , FN-I ) ,  F N )  

(5.2.7) 
We will generally drop the (N) superscript as no confusion can arise when the 
arguments are explicitly stated. 

The condition (5.2.5) is not equivalent to 

> T ( N ) ,  C X  ]... XN - 

where Cx,...x, is an N-copula and T ( ~ )  is an N-iterate of a t-norm: 

T ( ~ ) ( x ~ ,  . . . , Z N )  = T ( T ( ~ - ~ ) ( x  I , .  . . , ZN-11 ,  Z N ) .  

The problem of relating high order copulas to their lower order marginals is still 
open. See the problems at the end of chapter 6 of [718]. It is known that all 
N-copulas C satisfy 

wN-l < - C 5 M ~ - ' ,  (5.2.8) 

that I I N - I  and MN-' are copulas, but that WN-' is not [718, p.881. The fact that 
W N  is not a copula for N > 2 can be understood simply as follows. For N = 2, if 
C = W is a connecting copula for X and Y, then X and Y are decreasing functions 
of each other. However it is impossible, given three or more variables X I , .  . . , X N ,  
for each Xi to be a decreasing function of all of the others. Nevertheless, the lower 
bound in (5.2.8) cannot be improved. 

5.2.6 T-conjugate Transforms 

Before introducing T-conjugate transforms we note how T can be represented in 
terms of rn, hT and kT. 

Theorem 5.2.7 ([593]) Let T E la and F E A+. Define kTF E A+ by 

Then for all F and G in A+, both rT(F,G)  E A' and .m(kTF, krG)  E A+ and in 
fact 

~ T ( F ,  G) = h ~ ( n ( k ~ F ,  ~ T G ) ) .  

This follows directly from theorem 5.2.2. 

Definition 5.2.8 Let T E TA and F E A+. Then the T-conjugate transform of F, 
denoted CTF,  is defined by 

C T F ( z )  = sup e - " k ~ F ( x )  b'z E %+, (5.2.10) 
z>o 

where kTF is given b y  (5.2.9). 



The study of T-conjugate transform is due to Moynihan [594,595] who extended 
the Prod-conjugate transform CnF by using theorem 5.2.7. Note that CTF = 
c n ( k ~ F ) .  The CT t,ransform has a number of properties in relation to TT analogous 
to the Laplace transform's properties with respect to ordinary convolutions. The 
essential one is 

Theorem 5.2.9 (Theorem 3.1 of 15941) Let T E 'TA and let F,G E A'. Then 

C T ( ~ T ( F , G ) ) ( Z )  = rnax{k~(o) ,  C T F ( ~ )  X CTG(Z) )  v z  2 0. (5.2.11) 

If T is strict, (5.2.11) becomes 

C T ( ~ T ( F ,  G ) )  = CTF X CTG. (5.2.12) 

We also have 1595, theorem 1.11: 

Theorem 5.2.10 Let 

A = ( 4 :  %+ H (0,111 4 is non-increasing, positive, 

continuous and log-convex) U {Om), 

where 0,(z) = 0 V z  2 0.  Then for all T E TA, i f  

AT = { d  E A( 4 ( z )  2 ~ T ( O )  v z  2 01, 

then AT = {CTFI F  E A+).  Thus AT E A and equality holds iff T is strict. 

The inverse T-conjugate transform C; is defined by 

Definition 5.2.11 Let T E la and let 4 E AT. Then 

and is normalised to be left-continuous. 

If F E A+, then we say F  is log-concave if log F  is concave on ( e ~ ,  w), and that 
F  E A+ is T-log-concave if kTF is log-concave. We define 

A$ = { F  E A+! F is T-log-concave). 

The log-concave-envelope, denoted 7, of F  E A+ is defined by 
- 
F ( x )  = 0 I [F 

logF(x) = ~UP{P log F ( x I )  + q log F ( 4 1  P, q 2 0, 
p + q = l ,  x 1 , X 2 > e ~ a n d x = p ~ l + q x 2 )  5 > e F .  

In other words, the graph of log F is the upper boundary of the concave hull of the 
graph of log F  on ( e ~ ,  a). The T-log-concave envelope of F,  denoted is in A+ 
and is given by - HT) = hT(kTF).  

With this notation we state the following properties of conjugate transform, T- 
log-concave envelopes and TT functions which we shall require later. Proofs can be 
found in 1594,5951. 



Theorem 5.2.12 For all T E 7~ and all F,G E A+, 

2. FcT) 2 F and ~ ( q  = F i f f  F E A;. 

3. F ( ~ )  = G ( ~ )  iff CTF = CTG. 

4. C;(CTF x CTG) = TT ( F ( ~ ) ,  G ( ~ ) ) .  

5. ( T T ( F , G ) ) ( ~ )  2 TT ( F ( ~ ) ,  ~ ( ~ 1 )  with equality $T is strict. 

6. G ( x )  = F(ax)  Va, x > 0 + CTG(Z) = CTF(z /a)  Vz 2 0, 

In order to prove our limit results we also need the following theorem (theorem 
3.1 of [595]) which follows by induction from theorem 5.2.9. 

Theorem 5.2.13 Let T E TA and Fi E A+, i = 1,. . . , N .  Then for all z 2 0 

Finally we define the notion of weak convergence in order to state theorem 5.2.15 
below. 

Definition 5.2.14 Let {F,) and F be in A+. Then we say {F;} converges weakly 
to F ,  and write 

F; z F 

if E ( x )  -+ F(x )  at each continuity point x of F. 

This topology is in fact metrizable (see section 4.2 of [718]). The relationship be- 
tween weak convergence of probability distributions and convergence of T-conjugate 
transforms is given by (theorem 2.6 of [595]) 

Theorem 5.2.15 Let T E TA and let {F;)  be a sequence of F; E A+. Then for 
F E A+, 

S F ( ~ )  iff CTFi(z) -+ CTF(z)  V z  > 0. 



5.3 Convergence of Dependency Bounds of Nor- 
malised Sums 

This section is devoted to a proof of our main result which is 

Theorem 5.3.1 Let { X i )  be a sequence of random variables with distribution Junc- 
tions F; = dJ(Xi)  E ALo and let T E Tc. Then 

1 as N + w, where CY = lim~,, .jj zE1 UF, and UF, is as in (5.2.2). 

This theorem has the following two corollaries. 

Corollary 5.3.1 Let { X i } ,  {F;)  and T be as above. Then 

as N + w, where p = limN,, xE1 eF, and eF, is as in (5.2.1). Note that in 
the above two results if UK = u~ and eR = eF for all i, then a = UF and @ = ep. 

Corollary 5.3.2 Let { X i )  be a sequence of random variables with distributions 
F; = d f (X i )  E A;" and let T E Tc. Then 

and 

as N + w, where a = limN,, ( n6  uF,)'IN and b = l i m ~ + ~  (nzl lF,)'IN 

In order to prove theorem 5.3.1 we prove the following lemmata. The proof of 
the theorem follows from their conjunction. 

Lemma 5.3.1 Let F E A& and let T E TA. Then there exists a z,, > 0 such that 
for all z E (0, 2%) 

CTF(z)  = e-UF", (5 .3 .5)  

where up is given by (5.2.2). 



Figure 5.1: Illustration for the proof of lemma 5.3.1. 

