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Abstract

Machine learning typically presupposes classical probability theory which implies that
aggregation is built upon expectation. There are now multiple reasons to motivate looking
at richer alternatives to classical probability theory as a mathematical foundation for
machine learning. We systematically examine a powerful and rich class of alternative
aggregation functionals, known variously as spectral risk measures, Choquet integrals or
Lorentz norms. We present a range of characterization results, and demonstrate what makes
this spectral family so special. In doing so we arrive at a natural stratification of all coherent
risk measures in terms of the upper probabilities that they induce by exploiting results from
the theory of rearrangement invariant Banach spaces. We empirically demonstrate how this
new approach to uncertainty helps tackling practical machine learning problems.

Keywords: coherent risk measures, imprecise probability, coherent upper previsions, rear-
rangement invariant function norms, Choquet integrals, spectral risk measures, ambiguity.

1 Introduction

Machine learning (ML) typically presupposes classical probability theory. Recently, the
assumption of a single stable probability distribution has been problematized, however. Our
motivation stems from the following ML problems: in many cases, the empirical distribution
of the data is not the ‘true’ one, so that some degree of distrust is warranted. Under data set
shift, for instance, the learning method fails to generalize due to different distribution of the
test data in the wild as compared to the well-controlled training environment. Furthermore,
as machine learning is being increasingly deployed in sensitive domains (e.g. medical problems,
robot control), where failure can be catastrophic, demand for risk-averse learning methods
has arisen. This problem is often framed as aiming for distributional robustness (Rahimian
and Mehrotra, 2019), where the goal is to perform well with respect to perturbations of the
reference distribution (the empirical distribution). A prima facie different problem is that
of fair machine learning. In this setting, a machine learning system has direct bearing on
ethically relevant individuals and we may hence ask for a system that does not discriminate
between specified subgroups, consisting of ethically fungible individuals (e.g. based on race,

©2024 Fröhlich and Williamson.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v25/22-0641.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/22-0641.html
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gender). This ethical ML problem of fairly distributing loss values is analogous to the
‘technical’ ones discussed before and can be described in the same mathematical formalism.1

The commonality that we identify among these problems is that they require rethinking
the presumption that probability is merely about risk, but instead to realize a distinction
between risk and (Knightian) uncertainty or ambiguity. Our method of inquiry is to take
inspiration from other fields, where similar problems have received much more attention
and treatment already. We find that there are numerous convergent strains of research
scattered across the literature, with only a subset of their intricate interconnections laid
out clearly so far. In particular, we consider ideas from imprecise probability, rational and
social choice theory, finance, insurance, distributive justice and the theory of rearrangement
invariant Banach spaces. Our main workhorse is the equivalence between coherent risk
measures (Artzner et al., 1999) from finance and coherent upper previsions (Walley, 1991), an
influential approach to imprecise probability. These functionals can replace the expectation
operator in expected risk minimization of a machine learning problem.

The full generality of coherent risk measures is attractive, but we find that zooming
in on a particular subclass, the spectral risk measures, provides benefits such as clear
interpretability. This subclass is particularly relevant, occupies a central place in the theory
of coherent risk measures, and has been rediscovered numerous times by different authors
with different motivations (Yaari, 1987; Schmeidler, 1989; Wang, 2000; Acerbi, 2002; Quiggin,
2012; Buchak, 2013). We explicate this relevance from various angles. Essentially, spectral
risk measures offer a systematic way to interpolate in the risk aversion spectrum.

We place the class of coherent risk measures in the broader framework of rearrangement
invariant Banach function spaces (Bennett and Sharpley, 1988) and find that there, as well,
the spectral risk measures occupy a prime position. This new connection also enables us
to rederive the well-known Kusuoka representation theorem from a different angle, which
states that any coherent risk measure has a representation in terms of spectral risk measures,
thereby further underlining their centrality. Moreover, we leverage the theory to derive
various characterization results of coherent risk measures in terms of their fundamental
function. Such a function specifies the underlying imprecise probability associated with a
risk measure. To each such function, we characterize the most optimistic and pessimistic
extension from the imprecise probability to a risk measure. We explicate that the most
significant distinctions of risk measures stem from their behaviour for tail events (an idea on
which we have elaborated in a subsequent paper, see (Fröhlich and Williamson, 2023)).

Finally, we apply coherent and spectral risk measures to practical machine learning
problems, and find they lead to more robust and risk-averse solutions. We begin by outlining
the risk and uncertainty distinction, which is the conceptual motivation for the following
mathematical development.