PROOF. Recall that 

However kT is strictly increasing and continuous and so kg-F is increasing. Also 
k ~ ( 1 )  = 1 and so kg-(x) < 1 for x < 1. Therefore 

Now since the slope of e-"" can always be made as close to zero as desired by making 
z smaller, it can be seen that for any F E A$, for small enough z the supremum 
in (5.3.6) must occur at x = U F  (see figure 5.1). If, for a given z, the supremum 
occurs at x = U F ,  then obviously it will occur a t  x = U F  for all z < z,. I 

Lemma 5.3.2 Let 4(z) = max{kT(O), e-"') for z E %+, ff E (0, w), where kT is 
the inner multiplicative generator of some T E la. Then the inverse transform of 4 
is given by 

C M x )  = €,(X) vx E %+. 



PROOF. W e  know [718, theorem 7.8.2 (vi)]  that CTt,(z) = max{kT(0), e-,') for 
all a, z E [0, co). W e  also know (theorem 5.2.12, part 1) that for all T E IA and for 
all F E A', C$CTF = F ( ~ ) .  The lemma then follows directly from the fact that 
tiT) = E , .  I 

L e m m a  5.3.3 Let T E Tc and let { X i }  be a sequence of random variables with 
distribution functions E = d f (X i ) ,  where Fi :: A& for i = 1,2,.  . .. Then 

lim CT (ldbT ($ $ X i ) )  ( I )  = max{k~(O) ,  e-,'} 
N+m 

(5.3.7) 

1 where cu = l i m ~ + ,  ?j CK1 u,vi 

PROOF. Theorem 5.2.6 and the discussion following it tells us that ldbT (CLl x:) = 

TT(F;, . . . , F;), where F,! = df ( X i )  6 A+. I f  we set X i  = X i / N ,  then obviously 
F l (x )  = F;(Nx)  for i = 1,2,.  . . and for N > 0. W e  also know (theorem 5.2.13) that 

and that CTF,!(Z) = C T E ( ~ / N )  (theorem 5.2.12, part 6 ) .  Thus 

However since F; E A&, lemma 5.3.1 tells us that 

CTF;(x) = exp (-u,vix) for s < z f )  

for i = 1,2,.  . . , N ,  where z t )  is the z, of  lemma 5.3.1 for a given I?,. I f  we let 
z, = mini{z$)) we can then write 

N 

h ( O ) ,  n e x p  ( - u I ~ / N ) }  v ($) E (0.z.). 
i=l 

(5.3.8) 
Now for any z E %+, there exists an integer N,,, such that for all N > N,, ( z / N )  < 
z,. Therefore, for all z E %+, (5.3.8) holds for sufficiently large N .  I f  we now observe 
that 

N 

11 exp ( -uFiz /N)  = exp 
i=l 

( -  ( u )  2 )  = e-az 

the proof is completed. I 

L e m m a  5.3.4 Let H ( ~ )  = ( l d b ~ ( S ~ ) ) ( ~ )  be the T-log-concave envelope ofldbT(SN),  
1 where SN = xZ1 Xi, T E lc, and { X i }  is a sequence of random variables with 

distribution functions F; = d f ( X ; )  E A&. Then 

H ( T )  3 6,  (5.3.9) 

as N + co and cu is as in lemma 5.3.3. 



PROOF. This follows directly from theorem 5.2.15, lemma 5.3.3, lemma 5.3.2 and 
theorem 5.2.12 (part 9). 1 

Lemma 5.3.5 Let SN, T ,  and a be as in lemma 5.3.4. Then 

lim sup supp ldbT(S~)  = a. 
N+m 

(5.3.10) 

PROOF. This follows by induction from the case when N = 2. Thus we now prove 
that 

sup supp l d b ~ ( X ~ +  Xz)  = UF, + UF,. 
Theorem 5.2.6 tells us that 

Since T is an Archimedean t-norm and a copula we know that T 5 M and that 
T(a ,  b) = 1 implies a = b = 1. Therefore the minimum x such that Fl(u) = Fz(v) = 
1 is x = u ~ ,  + u ~ ~ .  1 

Lemma 5.3.6 Let H E A$ be such that H(T) = ( l d b ~ ( ~ ~ ) ) ( ~ )  as in lemma 5.3.4. 
Then 

H s 6,. 

PROOF. Let 711~) = {G E A$l G ( ~ )  = ~ ( ~ 1 ) .  Then 

(theorem 5.2.12, part 2). That is, H(T) is the maximal element in 7dT). The only 
H that satisfies (5.3.9) and H 5 6 ,  = tLT) is H = E,. 1 

Lemma 5.3.7 Let {Fi) be a sequence of distribution functions in AL and let T E 
TA. Then if 7 = mini{&), 

TT(FI,. . . , F N ) ( ~ )  = TT(F;, . . . , F,b)(x + YN), 
where q ( x )  = Fi(x - 7) and F,! E A+ for i = 1, .  . . , N. 

PROOF. For N = 2 the result follows directly from the definition of TT. The result 
for general N then follows by induction using the iterative construction of ~ 4 ~ )  given 
by (5.2.6). 1 

PROOF OF THEOREM 5.3.1 Immediate from lemmas 5.3.6 and 5.3.7. 1 

PROOF OF COROLLARY 5.3.1 We firstly prove a restricted version of corollary 5.3.1 
by a method which gives an understanding of why it works in a case of special 
interest (T = W). 



Corollary 5.3.1' Let { X i )  and { F , )  be as in  corollary 5.3.1 and let T E la be such 
that T' = T d  (see (5.2.3) and (5.2.4)). Then 

1 as N -, CU,  and p = limnr,, zL1 e ~ , .  

PROOF. We prove this by expressing udbT in terms of the lower dependency bounds 
of some transformed random variables. Again we consider N = 2 and the general 
case follows by induction. Let X,! = -Xi. Then c ( x )  = 1 - Pi(-+). Observe that 

TT(F;, W ( X )  = SUP T(F:(u),F;(v)) 
u+v=z 

= sup T ( l  - Fl(-u), 1 - Fz(-v)) 
u+v=z 

= sup [I - T*(Fl(-u), F2(-v))] 
u+u=z 

= 1-  inf T'(Fl(-u),Fz(-v)) 
u+v=z 

= 1- inf T ~ ( F ~ ( u ) , F ~ ( v ) )  
"f v=-z 

= 1 - p ~ ( F i ,  & I ( - + )  
= 1 - u d b ~ ( X l +  Xz)(-x) .  

Writing this the other way around we have 

and we can apply theorem 5.3.1 noting that the roles of u~~ and 1~;  will be reversed. 4 

The question of when T* = T d  has in fact been solved by Frank [276] who showed 
that apart from T = W and T = II, the only T E TA satisfying T* = T d  are given 
bv 

for s E ( O , C U ) ,  s # 1. In fact, T, E Tc. 

The more general corollary 5.3.1 is proved in a different manner: 
PROOF OF COROLLARY 5.3.1. Corollary 5.3.1' establishes the result for T = W. 
We also know [596, theorem 21 that for any copulas Cl and Cz such that Cl <_ C;, 
pcz I pc,. That is 

Since all copulas C satisfy W 5 C we have 

PC < pw. 



Combining (5.3.13) with the fact (to be proved below) that inf{xl PC(+) = 1) = P 
for all C E 7c completes the proof. 

In order to see that 

for all Fl, . . . , FN E A, and any C E Tc we again use induction on N and start 
with N = 2. Consider then 

Now Cd has 1 as a null element. That is Cd(x,l)  = Cd(l,x) = 1 for all x E I. 
Therefore in order for Cd(x, y) to equal one it is necessary only that either x or y 
equal one. Thus for Cd(Fl(u), Fz(v)) to equal one either Fl(u) = 1 or Fz(v) = 1. The 
smallest x such that u + v = x and either Fl(u) or F2(v) equals one is x = e ~ ,  + [ F , .  

The rest of the proof follows by induction noting that we have to take account of 
the 1/N term. I 

PROOF OF COROLLARY 5.3.2 Simply let X;' = log Xi ,  apply the results of theorem 
5.3.1 and corollary 5.3.1, and exponentiate the result. I 

5.4 Rates of Convergence 

Theorem 5.3.1 says that l d b T ( S ~ )  3 eE,. We now examine how fast the convergence 
is. The main tool we use is theorem 4.2 of [594] which we state below as theorem 
5.4.1. Since if T E TA is not strict then A; is not closed under .rr [594, page 251, 
we define the set BT which is. Firstly define (kTF)! E A+ by 

where eF is given by (5.2.1). Then define 

B~ = {F E A+l (kTF)( is log-concave). 

If T is strict BT = A;. Otherwise A; C BT Now if for any p > 0 and F E BT with 
F # E, we define F["] 'I A+ by 

and let Fro] = 0 we can then state 

Theorem 5.4.1 ([594]) 



Theorem 5.4.2 Let T E Tc and let { X i )  be a sequence of random variables with 
identical distribution functions d f ( X i )  = F E BT. Then 

PROOF. The result follows immediately from theorem 5.4.1 when the 5 is taken 
account of in the manner of the proof of lemma 5.3.3.1 

A particularly interesting and important special case of theorem 5.4.2 occurs 
when T = W. In this case we have k w ( x )  = eZ-' and so 

Bw = { F  E A+l F is concave on (eF,  a)) 
and 

Recalling that 

we have 
hw [ ( ( k w F ) t ( x ) I N ]  = 0 for ( ( k w ) t ( x ) ) N  5 e-l. 

The condition here is equivalent to 

( eF(z ) - l )N  5 e-l. (5.4.1) 

If we assume that F has an inverse F-', then (5.4.1) implies 

In other words, with { X i )  as in theorem 5.4.2, 

ldbw (1 Fx.) ( x )  = o for x 5 F-' 1 - - 
N i=1 ( l3 

If x > F-' ( 1  - +), then h w ( x )  = 1 + log x and so 

Again assuming that F has an inverse we can write 

N 
Y - 1  (y) = F-' (T + 1) 



The convergence to e, is apparent from (5.4.2) upon setting y = 1 and y = 0. In 
these cases we have 

and 

Equations (5.4.3) and (5.4.4) tell us that the rate of convergence is O ( N ) .  

Another interesting special case is when T = II in which case 

which is a particularly simple result. The condition T = II is equivalent to Lehmann's 
positive quadrant  dependence [506]. Two random variables X and Y are positively 
quadrant dependent if 

F X Y ( X , Y )  2 F X ( X ) F Y ( Y ) .  

Positive quadrant dependence has been studied and compared with other measures 
of dependence in [258,313,459]. 

If F $ aT we can use the fact (theorem 5.2.12, part 8) that rT(F,  G )  5 . T T ( F ( ~ ) ,  G ( T ) )  
for any T E IA to bound the rate of convergence. For example, using (5.4.4) we can 
say that for any F E A, 

This behaviour can be seen in figure 5.4 presented in the next section. Rates of 
convergence for udbT are similar and follow directly using the arguments used to 
prove corollaries 5.3.1 and 5.3.1'. 

5.5 Examples 

We will now present some examples illustrating the results of sections 5.3 and 5.4. 
We restrict ourselves to the case T = W and use the algorithms developed in chapter 
3 for numerically calculating w ( F ,  G)  and pw(F,  G)  when F and G are represented 
by discrete approximations. We check the accuracy of the results so obtained in 
figure 5.6 where we compare the W obtained using the numerical approximations 
with that obtained using (5.4.2). 

Figures 5.2 and 5.3 show the lower and upper dependency bounds for SN = 
xE1 Xi. In this case, all the Xi are identically distributed. Their distribution is 

presented as the two central curves in figures 5.2 and 5.3 (E and F ) .  The reason why 
there are two curves is because they are theoutput of a confidence interval estimation 



Figure 5.2: Lower and upper dependency bounds for SN = ~ g ,  Xi with N = 
2,3 ,..., 8, 



Figure 5.3: Lower and upper dependency bounds for SN = ~ z ,  Xi with N = 
2,4 ,8 , .  . . ,128. 



procedure designed to generate the lower and upper discrete approximations to 
probability distribution functions developed in chapter 3.  In this case we estimated 
the distribution of a population consisting of a mixture of samples from N(0, l )  and 
N(8 , l )  distributions. In both cases the normal distributions were curtailed at 5 .  
Figure 5.2 shows Idbw(SN) and udbw(SN) for N = 2 , 3 , .  . . ,8. This was generated 
by iteratively calculating 

In order to speed up our view of the convergence, in figure 5.3 we used the iteration 

Equation 5.5.2 has the effect of doubling N at each iteration. Thus figure 5.3 shows 
ldbw(SN) and udbw(SN) for N = 2 , 4 , 8 , .  . . ,128.  It can be seen that cases for 
N = 2, 4 and 8 are identical to those in figure 5.2. The convergence of l d b w ( S ~ )  
and udbw(SN) to E, and €0 is apparent. 

Figures 5.4,  5.5 and 5.6 are all related to SN where df(Xi) = F for all i and 
F is an upper half Gaussian distribution. That is F(x) = 2@(x) - 0.5 ,  where 
P, is the distribution of a N(0,l)  random variable. In this case F is curtailed at 
,u + 4 0  = 4 .  Again we represent F by lower and upper discrete approximations (this 
time touching each other) and these can be seen as the central curves in figure 5.4.  
Recalling the symmetry relationship between ldbw and udbw (see corollary 5.3.11), 
we will be able to observe the effect of both a concave and convex F. (The lower 
and upper dependency bounds for F being a lower half Gaussian distribution can be 
seen by viewing figures 5.4-5.6 upside down and changing the axes appropriately.) 
Figure 5.5 shows the dependency bounds calculated using equation 5.4.2. As can 
be seen from figure 5.6 and by comparing figures 5.4 and 5.5 ,  the results agree 
very closely with those obtained using the numerical approximations. The only 
difference is due to the chording effect apparent in figure 5.4. This is an artifact 
of the numerical representation we use in 18731. We approximate F by uniformly 
discretising its quantiles. Considering the effect of (5 .4 .2)  it can be seen that the 
top most discrete levels are stretched down in successive iterations to result in the 
straight line segments which appear in figure 5.4.  The bounds obtained numerically 
are still correct, but they are not as tight as the true dependency bounds. Once 
there are straight line segments, they remain present in successive iterations. This 
can be understood in terms of Alsina's result [23] that 

and 
~w(U~,b ,U~,d)  = Uo+e,max(o+d,b+c) 

where U,,a is the uniform distribution function on [a, b]. 



Figure 5.4: Dependency bounds for SN where d f ( X j )  is upper half Gaussian. 



Figure 5.5: Dependency bounds for the same problem as figure 5.4, but calculated 
using (5.4.2). 



Figure 5.6: Comparison between the exact and numerical calculation of the depen- 
dency bounds (figures 5.4 and 5.5). 



Observe that udbw converges to €0 more rapidly than ldbw converges to E,  (or 
equivalently, ldbw converges to E ,  more rapidly for lower half Gaussian F than it 
does for upper half Gaussian F). This is due to the concavity (or convexity) of F. 
Looking at figure 5.4 upside down demonstrates the effect mentioned at the end of 
section 5.4. Line (m) is F ( ~ )  for F being lower half Gaussian and it can be seen that 

XI + xz 
sup ldbw ( ) (z) = 0} = ~ ( ~ ) ( 1 / 2 ) .  