1.1 Risk and Uncertainty

By “uncertain” knowledge, let me explain, I do not mean merely to distinguish
what is known for certain from what is only probable. The game of roulette is
not subject, in this sense, to uncertainty; nor is the prospect of a Victory bond

1. This is one of multiple ways of mathematizing fairness, and requires formulating the loss function in a
way that expresses the fairness-relevant aspects. See (Williamson and Menon, 2019).
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being drawn. Or, again, the expectation of life is only slightly uncertain. Even
the weather is only moderately uncertain. The sense in which I am using the
term is that in which the prospect of a European war is uncertain, or the price of
copper and the rate of interest twenty years hence, or the obsolescence of a new
invention, or the position of private wealth-owners in the social system in 1970.
About these matters there is no scientific basis on which to form any calculable
probability whatever. We simply do not know.

— John Maynard Keynes (1937)

A distinction between risk and uncertainty has been around since Frank Knight’s seminal
work “Risk, Uncertainty and Profit” (Knight, 1921), with precursors going back even to
Adam Smith (1776). While it has received considerable attention in the economics literature,
it has not yet been firmly established in the machine learning community. ‘Risk’ refers to the
benign situation, in which probabilities can be meaningfully associated to outcomes and full
knowledge of the distribution is accessible; contrariwise, ‘uncertainty’ refers to outcomes to
which probabilities cannot be assigned. The meaning of ‘cannot’ here is subtle and warrants
further discussion. Classical probability theory, based on Kolmogorov’s widely accepted
axioms Kolmogorov (1950), is well-equipped to deal with the former, but is arguably not an
appropriate model for the latter. Along similar lines, Phil Dawid (2017) wrote

If you studied any Probability at school, it will have focused on the behaviour of
unbiased coins, well-shuffled packs of cards, perfectly balanced roulette wheels,
etc., etc. — in short, an excellent training for a life misspent in the Casino. This
is the ambit of Classical Probability [.] [emphasis in original].

From a frequentist perspective, the crucial (problematic) assumption is that stochastic
phenomena display stable relative frequencies in the limit. While often seemingly correct,
this does not occur universally (Gorban, 2017). Frequentist probability is often given a
metaphysical interpretation, by imagining an experiment which could be repeated infinitely
many times to obtain independent outcomes (Dawid, 2017). This is unlike the practical
setting, where a ML system is deployed in a dynamically unfolding environment. The failure
to comply with a single stable probability distribution is then typically theorized using the
notion of data set shift (Quiñonero-Candela et al., 2008).

On the other hand, Bayesians assert that it is possible to supply a precise probability for
any event or sequence of events. Such a precise credence (degree of belief) is then interpreted
as your personal fair betting rate on an event (de Finetti, 1974/2017). However, it is unclear
whether you should have a precise betting rate on the event that right now 24 men in
Bulgaria are standing on their heads (Schoenfield, 2012), as there is no evidence on which
you could reasonably base your precise belief. Giving up on the insistence that you have
a single betting rate, and instead positing that you have lower and upper betting rates,
depending on whether you are required to bet for or against the event, yields imprecise
probability (Walley, 1991), which we discuss in the next section.

A now classical challenge to probability theory is due to Daniel Ellsberg (1961). Consider
two urns, containing red and black balls. In urn I, there are 50 red and 50 black balls. Urn
II contains an unknown proportion of red and black balls, adding up to 100 balls in total.
On these four events (IR, IB, IIR, IIB), the subject may place a bet, which delivers $100

3
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if the ball is of the specified color and $0 otherwise. Most subjects display the preference
IR „ IB ą IIR „ IIB, where „ denotes indifference and ą preference, so they prefer to bet
on the first urn. We might call urn I the risk urn, as probabilities can be precisely assigned
as proportions of outcomes2. Urn II is an ambiguous urn, as the subject must entertain a
whole set of possible urn compositions. The typical preference cannot be reconciled with
probability theory and hence expected utility theory (in economic terms). If the subject is
indifferent between a bet on red or on black for the ambiguous urn, it means in effect that
she assigns the probability 0.5 to each color; but then she cannot strictly prefer betting on
the first urn, where the probability is also 0.5. Ellsberg (1961) calls decision makers, which
exhibit this paradoxical pattern, ambiguity-averse. Here, ambiguity is to be understood as
in-between risk and total Knightian uncertainty. After all, the subject supposes that the
urn will exhibit stable relative frequencies, as opposed to an unstable real-world process (e.g.
a machine learning system in a changing environment).

Ellsberg’s urn paradoxes can be taken as purely descriptive, but are often interpreted
and defended from a normative perspective: it is rationally permissible for subjects to be
ambiguity-averse (Stefánsson and Bradley, 2019). An education in classical probability may
lead individuals to revise their initial preferences, after the inconsistency has been pointed
out, in order to conform with probabilistic reasoning. The challenge for such a response,
however, is to give a non-circular justification for classical probability in the first place as
the only permissible rational decision theory. An appeal to probability itself in such an
argument is pointless. Contrariwise, we take Ellsberg’s urns to be a serious challenge with
normative appeal. Besides this thought experiment, a wealth of other challenges have been
raised against classical probability theory (Allais, 1953; Walley, 1991; Joyce, 2005; Gilboa
et al., 2009; Bradley, 2019; Isaacs et al., 2021). We do not attempt to summarize the vast
literature on this topic.

While the above example may at first sight seem irrelevant to the practical concerns
of a machine learning engineer, the challenge of ambiguity has in fact been recognized in
the framework of distributionally robust ML (Rahimian and Mehrotra, 2019). The typical
expected risk minimization problem

argmin
f

EP ℓpfpXq, Y q

is there replaced by a worst-case attitude with respect to an ambiguity set of probability
measures

argmin
f

sup
QPQ

EQ ℓpfpXq, Y q,

where the ambiguity set tQ : dpQ,P q ă ϵu typically contains all probability measures in a
specified ϵ-neighbourhood of the base measure with respect to some divergence measure d
(e.g. an f -divergence). One rationale for employing a distributionally robust (DR) approach
is to account for the issue that the empirical distribution P̂n is not the ‘true’ one for finite
sample size n. Instead, a whole set of probability distributions is considered and the most
pessimistic, ambiguity-averse attitude is adopted by taking the supremum over the expected
risks. We call the essence of this situation hallucinated ambiguity : while the decision maker,

2. This holds when adopting the “principal principle” of Lewis (1980), which asserts that knowledge of
chances requires that these be taken as subjective probabilities.
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i.e. the machine learning engineer, is faced with a decision problem under risk, she also
has good reason to believe that P̂n does not coincide exactly with the ‘true’ distribution.
Therefore, she decides to introduce artificial ambiguity into the problem. In contrast, in an
Ellsberg-like decision problem ambiguity arises naturally.

Distributionally robust optimization has proven to be useful for a range of machine
learning problems. For instance, it has been used to counteract the possibility of adversarial
attacks (Sinha et al., 2017). Due to its breadth, the DR framework can also tackle the
problem of data set shift (Zhang et al., 2021), where the training and test distributions
differ and which potentially yields diminished generalization performance. This is especially
relevant since data set shift has been recognized as one of the most pressing problems in AI
safety (Amodei et al., 2016). For example, Kirschner et al. (2020) proposed a distributionally
robust Bayesian optimization to deal with this phenomenon.

The line between ambiguity and risk can be blurry. If full access to the underlying
distribution is available, the decision problem is one under risk. However, decision makers
may have different rationally permissible attitudes towards such stochastic risk (Buchak,
2013). When using expected risk minimization, the decision maker takes a neutral stance
towards risk and cares merely about the average. Another decision maker might emphasize
downside risk, in financial terms. These are losses which exceed the expected loss. This
raises the question of how to systematically encode such an attitude. As machine learning is
being increasingly deployed in sensitive domains, demand for risk-averse learning methods
has arisen. In such domains, tail risks, i.e. unlikely events with highly negative impact, pose
a threat to the system or even lead to human death. In reinforcement learning, risk-averse
methods have been put forward e.g. by Singh et al. (2020); Urṕı et al. (2021); Dabney et al.
(2018); Tamar et al. (2015); Vijayan and Prashanth (2021). To this end, these authors have
employed coherent risk measures, which we study in this paper. This effectively amounts to
a transformation of risk to hallucinated ambiguity, as we will show. To a first approximation,
the mathematical approach of coherent risk measures to handle risk in fact coincides with
the mathematics to handle ambiguity with imprecise probabilities.

In this paper, we consider distributional robustness in the general frameworks of risk
measures and imprecise probability. This conceptual unification provides novel justification
and interpretation and can guide further developments.

In summary, we take there to be a broad epistemic spectrum, where certainty, risk,
(hallucinated) ambiguity and Knightian uncertainty lie. In this order, the adequateness
of classical probability theory is increasingly challenged. We will argue that spectral risk
measures are a distinguished subclass of coherent risk measures because they enable an
interpolation between the two ends in a sensible manner.