5.6 Conclusions 

Apart from being mathematically interesting, the results presented in this chapter 
have a useful practical interpretation. Theorem 5.3.1 says that in order to determine 
dependency bounds for the sum of a large number of random variables it is only 
necessary to consider the values of supp F = [eF, uF]. In other words, dependency 
bounds reduce to Minkowski sums (or products) of intervals and the methods of 
interval arithmetic [17,582,583,801] could be used for their calculation. The signif- 
icant point is that the shapes of the Fi within supp l$ have no effect on the final 
result. 

Observe that this situtation is quite different to the classical central limit the- 
orem and law of large numbers for sums (where we are looking at ordinary con- 
volutions rather than dependency bounds) [520]. In this case the support of the 
component distributions is irrelevant to the final limiting distribution apart from 
some non-degeneracy conditions. Note also that this result has a bearing on statis- 
tical inference. It is often considered adequate to fit a distribution to some data in 
such a manner that the fit is close over the central part of the distribution. When 
the densities are plotted in the usual manner anomalies in the tails do not show 
up. However, as Bagnold has shown [43], populations that appear to have normal 
distributions when plotted in the usual manner are quite apparently non-normal in 
the tails when a logarithmic vertical scale is used. Determination of the tail be- 
haviour is of course the domain of the theory of statistics of extremes [344,345] and 
has significant practical application to the study of rare events. 

The results presented in this chapter can also be applied to fuzzy numbers. In 
this case a general law of large numbers under a general t-norm extension principle 
is obtained (see the following chapter). 



Chapter 6 

A Law of Large Numbers for 
Fuzzy Variables 

The use of fuzzy numbers for calculation with imprecisely known quantities has 
been advocated by a number of different authors. Fuzzy numbers are combined us- 
ing extended arithmetic operations developed using the extension principle. When 
a general t-norm is used for the intersection operator, a general t-norm extension 
principle is obtained. The purpose of this chapter is to present a result for the law of 
large numbers for fuzzy variables when using this general t-norm extension principle. 
The result is that convergence to a crisp set is obtained for all Archimedean t-norm 
intersection operators. This generalises a previous result of Badard who conjectured 
that something along the lines of that presented here would be true. The result is 
proved by deriving it from a similar result for the law of large numbers for depen- 
dency bounds. Dependency bounds arise in probabilistic arithmetic when nothing 
is known of the joint distribution of two random variables apart from the marginal 
distributions. The bridge used to connect dependency bounds with fuzzy number 
operations under the t-norm extension principle can be used to give a probabilistic 
interpretation of fuzzy number combination. Some remarks on this interconnection 
are made in the final section of the chapter. 

This chapter, after undergoing some revisions, will be resubmitted to Fuzzy Sets 
and Systems under the title '&The Law of Large Numbers for Fuzzy Variables under 
a General Triangular Norm Extension Principle." 

6.1 Introduction 

Fuzzy numbers or variables are developed from the theory of fuzzy sets by using the 
extension principle [225,605,853,897]. Their properties and methods of calculating 
with them have been studied by a number of authors. A more general extension 
principle [228] makes use of a general t-norm intersection operator [24,26,230]. When 



this is used, the sum of two fuzzy variables is given by 

where T is some triangular norm (or t-norm). A natural question to ask is: What 
is the limiting behaviour of 

1 N 

where {Xi) are fuzzy variables and we use (6.1.1) to calculate the membership 
function of their sum? This is the fuzzy analogue of the law of large numbers for 
random variables [262]. 

In this paper we will show that for a large class of t-norm intersection operators, 
the membership function of Z approaches that of a crisp set or interval. This result 
generalises some special cases reported by Badard [41] and Rao and Rashed [673]. 
We prove our result by using a recently developed theorem on a related question for 
dependency bounds of sums of random variables (chapter 5). We thus incidentally 
provide a probabilistic interpretation of the sup-T convolution (6.1.1) used for fuzzy 
number addition. The result in the present paper is a law of large numbers for 
fuzzy variables and not fuzzy random variables [101,489,490,578] which are random 
variables that take on fuzzy values. 

The fuzzy variables we will be concerned with are T-noninteractive. If {Xi} is 
a set of fuzzy variables with normalised unimodal continuous membership functions 
{px,) and joint membership function px,...~,, then {Xi) are T-noninteractive if 

where T,?, is the Nth serial iterate of some t-norm T (see [718, page 871). The 
notion of T-noninteractivit~ is called *-independence by Badard 1411 and weak non- 
interaction by Dubois and Prade [228]. T-noninteractivity is a generalisation of Rao 
and Rashed's [673] min-relatedness. 

Theorem 6.1.1 Let T be an Archimedean t-norm and copula and let { X j } E ,  be a 
set of T-noninteractive fuzzy uan'ables with membership functions pxi, i = I , .  . . , N. 
Let 

ax, = infix1 p ~ , ( x )  = 11, (6.1.2) 

px, = sup{xl px,(x) = 1) (6.1.3) 

and let 
1 z=-zxi  
N .  ,=I 

have a membership function pz.  Let az and pz be defined analogously to ax, and 
Px;. Then 

1 
az = lim - C ax,, 

N-m N ;=1 



and 
1 

Pz = lim -Cflxir 
N'" N i=, 

and 

PZ ~ C Z , P Z ]  (6.1.4) 

as N + oo. The symbol % in (6.1.4) means weak convergence (convergence at 
every continuity point), and l[o,b] denotes the indicator function of the interval [a, b] 
defined by 

l[*,bl(x) = otherwise. 

This theorem says that only the values of ax, and Pxi have any effect on the limiting 
membership function, which is that of a crisp (non-fuzzy) set. If ax, = Px, for all 
i ,  then none of the fuzzy variables have a Vlat'' in their membership functions, and 
pz converges to a single delta function, 

The rest of this chapter is organised as follows. Section 6.2 briefly introduces the 
notion of dependency bounds. This is necessary for the understanding of theorem 
6.3.1 which is used in the derivation of theorem 6.1.1. Section 6.3 is devoted to this 
derivation and in section 6.4 we outline a different approach to proving theorem 
6.1.1 by introducing the bilateral T-conjugate transform. Finally, in section 6.5 
we mention some interpretation issues raised by the bridge between probabilistic 
dependency bounds and fuzzy variable convolutions. 

6.2 Dependency Bounds 

This section provides the minimum background necessary to understand the state- 
ment of theorems 6.1.1 and 6.3.1 and the discussion in section 6.4. Further details 
can be found in [277,718] and the earlier chapters of this thesis. 

A copula is a function that links multivariate distribution functions to their 
marginals. We will restrict ourselves to the bivariate case. If H(x,y) is the joint 
distribution of two random variables X and Y defined on a common probability 
space, then H(z,Y) = CxY(Fx(x),Fy(y)), where Fx(x) = df(X) = P { X  < x) and 
Fy(y) = df (Y) = P{Y < y} are the marginal distributions of X and Y respectively, 
and Cxy is their connecting copula. All 2-copulas are 2-increasing and satisfy 
W 5 Cxy 5 M, where W(z,y) = max(x + y - 1 , O )  and M(x,Y) = min(z ,~ ) .  
If Cxy(x, y)  = n ( x ,  y) = xy, then X and Y are stochastically independent. 

Copulas are related to t-norms. These have been studied in the fuzzy set litera- 
ture because of their properties as general intersection operators [24,26,230,232,856]. 