1.2 Contributions

We elaborate the connection of coherent risk measures and imprecise probability, which
has so far received little attention. Thereby, we clarify the relation of risk (aversion) and
ambiguity and what bearing this has on machine learning. In particular, we focus on the
subclass of spectral risk measures. Our goal is to bring as many different characterizations
of them as possible together in one place. On the way, we discover multiple new connections
between theories.
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We first summarize the existing theories of imprecise probability (Section 2) and coherent
risk measures (Section 3). We embed the theory of coherent risk measures in the broader
mathematical framework of rearrangement invariant Banach function spaces, thereby estab-
lishing an insightful connection (Section 4). This enables the direct import of mathematical
results, which are not yet known in the theory of coherent risk measures. Also, we can easily
rederive the celebrated Kusuoka representation theorem (Kusuoka, 2001) in this setting
and provide an intuitive interpretation of it. From this perspective, we derive various novel
characterization results of coherent risk measures, typically in terms of their fundamental
function, which corresponds to an imprecise probability. We present some new results
regarding the combination of two risk measures, showing relationships to the theory of
interpolation of operators (Section 5). In particular, we illustrate that one cannot avoid
the element of choice in risk measure by appealing to an “objective” combination rule,
because the set of legitimate combination rules ends up being essentially as rich as the set
of risk measures. We conduct experiments, which demonstrate that spectral risk measures
can encode risk aversion and robustness. For our experiments (Section 6), we suggest two
ways to evaluate the tail risk of a loss distribution. Specifically, we propose a graphical
evaluation based on the conditional value at risk and we employ Lorenz curves from the
study of economic inequality. Throughout the paper, we translate results from different fields
to a loss-based formulation, which aids the unification. As a consequence, when checking
references, results might appear different from our statement of them.

2 Coherent Lower and Upper Previsions

The umbrella term imprecise probability was popularized by Walley (1991), who offered a
behavioural account of rational belief, which strictly generalizes probability theory. Walley
takes inspiration from the work of the Bayesian de Finetti (1974/2017), who identified
probability with personal fair betting rates. In contrast to de Finetti, however, Walley
departs from the dogma of precision and allows for a divergence of lower and upper betting
rate. In this section we outline the basics of Walley’s approach, with its main pillars of
avoiding sure loss, coherence and natural extension. While Walley’s theory is formulated in
terms of reward, we use a loss-based formulation throughout the paper, so that different
theories can be directly related without tedious translations.

2.1 Gambles and Previsions

Consider a possibility space Ω, where ω P Ω represents a state of the world, including all
information deemed relevant to the problem at hand. A gamble is a bounded function
X : ΩÑ R, yielding an uncertain loss Xpωq when the state ω is realized. In the ML context,
such a gamble corresponds to a bounded loss function; here, we will allow negative loss values,
too, which are then interpreted as reward. Gambles carry the obvious vector space structure
with scalar multiplication pλXqpωq “ λXpωq, λ P R, and addition pX`Y qpωq “ Xpωq`Y pωq.
Constant gambles αpωq “ α @ω are set in lowercase. We assume that a vector space L of
gambles is given.

With simple axioms, we can characterize the set D of gambles which are desirable to the
decision maker (i.e. the ML engineer). A critical assumption is that loss lives on a bipolar
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linear measurement scale, where 0 separates loss (ą 0, bad) from reward pă 0, good). Then
we can postulate the following structure:

D1. supX ă 0ñ X P D

D2. infX ą 0ñ X R D

D3. X P D, λ P R` ñ λX P D

D4. X P D, Y P D ñ X ` Y P D

We may take these as axioms, but they are explained through the choice of a linear utility
scale. As to D1, certainly a gamble which yields only rewards is desirable. Conversely, a
gamble which yields only loss is not desirable (D2). Axioms D3 and D4 imply that the set
D forms a convex cone, which due to D1 includes the interior of the negative orthant L´,
and due to D2 excludes the interior of the positive orthant L`. We call a set D satisfying
D1–D4 a coherent set of desirable gambles.

As such, this framework does not yet provide us with an evaluation of gambles which
contain a mix of positive and negative outcomes. For this, we define a functional, called
upper prevision as follows:

P pXq :“ inftα P R : X ´ α P Du. (1)

We interpret P pXq as specifying the smallest amount of certain loss α that, when subtracted
from the uncertain loss X, makes the resulting gamble desirable. In financial terms, this is
the certainty equivalent for X: the decision maker is willing to shoulder the risky position
X when offered the reward ´α in exchange. Symetrically, we can define a lower prevision:

P pXq :“ ´P p´Xq

“ ´ inftα P R : ´X ´ α P Du
“ suptα P R : α´X P Du,

which specifies the largest certain loss α we are willing to shoulder in exchange for giving
away the uncertain X. In virtue of their conjugacy relation, we focus on the upper prevision
in the following. When an upper prevision is defined from a coherent set of desirable gambles
as in (1), it can be shown to satisfy the properties (Walley, 1991, p. 65):

P1. P pXq ď suppXq (bounds)

P2. P pλXq “ λP pXq, @λ P R` (positive homogeneity)