A special class of t-norms is called Archimedean [718]. All Archimedean t-norms can 
be represented by 

T(x,Y) = ~ T ( ~ T ( x ) ~ T ( Y ) )  

where hT and kT are called the outer and inner multiplicative generators of T. The 
copulas W and II are Archimedean but M is not. Copulas are t-norms if they are 
associative and t-norms are copulas if they are 2-increasing. 

Dependency bounds [277] are lower and upper bounds on the distribution of 
functions of random variables when only the marginal distributions are known. A 
more general form of dependency bounds considered in sections 4 and 5 of chapter 
3 provides tighter bounds when some lower bound Gy > W on the connecting 
copula is known. We will assume that cxY is a t-norm and use the traditional 
T to represent it. If T = W, then we obtain the bounds of [277]. We write the 
dependency bounds as 

where ldbT, df and u d b ~  refer to lower dependency bound, distribution function 
and upper dependency bound respectively. The main result we need is [277] 

and 

u ~ ~ T ( X  + Y)(z) = PT(FX, FY)(z) = U+U=Z inf T~(Fx(u), ~ ~ ( v ) ) ,  (6.2.2) 

where Fx = df(X), Fv = df(Y), and Td is the dual copula given by 

Td(z,y) = x + y - T(x, y). 

This should not be confused with the t-cononn T* defined by 

T*(z, y) = 1 - T( l  - X, 1 - y). 

Since the TT and p~ operations are associative [718], we can iteratively calculate 
Idb~(X1, .  . . , XN) and udbT(X1,. . . ,XN). Theorem 6.3.1, presented below, charac- 
terises the behaviour of these quantities as N --t m. 

6.3 Proof of Theorem 6.1.1 

Theorem 6.1.1 is proved by representing the membership functions pxi by two proba- 
bility distributions and then applying theorem 6.3.1 (which is in terms of probability 
distributions). First we state 



Theorem 6.3.1 Let {x}:, be a sequence of random variables with distribution 
functions F, = d f ( x )  such that suppF; is a bounded closed interval. That is, i f  
eFi = inf{xl E (x )  > 0) and upi = sup{xl E (x )  < 1) then -CXJ < eFi < UE: < CXJ for 
i = 1, .  . . , N .  Also let T be an Archimedean t-norm and copula. Then 

1 1 as N + co, where = hrN,, ij zKl upj ,  $ = limN3, j j  zK1 eFir &+ is the unit 
step distribution function at 4, and 3 denotes weak convergence (convergence at 
every continuity point). 

We decompose the membership function px  of some fuzzy variable X as follows. 
Let 

where a x  and Px are given by (6.1.2) and (6.1.3). We will work with the related 
I -  i pair ( p i ,  ~ $ 1 ,  where PX - PX, but 

P%X) = 1 - P$(x). (6.3.1) 

Note that p i  and are both distribution functions (continuous, non-decreasing 
with range [O,l]). 

We now need to calculate p i  and & in terms of the pairs (&, &) and (&, &) 
respectively. The key observation to make is that upon examining (6.1.1) and noting 
that T ( a ,  1) = T(1 ,a)  = a for all a 6 [O, 11, we find that 

Thus we have 

and 

Pdz(4 = SUP T(Pdz(~),lldZ(Y)). 
z+y=z 

Substituting (6.3.1) into (6.3.3) gives 

Therefore 



If in fact T* = Td, we obtain 

Therefore we can use (6.2.1) and (6.2.2) and theorem 6.3.1 to prove theorem 6.1 
for all T such that T* = Td. This condition can be removed by using an argument 
along the lines of that used in chapter 5 to prove the udbT part of theorem 6.2.1 for 
general Archimedean T. (One uses the increasing in both places nature of T and a 
bound R on T such that in fact R' = Rd.) 

6.4 Outline of a Direct Proof Using Bilateral T- 
conjugate Transforms 

Theorem 6.3.1 was proved in chapter 5 by using the properties of T-conjugate 
transforms' [594,595). By extending the definition of these transforms, it would be 
possible to prove theorem 6.1.1 directly, with no reference to dependency bounds. 
However since most of the details would be the same as for the dependency bound 
case, we have presented the above shorter argument instead. Nevertheless it is worth 
mentioning the extension necessary and the possible application of the extended 
transform. 

The T-conjugate transform of a probability distribution function F (where 
F(0) = 0) is defined by [594,595] 

CTF(Z) = sup e-"k~F(x) Vz E %+, (6.4.1) 
zzo 

where 

and kT is an inner multiplicative generator of the Archimedean t-norm T. There is 
an inverse transform given by 

where h~ is an outer multiplicative generator of T. The significance of these trans- 
forms for the study of the TT-convolutions is that the following property is satisfied: 

where F ( ~ )  is the T-log-concave envelope of F (see [594]). This means that for 
certain classes of F and G, we can calculate TT-convolutions by pointwise multipli- 
cation of the T-conjugate transforms followed by an inverse T-conjugate transform. 

'Note that these transforms are essentially another way of expressing Fenchel's duality theorem: 
see section 5 of chapter 5. 



This is analogous to the use of the Fourier transform or characteristic function in 
probability theory [172]. 

In order to apply T-conjugate transforms to the addition of fuzzy variables it is 
necessary to extend their domain of definition from probability distributions (non- 
decreasing) to more general unimodal functions. The obvious idea of applying the 
transform to the two parts p i  and p: separately turns out to be equivalent to the 
simple replacement of the condition z 6 %+ in (10) by the condition z 6 8. We 
thus obtain the bilateral T-conjugate transform: 

This is an analogue of the Fourier transform for fuzzy variable addition. 

Upon representing px by discrete sample values (such as the a-cuts) and dis- 
cretising the argument z ,  we obtain a discrete bilateral T-conjugate transform. Then, 
by making use of a divide and conquer approach [764], a fast discrete bilateral T- 
conjugate transform can be developed which can be calculated in O(N log N) time, 
where N is the number of points used to represent px and C T ~ X .  This is analogous 
to the fast Fourier transform which is widely used to calculate ordinary discrete 
convolutions in signal processing [667]. We plan to examine these ideas in more 
detail a t  a later date. 

Although we do not have the space2 to develop the following argument fully, we 
feel it is worthwhile including here. The numerical calculation of TT,L  convolution^ 
could be perfomed for arbitrary functions (not just T-log-concave ones) by making 
use of the multiplicative generators of Archimedean t-norms. Theorem 3.4.4 says 

r$,,(FA, GA)(x) = inf L[FA(u), GA(v)]. 
T(u,v)=z 

Theorem 5.2.2 gives T(u, v) = h ~ ( k ~ ( u ) ,  ~ T ( v ) ) .  Thus x = T(u, v) + ~ ( U ) ~ T ( V )  = 
h,'(z) +- u = k ~ ' ( h ~ ~ ( x ) / k ~ ( v ) ) .  Thus we can write 

r$,,(FA, GA)(x) = inf L[FA(k?' (h,' (I)/ k~(v) ) ) ,  GA(v)], 
~ € l O , l l  

Equation 6.4.2 would allow the rapid and accurate calculation of TT,L convolntion~ 
for any Archimedean T and any monotonic L. 

6.5 Conclusions and Interpretations 

We have shown that Badard's conjecture [41, page 1771 regarding the convergence 
of pz to ll,,,p,l in general (apart from the special case of T = M) is in fact true. 
Observe that for T to be Archimedean it cannot equal M on (0,l) '  [718,870]. The 

'Or time: this result was only obtained in the writing up of this thesis, even though it is only 
a simple extension of other material we developed some time ago. 



fact that convergence to lf,,,pzl does not occur for T = M can be understood simply 
in terms of dependency bounds. This is because 

(see [718, page 111) describes the distribution of the sum of two random variables 
that are completely stochastically dependent (they are non-decreasing functions of 
each other). If in fact their marginals are identical (the non-decreasing function is 
the identity function), then + c:, Xi will also have the same distribution. (This is 
what Rashed and Ran [673] showed for sup-miu wnvolutions of fuzzy numbers.) 

The relationship between theorem 6.1.1 and theorem 6.3.1 is purely mathemat- 
ical and there is no interpretation difficulty. However since the two approaches 
(probabilistic and fuzzy) do seem to be related by their common use of the TT and 
p~ convolutions, it is perhaps worth examining this relationship more carefully. This 
is especially true since it has been repeatedly stressed by many authors that fuzzy 
set theory is fundamentally different from probability theory. One of the corner- 
stones of this argument has been the fact that fuzzy sets are wmbined using sup-T 
combination rules whereas probabilities are wmbined additively ("[Tlhe possibility 
of a frequentist interpretation of fuzzy set theoretic operations seems to be very 
unlikely. . .", [234, p.218]). In chapter 5 we explored these issues in more detail, 
comparing the use of fuzzy numbers with the use of dependency bounds; examining 
the relationship with interval arithmetic and comparing dependency bounds with 
various notions of lower and upper probabilities such as those used in the Dempster- 
Shafer theory of evidence. 



Chapter 7 

The Inverse and Determinant of a 
2 x 2 Uniformly Distributed 
Random Matrix 

7.1 Introduction 

This chapter presents two results on 2 x 2 matrices with iid (independent identically 
distributed) uniformly distributed elements. Theorem 1 gives an expression for the 
density of the determinant of a matrix whose elements are iid uniformly on [O,l]. 
Theorem 2 gives an expression for the density of the elements of the inverse of this 
matrix. Both of these results are derived in a straightforward manner, but they 
do not seem to have appeared in the literature previously. The only hint of such a 
result which the author has found is a single sentence on page 199 of the book by 
Prohorov and Rozanov [664]: 

The distribution of [the determinant of a random matrix] is known 
only in two cases: if the [column vectors] are uniformly distributed on 
e-dimensional unit sphere of the e-dimensional space and if the [column 
vectors] are normally distributed with vanishing mean vector and non- 
degenerate correlation matrix. 

We make use of the convolution relations for the difference, product and quo- 
tient of two random variables [631]. The original motivation for the results derived 
here was to construct an explicit example to show the misleading nature of Szulc's 
[813] definition of "almost everywhere non-singular matrices" (see also [812]). This 
chapter has been published in Statistics and Probability Letters, 7, 167-170, (1989) 
under the same title as this chapter. 



7.2 Results 

Theorem 7.2.1 Let .. . 

be a 2 x 2 matrix with elements aii (i, j = 1,2), where aij are iid random variables 
with density " 

fa(.) = elsewhere, 

and let D = det A. If fD(x) is the probability density of D then 

elsewhere. 
(7.2.1) 

PROOF. Let p = allazz, q = azla12 and so D = p - q. Obviously p and q are iid 
with density 

Now 

log(w + x) log(w) dw x E [-I, O ) ,  

log(w + x) log(w) dw x E (0,1], 

elsewhere. 

The two cases are symmetric ( f ~ ( - x )  = f ~ ( x ) )  and so we will only consider x E 
[-1,O). Let 

I,(w) = log(w + x) log(w) dw x E [-I, 0). I 
Integration by parts twice gives 

I,(w) = w(2 - log w) + (w + x)log(w + x)(log(w) - 1) + 4 1  - I(z(w)) 



where 

and cannot be expressed as a finite combination of elementary functions [336, eq. 
2.72821. We can determine a series expansion though: 

This can be integrated termwise within the region of convergence and so 

where the integral can only be over a range such that 0 < w + x 5 2. Using a 
binomial expansion of the integrand and then integrating termwise we obtain 

Evaluating I,(W)J;=-, gives (7.2.1). A graph of fD(x) calculated using only the 
first 30 terms of the infinite series is shown in figure 7 .1 .1  

Theorem 7.2.2 Let A be as in theorem 7.2.1 and let 

Then p, q ,  T and s are identically distributed (although not independent) with com- 
mon density function f,(x) given b y  

PROOF. The fact that p,  q, r and s are identically distributed is obvious due to the 
interchangability of the aij (they are iid). We rewrite the expression for s as 

1 - 1 - 1 - 1 
S = 

a ~ , - =  b - +  b - e  g 

and then successively determine the densities of c, e, g,  and s. We already know 
(from the proof of theorem 7.2.1) that 

log x x € (0, 11 , 
elsewhere. 



Figure 7.1: The probability density fo. 



The densities of e and g are determined by the convolution relations for quotient 
and difference (see [631]). We obtain 

1 log x 
f e (x )=  2 x E (O,lI, 1: x E (1, w), 

and 

The distribution of s = l l g  is given by 

fs(x) = 

Substituting (7.2.3) into (7.2.4) gives (7.2.2). A graph of f,(x) is presented in figure 
7.2. 1 

I 1 1 
- - x E (-w, -I), 

4(x - 1) 4x 
1 3x - 22 log(-2) 

1 + 
4(x - 1) 

+ 
4 E [-1,0), 

3(1 - x) - 2(1 - x) log(1 - x) 
4 x E [0, 11, 

0 x E (1, w) .  

7.3 Discussion 

Observe that limlZl,, f,()xl) = 0, and so A is almost surely non-singular in the 
conventional measure theoretic sense. The matrix A would not be considered to be 
almost everywhere nonsingular using Szulc's definition though. Szulc [812,813] is 
concerned with interval matrices, and defines an interval matrix A' to be almost 
everywhere non-singular if there exists only a finite number of real singular matrices 
contained in A'. The interpretation of an interval matrix as being a random matrix 
with uniformly distributed elements seems perfectly natural, and so Szulc's definition 
is misleading. Komlos [471] has studied the singularity of random matrices and has 
shown that if (i, j = 1,2,. . .) are iid with a non-degenerate distribution, then 

He also settled [470] the problem of the number of singular matrices there are when 
the elements can be either 0 or 1. 

E1.1 E l  ... E1,n 

E~,I  EZ,Z . . . Ez,n 
lim P . 

n-m . . . .  
En,  En,z . . . En," 

= O  = O .  I 



Figure 7.2: The probability density f,. 



There are very few exact results on the distribution of random determinants. A 
number of authors have derived results in terms of moments for a few special cases 
[63,273,625,663,726]. Nyquist, Rice, and Riordan [625] considered the determinants 
of random matrices with independent identically normally distributed elements with 
zero means and derived exact densities for the 2 x 2, 3 x 3, and 4 x 4 cases. They also 
investigated the moments of the determinant in the case of nonnormally distributed 
elements with zero means. Nicholson [615] studied the 2 x 2' case for independent 
identically distributed elements with normal distributions having nonzero means 
and derived a complicated infinite series for the cumulative distribution function 
of the determinant. Alagar 1161 has derived an expression for the density of the 
absolute value of the determinant of a 2 x 2 matrix with independent exponentially 
distributed elements. It is in terms of G(x) = &(log r(x)) .  He also presented a 
complex result for the 3 x 3 determinant in terms of G-functions. 

Instead of calculating the marginal densities we could calculate the joint density. 
While this has a fairly simple analytical form (and can be calculated directly for the 
special case we are interested in or from the general result of Fox and Quirk [275]), 
it is of limited value. Usually one will ultimately be interested in the densities of 
the individual elements, and to obtain these from the joint density it is necessary to 
perform multiple integrations with variable limits. The joint density itself is hard 
to conceptualise (it is four dimensional). Note that we cannot calculate correlation 
coefficients to determine the dependence of the elements as none of the moments of 
f, exist. 