P3. P pX ` Y q ď P pXq ` P pY q (subadditivity)

We call a functional satisfying P1-P3 a coherent upper prevision. The corresponding coherent
set of desirable gambles can be defined as D :“ tX : P pXq ď 0u, a definition which interacts
well with (1). P2 and P3 together imply

P4. P pαX ` p1´ αqY q ď αP pXq ` p1´ αqP pY q @α P r0, 1s (CX: convexity)
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but the converse is not true. In virtue of P2 and P3, P is a sublinear function and hence
the support function of a closed convex set, a geometric fact which we will exploit later.
Furthermore, P1-P3 imply (Walley, 1991, p. 76)

P5. P pcq “ c, @c P R (agreement)

P6. P pX ` cq “ P pXq ` c, @c P R (translation equivariance)

P7. Xpωq ď Y pωq @ω P Ωñ P pXq ď P pY q (monotonicity)

An upper prevision generalizes the classical notion of the linear expectation EpXq. In
Walley’s setting, a linear prevision is defined as a prevision which satisfies the self-conjugacy
relation P pXq “ ´P p´Xq. For a coherent prevision, it holds that P pXq ď P pXq and we
may call the width of the interval

“

P pXq, P pXq
‰

the degree of imprecision. As a first simple
example of a nonlinear upper prevision, consider the vacuous prevision P pXq “ suppXq and
correspondingly P pXq “ infpXq. This prevision maximizes the degree of imprecision, while
still being coherent. It is a model for complete ignorance, unlike a uniform distribution,
which actually expresses precise beliefs (Konek, 2015). On the other hand, the familiar
expectation E is a precise, linear prevision. However, defining an expectation requires much
more structure (a σ-algebra and a probability measure) than Walley imposes.

To understand the structural implications of coherence, we first consider a strictly weaker
rationality condition: avoiding sure loss. In the Bayesian tradition, a typical justification
for probability theory is based on Dutch book arguments. A Dutch book is a collection of
gambles, each of which is desirable to the decision maker, but the combination of which
surely incurs a loss for the decision maker, no matter the outcome ω. If it is not possible to
find such a finite combination, we say that the prevision avoids sure loss.

Definition 1. A functional P defined on L avoids sure loss if

@n P N : @X1, .., Xn P L : sup
ωPΩ

«

n
ÿ

j“1

P pXjq ´Xjpωq

ff

ě 0. (2)

Consider what happens if (2) fails. Then @ω P Ω :
řn
j“1 P pXjq ă

řn
j“1Xjpωq. This

means that our risk assessments P pXjq were too small, whatever the outcome. In the next
section, we observe that the concept of avoiding sure loss has an approximate correspondence
in the theory of risk measures as aversity. A coherent upper prevision always avoids sure loss
and is hence immune to Dutch books, but the converse is not generally true. In geometric
terms, the above condition is equivalent to requiring that the set of desirable gambles
excludes the interior of the positive orthant L`, where sure loss would occur.

It can be shown (Walley, 1991, p. 134) that any upper prevision which avoids sure loss
dominates at least one linear prevision pointwise, so the set Q “ tQ : QpXq ď P pXq @X P

L, Q is linear previsionu is non-empty. We call such a set Q an envelope.3 Then we can
construct a canonical coherent extension of P by forming the supremum over this set

EpXq “ sup
QPQ

QpXq. (3)

3. In the literature on imprecise probabilities, the functional E in (3) is called the envelope of Q, whereas
we use the term envelope for the set Q itself, in line with works such as (Rockafellar and Royset, 2015).
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This process is the natural extension of P and yields a coherent upper prevision if and only
if P avoids sure loss. If P was already coherent, then E “ P . On the other hand, if P
merely avoided sure loss, then the natural extension is the least committal extension from a
behavioural perspective. This means that for any other coherent upper prevision P 1 which
is dominated by P , meaning P 1pXq ď P pXq @X P L, the natural extension lies in-between:
P 1pXq ď EpXq ď P pXq @X P L. In this sense, the natural extension is the most pessimistic
one, as it reduces the risk assessment by P just as little as necessary to achieve coherence.

Conversely, every coherent upper prevision can be written in the form of (3) for some set
Q. Also, any representation of this form is automatically coherent. For the lower prevision,
the infimum is taken over the same set. This provides a direct link to the ambiguity sets in
DR optimization: any ambiguity set of linear previsions yields a coherent upper prevision.
Note that until now, measure theory has not entered the picture, as Walley’s theory is more
general. Later we will identify linear previsions with EµQrXs for some probability measure
µQ.

In the imprecise probability literature, the envelope Q is called a credal set. Figuratively,
each linear prevision in the set corresponds to a member of a ‘credal committee’ (Joyce,
2010). Whereas each member holds a precise belief (credence) on the risk of X, their joint
decision is based on a worst-case consideration and hence introduces imprecision. The
question of desirability of a gamble consists in a unanimous vote of all credal members. By
construction, Walley’s theory thus encodes a maximally pessimistic attitude with respect to
some envelope.

2.2 Lower and Upper Probabilities

So far we have focused on upper previsions, i.e. nonlinear expectations, instead of probability.
To obtain an imprecise probability on events, the prevision is applied on indicator gambles

A Ď Ω : χApωq :“

#

1 ω P A

0 otherwise

so that P pAq :“ P pχAq is an upper probability and P pAq :“ 1´ P pχAC q a lower probability,
where AC is the complement of A, i.e. ΩzA. These probabilities can be interpreted as a
personal upper and lower betting rate, respectively, on the event that A occurs. To verify
coherence, the same criteria as for previsions may be used, but where the gambles are
restricted to be indicator gambles. In the following, we assume P to be defined on a field4

of events. Some consequences of coherence are then (Walley, 1991, p. 84):

Pa) 0 ď P pAq ď P pAq ď 1

Pb) P pHq “ P pHq “ 0; P pΩq “ P pΩq “ 1

Pc) A Ď B ñ
`

P pAq ď P pBq and P pAq ď P pBq
˘

.

Like for previsions, the width of the interval rP pAq, P pAqs is a natural measure for the degree
of imprecision. An interesting interpretation for this comes from a comparison to modal

4. A field pΩ,F) consists of a set Ω and a family of subsets F , which is closed under complements, finite
unions and finite intersections. This is weaker than the definition of a σ-algebra, where closure under
countable unions and intersections is assumed.
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logic (Augustin et al., 2014), where the possibility operator ♢ and the necessity operator
l stand in a similar conjugacy relation ♢p “ ␣l␣p and likewise lp “ ␣♢␣p. When the
event A is seen as a proposition, which represents incurring a unit loss, the lower probability
quantifies the evidence that is certainly in favor of A and likewise, the upper probability
captures the evidence possibly in favor of A. Just as probability theory can be seen as an
extension of propositional logic, imprecise probability theory extends modal logic. Similarly,
a lower prevision gives the most optimistic (certain) assessment of the risk, whereas the
upper prevision gives a more pessimistic (possible) assessment.

In classical probability theory, there is a one-to-one correspondence between probability
measures and the expectations they induce via Lebesgue integration. However, coherent
upper probabilities in general do not uniquely determine a coherent upper prevision, which is
why Walley focuses on previsions. The subclass of spectral risk measures we are particularly
interested in, however, is based on upper probabilities in a one-to-one correspondence, which
are then naturally extended to an upper prevision.

Similar to previsions, upper probabilities are characterized by the set of additive proba-
bilities which they dominate. Additive probabilities are those which satisfy Kolmogorov’s
axioms, but with σ-additivity weakened to finite additivity:

K1) P pAq ě 0

K2) P pΩq “ 1

K3) P pAYBq “ P pAq ` P pBq, if AXB “ H.

An upper probability avoids sure loss if and only if it dominates an additive probability.
It is furthermore coherent if and only if it is the envelope (cf. (3)) of a set of additive
probabilities. Hence, to extend an upper probability to an upper prevision, we may extend
the additive probabilities in the envelope to linear previsions. This process, which may
be complicated in general, is simplified for submodular upper probabilities, which induce
the class of spectral risk measures (Section 3.6)5. Due to their computationally convenient
properties, submodular upper probabilities have received much attention in the imprecise
probability literature (see e.g. Montes et al., 2018). They are also called 2-alternating
(Miranda et al., 2003) and the corresponding lower probabilities are 2-monotone. In the next
section, we discuss coherent risk measures and relate the subclass of spectral risk measures
to their corresponding submodular upper probabilities.

3 Coherent Risk Measures

The study of risk measures in financial mathematics aims to establish a systematic approach
to the quantification of risk inherent in a portfolio. Such a portfolio, a collection of assets,
will yield an uncertain future monetary loss or gain Xpωq when the state ω P Ω is realized. In
this setting, risk is inherently asymmetrical: financial institutions are much more concerned
with their downside risk, that is, returns below the expected value. Unexpectedly high gain is
not a similar matter of concern. It is customary to view X as a real-valued random variable,

5. Technically, this is true if and only if the submodular probabilities are given as the composition of a
concave function and a σ-additive probability.
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that is, a measurable function, on some underlying probability space pΩ,F , P q. From the
viewpoint of a regulating agency, the risk of this uncertain return must be quantified in order
to arrive at a sensible capital requirement to prevent insolvency. Shouldering excessive risk
without an appropriate capital requirement puts customers and the economy at risk. The
failure to quantify risk properly has indeed been linked to the financial crisis, as discussed in
The Turner Review (Financial Services Authority, 2009). Hence there has been increasing
interest in risk measures which satisfy certain desiderata.