Chapter 8 

Conclusions 

I hate quotation. Tell me what you know. 
- Ralph Waldo Emerson 

8.1 Overview 

The main objectives of this thesis were to study the idea of probabilistic arithmetic, 
to identify the major problems, and to attempt to provide solutions to some of 
these problems. It soon became clear that the greatest obstacle in the path to the 
development of probabilistic arithmetic is the phenomenon of dependency error. It is 
not sufficient that all the inputs to a calculation are independent since dependencies 
can arise in the course of a calculation because of repeated occurrences of terms. 
The details of how the probability distributions are represented, measured, or the 
a-convolutions calculated, are of much less significance. 

We have developed one approach to the handling of stochastic dependencies 
in the form of dependency bounds. These allow the calculation of lower and upper 
bounds on the distribution of a function of random variables when only the marginal 
distributions are known. We have seen that when some information is known (a lower 
bound on their copula greater than W), then tighter bounds can be determined. 
However it should be realised that these bounds do not provide a complete solution 
to the problem of dependency error in probabilistic arithmetic calculations. There 
are many other issues including the possible rearrangement of expressions in order 
to remove repeated terms, which have greater potential value in this regard. 

Probabilistic arithmetic is similar in its motivations and problems to interval 
arithmetic. In fact interval arithmetic can be considered as a special case of prob- 
abilistic arithmetic. However interval arithmetic is considerably simpler because 
dependency error manifests itself as "dependency width," which simply causes a 
wider final result than could otherwise have been obtained. (Compare this with 
the situation where probability distributions are involved: there is no analogous 
simple idea of "containment" of results.) In order to achieve a similar situation 
with probability distributions we have to somehow incorporate the notion of con- 



tainment (one probability distribution containing another). This is the advantage 
of our lower and upper bounds on probability distributions. Whilst simple problems 
(for example determining the distribution of the root of a linear equation by calcu- 
lating the distribution of the quotient of the two coefficients), are readily solvable 
using the methods presented in this thesis, more complex problems require further 
investigation. 

Nevertheless there are a number of positive results to come out of this work. 
The dependency bounds and the numerical methods for calculating them seem to 
be of independent interest. These bounds can be used to determine the robustness 
of untestable independence assumptions. The connexion between these dependency 
bounds and the fuzzy number sup-T convolutions is also of particular interest. Not 
only does this provide (via our numerical method based on the duality theorem) 
an efficient way of calculating operations on fuzzy numbers, but it also gives a very 
close link between fuzzy set theory and probability theory. Whilst the connexion 
between the Boole-Frkchet formulae for conjunction and disjunction and the fuzzy 
set intersection and union operations was known before, the knowledge that this 
can be extended to the case of random and fuzzy variables is new, and further 
strengthens the argument that to a large extent the fuzzy set theory operations are 
better considered in terms of probability theory. 

Other contributions of this thesis include 

a A detailed review of methods for numerically calculating u-convolutions of 
probability distribution functions. 

The new uL-convolution algorithm developed in chapter 3: Whilst this does 
not solve all the problems of probabilistic arithmetic, it is still a useful and 
necessary tool. Our method is computationally efficient, accurate, and simple. 
It is better than any of the methods discussed in chapter 2. 

a The extreme limit theorem derived in chapter 5: This shows that when one 
has no knowledge of the dependence structure of a set of random variables, 
almost any distribution consistent with the constraints imposed by interval 
arithmetic on their supports is possible for their weighted sum. 

a The result in chapter 7 on the inverse and determinant of a 2 x 2 random ma- 
trix, although simple, is new and demonstrates the strange results obtainable 
with just a few operations on random variables. 

Many of the issues raised in this thesis are suitable topics for future research. In 
fact the author already has partial results on some of these which are not included 
in this thesis. The following section gives a list of possible directions for further 
investigation. 



8.2 Directions for Future Research 

There are many areas for further research suggested by the work presented in this 
thesis. We will very briefly mention some of these. Some of the items below (espe- 
cially items 1, 4, 5 and 12) have already been studied to an extent by the author. 
Results will be reported elsewhere. 

1. Confidence Interval Procedures. The numerical representation of probabil- 
ity distributions adopted in chapter 3 (lower and upper bounds on a distribu- 
tion function) obviously suggests the use of confidence intervals for acquiring 
sample distributions. This would allow a consistent representation from mea- 
surement to the final result. There are a number of results available in the 
literature concerning confidence intervals for quantiles. Some of the questions 
still to be answered are: Should the confidence intervals be overall (for the 
entire distribution) or should they be constructed point by point?; What dis- 
tributional assumptions are necessary?; Can a fast algorithm be developed for 
implementing the procedure chosen?; and, Given two estimated distributions 
with certain confidence levels, if the two distributions are combined, is there 
anything that can be said about the confidence of the result. (This last ques- 
tion lies at the heart of debates on the foundations of statistics.) We already 
have some answers to some of these questions and we hope to report these 
elsewhere. 

2. Dependency Bounds for Functions of More t h a n  2 Arguments. As we 
mentioned in section 5.2, it is possible to use linear programming techniques 
to calculate Boole-Fr6chet bounds on the probability of complex compound 
events. When there are repeated terms these bounds are tighter than those 
obtained by repeated application of the pairwise bounds for conjunction and 
disjunction. Can similar techniques be applied to the determination of de- 
pendency bounds for more complex functions of random variables? This is 
obviously a much harder problem for random variables than it is for random 
events. 

3. Rearrangement Methods  for Convolutions. The UL-convolution algorithm 
developed in chapter 3 makes essential use of sorting. Is there a continuous 
analogue of this algorithm? Note that the continuous analogue of sorting 
a discrete function into monotonic order is an equimeasumble rearrangement 
[143]. Rearrangement techniques have been recently applied to some statistical 
optimization problems [696], and it seems likely that further results can be 
obtained using these ideas. In other words it may be possible to develop 
results for convolutions in terms of rearrangements of distribution functions 
or probability densities. 

4. Bucketing Algorithms for u-convolutions. The u-convolution algorithm we 
developed has a computational complexity of O(N210g N)  where N is the 
number of points used to represent the distribution functions. This means 



that it runs rather slower than the algorithm for dependency bounds, which 
is O(N2) (but see item 5 below). It is possible to construct an algorithm for 
u-convolutions which has average case complexity O(NZ) by using bucketing 
algorithms [209]. It would appear that this can be further improved by using 
adaptive recursive bucketing. This would also provide a solution to a computer 
science problem, known as sorting and selection in multisets [281], which is 
very similar to the problem of calculating u-convolutions. 

5. Discrete T-conjugate Transforms. The T-conjugate transform used in chap- 
ter 5 to prove the extremal limit result can be converted into a discrete form. 
Furthermore there exists a fast divide and conquer algorithm for calculating 
this. This allows the calculation of the T-log-concave envelopes of TT,+ opera- 
tions in O(N log N) time. A bilateral version could be used for the very fast 
calculation of the sup-T convolutions of fuzzy number membership functions. 
This has yet to be implemented in the form of a computer program. 

6. Application of Interval Arithmetic Algorithms. There exists a wide range 
of special algorithms developed for interval arithmetic [17,583]. It is possible 
that some of these may be of use for probabilistic arithmetic calculations. They 
were developed in order to reduce the amount of dependency width incurred 
when calculating things like the inverses of interval matrices using Gaussian 
elimination. In order to use these algorithms it will be necessary to develop a 
means whereby different lower bounds on copulas are used in the calculation of 
the dependency bounds so that the lower and upper bounds on the distribution 
functions do not diverge too far. (See the next item.) 