Artzner et al. (1999) initiated the study of coherent risk measures. They imposed
axioms on acceptance sets, which contain acceptable positions — in Walley’s terms, desirable
gambles. The structure they imposed led to the corresponding risk functional having the
following properties6:

C1. RpλXq “ λRpXq, @λ P R` (positive homogeneity)

C2. RpX ` Y q ď RpXq `RpY q (subadditivity)

C3. RpX ` cq “ RpXq ` c, @c P R (translation equivariance)

C4. Xpωq ď Y pωq @ω ñ RpXq ď RpY q (monotonicity)

Artzner et al. (1999) justified these axioms from a financial perspective. Subadditivity is
particularly interesting and much hinges on it. The rationale is that diversification should
not be penalized. Intuitively, X and Y could act as a hedge against each other, thereby
decreasing total risk. We will later discuss how subadditivity is related to ambiguity aversion.
Translation equivariance is motivated as cash invariance: adding a certain loss to a financial
position X should increase risk by exactly the same amount.

It has been observed (Pelessoni and Vicig, 2003) that a risk measure corresponds to
an upper prevision when random variables are bounded. This can be directly seen from
the axioms of acceptance sets, which are equivalent to those for coherent sets of desirable
gambles, but it is also instructive to relate the functional properties.

Theorem 2. (Pelessoni and Vicig, 2003). Let L be a linear space of bounded real-valued
random variables, containing all constants c P R. A functional R is a coherent risk measure
on L if and only if it is a coherent upper prevision on L.

Proof Let R a coherent risk measure. We need to show only RpXq ď suppXq. Since X ď

suppXq, we have by monotonicity and translation equivariance that RpXq ď RpsuppXqq “
Rp0` suppXqq “ Rp0q ` suppXq “ suppXq. Hence R is a coherent upper prevision. For the
converse direction, we refer to (Walley, 1991, p. 76) and (Pelessoni and Vicig, 2003).

As of now, the equivalence (barring the technicality of boundedness) of coherent risk measures
and coherent upper previsions is a formal, mathematical observation. We assert, however,
that it has profound philosophical consequences, which can be understood with regard to
the risk and uncertainty spectrum, discussed in Section 3.7.

6. For consistency, we work again with losses corresponding to positive real values, whereas it is common to
work with monetary gains in the literature. In insurance, however, working with losses is common as well.
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3.1 Boundedness and Law Invariance

Recall that Walley’s approach to imprecise probability does not require an underlying
probability space, i.e. a measure space, but instead presupposes boundedness of the gambles.
From this, he derives, using the Hahn-Banach theorem, that any coherent upper prevision
admits a representation of the form

P pXq “ sup
QPQ

QpXq,

where Q is a set of linear previsions. Yet these linear previsions are merely finitely additive,
instead of countably additive. Moreover, boundedness is inconvenient for theory.

On the other hand, coherent risk measures are typically introduced on an underlying
probability space. A common choice for the space of random variables is then L2pΩ,F , P q,
which are those random variables with finite second moment. However, we will see in
Section 4 that there is in fact a more natural space to work with. Then any coherent risk
measure admits a representation of the form (Section 3.2)

RpXq “ sup
µQ:QPQ

EµQrXs,

where the µQ are countably additive probability measures. To ensure that these are indeed
valid probability measures, translation equivariance and monotonicity are key (Section 3.2).
Note that now the definition of monotonicity is adapted to the measure7:

X ď Y P -a.s.ñ RpXq ď RpY q,

where P -a.s means almost surely (P -almost everywhere). Mathematically, it is more conve-
nient to work with countably additive probability measures and unbounded random variables.
On the other hand, with the additional assumption of a single distinguished base measure
this setup is less parsimonious than Walley’s framework. We believe, however, that little
generality is lost when doing so. Henceforth we will work with an underlying probability
space in line with the risk measurement and machine learning community. The strength
and usefulness of Walley’s theory lies in the additional conceptual interpretations that it
provides. For instance, that a coherent risk measure essentially relies on an underlying
imprecise probability has not been appreciated widely.

A much more restrictive, yet useful assumption is law invariance. An upper prevision
(coherent risk measure), defined on a probability space pΩ,F , P q is called law invariant
if P pXq “ P pX 1q whenever X and X 1 share the same distribution with respect to P .
Conceptually, this introduces reliance on a distinguished precise probability. For example,
the expectation E is a law invariant coherent upper prevision. Law invariance encodes the
idea that the fine structure of Ω does not actually matter: a decision maker cares only
about the distribution of risk, not in which specific states ω it occurs. The property of law
invariance, which is not even expressible in Walley’s general framework, will be especially
useful to us to characterize classes of coherent risk measures in Section 4.