7. Further  S tudy  of Dependency Bounds for C X y  # W. The dependency 
bounds studied in section 3.5 deserve further attention. A first step would 
be the implementation of equation 6.4.2 as a fast means of calculating de- 
pendency bounds when C X y  jL W. We have had no experience yet with the 
updating of copulas in the manner suggested in section 3.5. The relationship 
between the dependencies induced by these lower bounds and other types of 
dependence also merits further investigation. 

8. Confidence Curve Procedures. The confidence curves discussed in section 
4.5.4 would appear to deserve further consideration. As mentioned in sec- 
tion 4.5.4, there is a possibility of confidence curves providing a link between 
Bayesian style and confidence interval style procedures in statistics. Their 
interpretation along the lines of fuzzy numbers also requires a closer look. An- 
other aspect is the direct combination of confidence curves: could they be used 
(instead of distribution functions) as representations of random quantities? 

9. Measures of Dependence Based on  Copulas and  Dependency Bounds. 
As we mentioned in section 3.5.4, there are a number of measures or indices 
of dependence which can be defined in terms of copulas. These have been 
investigated by Wolff and others [719]. The question is whether they can 



be used to provide tighter dependency bounds on distributions of functions 
of random variables. The effects on measures of dependence of operations on 
random variables also deserves investigation. 

10. Empirical Copulas. Very recently Quesada-Molina [665] has suggested the 
notion of an empirical copula. Whilst this is obviously little more than a 
transformation of the empirical joint distribution function, its statistical prop- 
erties require investigation. Given the effect of lower bounds on copulas on 
the tightness of dependency bounds, it would also be worthwhile investigating 
one-sided lower confidence bounds on the empirical copula. 

11. Empirical Multiplicative Generators of Archimedean Copulas. A re- 
lated idea is to use the multiplicative generator representation of an Archimed- 
ean copula and thus to estimate the multiplicative generator. This is a one 
dimensional function rather than two dimensional. Alsina and Ger's result 
[25] on the convergence of t-norms in terms of convergence of their generators 
may be of use here. 

12. History of Quotient Normal Random Variables. In the course of our in- 
vestigations of probabilistic arithmetic we have made a study of the history 
of the distribution of the quotient of two normal random variables. This is 
obviously the sort of problem we expect our numerical methods to be able 
to calculate. The history of the analytical attempts on this problem, which 
begins with the first determination of the distribution of a quotient of random 
variables by Crofton in [173, p.340], and continues to the present day with a 
number of rediscoveries, is another interesting aspect we aim to write up one 
day. 

13. Application t o  Random Equations and  Practical Problems. As we 
mentioned above, the probabilistic arithmetic methods developed in this thesis 
have so far only been studied in terms of their foundations. It remains to be 
seen whether they are of value for practical problems. 

14. Use of Graph  Representations. The use of graph representations was dis- 
cussed in section 4.3. There it was noted that further research is needed to 
determine whether these methods will be of use in probabilistic arithmetic. We 
expect that this will be the case if complex calculations are attempted. The 
first step would be to implement a simple expression rearrangement procedure. 

15. Relationship wi th  Fine's Interval Valued Probabilities. Although our 
lower and upper bounds on probability distributions can be completely un- 
derstood in terms of the standard single valued notion of probability, it seems 
worthwhile examining whether they can be usefully integrated with Fine's 
interval valued probabilities (section 4.4). 

16. Relationship with Probabilistic Metric Spaces. Nearly all of the mathe- 
matical tools we have used in this thesis were originally developed in the field 



of probabilistic metric spaces. We have already discussed the relationship be- 
tween our methods and those of that field (section 4.6). However we suspect 
that there may be further results obtainable by studying this, particularly 
from the viewpoint of considering the Ti-& and p r , ~  operations as dependency 
bounds rather than just as triangle functions. 

17. Use of Mixtures  for Nonmonotonic Operations. Further work is needed 
to determine the practical value of the use of mixtures advocated in section 3.6 
for calculating both convolutions and dependency bounds under nonmonotonic 
operations on random variables. Whilst analytically there are no difficulties, 
there still remain some numerical problems to be solved. 

8.3 Some General Philosophical Conclusions 
Phenomena that are statistically calculable do not 

become statistically incalculable suddenly, a t  a 
well-defined boundary, but, mther ,  by degrees. The  

scholar takes a position of cognitive optimism; that is ,  
he assumes that the subjects he studies will yield t o  

calculation. It i s  nicest if they do s o  determinislically 
. . .. It i s  not quite s o  nice if calculable probability has 

t o  subslitute for certainty. But it  i s  not nice at all 
when absolutely nothing can be calculated. 

- Stansilaw Lem 

The work presented in this thesis can be considered to be just part of a general 
long term trend to constructing probabilistic models of reality. General discussions 
on the probabilistic view of the world can be found in [804,807]. This "probabilisitic 
imperative" forms the background to a large portion of recent science and philosophy 
of science. Popper has presented a number of arguments against determinism [658], 
and the deterministic world view is (or at least should be) considered dead. 

However, having adopted a probabilistic world view, problems arise that were 
absent in the simpler deterministic situation. For example, there is the problem of 
acquisition of probability values. This problem, seemingly innocuous a t  first, leads 
one through the tortuous maze of interpretations of probability. Nearly 200 years 
after Laplace, there is still no sign of consensus in the scientific community about 
this. Thus it becomes necessary for us to try and make up our own minds. Whilst 
we have managed to avoid the problem in this thesis, let us just mention now our 
preference for the propensity interpretation [479,653,654] with the rider that we are 
aware of many remaining problems with this. 

Apart from these philosophical concerns, there is the practical problem of how 
one proceeds to calculate with the probabilities. We have already seen (section 4.6) 
the difference between our viewpoint (based on random variables) and that adopted 
by the majority of workers in the field of probabilistic metric spaces. Even ignoring 
this distinction, there remain the severe practical difficulties of solving even some 
of the most simply stated probabilistic problems. For example, whilst there has 
been some encouraging progress recently in the study of polynomials with random 



coefficients through the use of Kharitonov's theorem [55,455], the situation remains 
much the same as it did in 1956 when Hammersley confessed he was "still very far 
from having solved the practical problem" of determining the distribution of the 
roots of a random polynomial. 

The point is that there is a very deep hierarchy of problems in terms of their prac- 
tical difficulty. This difficulty is not the "in principle" difficulty which determinists 
were always sure could be removed by being clever enough. Nowadays we can state 
the difficulty more precisely in terms of computational complexity theory. Many 
problems are L'insoluble" because of their exponential computational complexity. 
What we have seen in this thesis is a further example of this. The exact calculation 
of the distribution of complex functions of random variables is generally intractable. 
However it is possible to calculate lower and upper bounds on the solution by use of 
the dependency bounds. This approach seems preferable to the alternative of invok- 
ing the principle of maximum entropy and assuming independence solely in order 
to get a single valued probability for a result. Nevertheless, randomness ultimately 
wins, and for the time being at least, Montecarlo simulation will remain the major 
tool for solving complex random problems. 
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I quickly found it to ezercise more than my devotion: it 
ezercised my skill (all I had): it ezercised my patience, 

it ezercised my friends too, for Yis incompambly the 
hardest taske that ever I yet undertooke. 

-Williams Watts. Rector of St Alban's. Wood Street 
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