7. Artzner et al. (1999) considered only finite Ω, so they could define monotonicity as holding for all ω P Ω.
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3.2 Envelope Representations

In virtue of positive homogeneity and subadditivity, a risk measure is a sublinear functional
and hence, assuming closedness8 for technical reasons, the support function of a closed
convex set. This geometric viewpoint provides direct insights into the structure of risk
measures. We here work with the space Lp :“ LppΩ,F , P q of random variables with finite
p-th moment, p P r1,8s. It is paired with the space Lq, 1

p `
1
q “ 1, and the pairing is

xX,Y y “

ż

Ω
XpωqY pωq dP pωq, @X P Lp, Y P Lq.

In the case of 1 ď p ă 8, Lq coincides with the dual space of Lp. The case of p “ 8 is
complicated (see Schönherr and Schuricht, 2017), but common practice is to pair it with L1.

A standard result in convex analysis is that a canonical bijection between support
functions R and their supported sets Q is then given by

RpXq “ sup
QPQ

xX,Qy, Q “ tQ P Lq : xX,Qy ď RpXq @X P Lpu .

The following correspondences are known in the literature (Rockafellar and Uryasev, 2013;
Shapiro, 2013; Föllmer and Schied, 2016; Liu, 2019):

E1. R is monotone iff Q Ď Lq`, where Lq` “ tQ P Lq : Q ě 0 P -a.s.u

E2. R is translation equivariant iff Q Ď E1, where E1 “ tQ P Lq : EpQq “ 1u

E3. RpXq ě EpXq @X P Lp iff 1 P Q, where 1pωq “ 1 @ω P Ω

E4. If R is a law invariant coherent risk measure, its envelope Q is invariant under
measure-preserving transformations.

For the technicalities regarding E4 see Shapiro (2013). Intuitively, E4 means that under law
invariance, if Q and Q1 have the same distribution under the measure P , then either both
are in the envelope or none.

Thus the envelope of a coherent risk measure satisfies Q Ď Lq` X E1. Each Q P Q defines
a measure as

µQpAq :“

ż

A
Qpωq dP pωq “ EP rχAQs @A P F .

Due to Q P Lq`, µQpAq ě 0 and due to Q P E1, we have µQpΩq “ 1. Hence µQ is a probability
measure and we can equivalently write the risk measure as

RpXq “ sup
µQ:QPQ

EµQ rXs .

If X is bounded, then from this representation it is clear that RpXq ď suppXq and therefore
R is a coherent upper prevision. Also, this representation provides the rationale for viewing
a risk measure as a worst-case “vote” with respect to a set of probabilities. This is equivalent

8. A function R is closed if all sublevel sets tx P dompRq : Rpxq ď cu, c P R, are closed sets, i.e. contain all
limit points.
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Risk R Deviation D

Regret V Error E

Figure 1: The fundamental risk quadrangle (Rockafellar and Uryasev, 2013).

to Walley’s formulation, where the set consists of linear previsions, which we can identify here
as EµQr¨s. Whereas the expectation with respect to the base measure is EP r¨s, represented by
the singleton envelope t1u, each probability measure µQ defines a legitimate linear prevision.
The envelope, in Walley’s terms, consists of the linear previsions which are dominated by
R. Natural extension entails finding those linear previsions and taking the supremum over
them, hence automatically enforcing both monotonicity and translation equivariance of the
functional. Essentially, this relies on the fact that a closed sublinear function equals the
supremum of the linear functions minorizing it (Hiriart-Urruty and Lemaréchal, 2004).

3.3 The Fundamental Coherent Risk Quadrangle

Rockafellar and Uryasev (2013) put the developments in the theory of risk measures in
an even broader perspective by introducing the fundamental risk quadrangle, depicted in
Fig. 1. The authors made technical assumptions about certain limits, which were shown to
be superfluous by Rockafellar and Royset (2015), and which we therefore drop.

Rockafellar and Uryasev (2013) generally consider convex risk measures (Föllmer and
Schied, 2016) on L2pΩ,F , P q, where coherence is weakened by dropping subadditivity and
positive homogeneity and only assuming convexity in its place. As a consequence, the
acceptance set is then a convex set, but not in general a cone anymore. Since we are
interested in coherence, we simplify their definitions and theorems to the coherent case.
They further demand aversity

@c P R : Rpcq “ c , but RpXq ą ErXs for nonconstant X, i.e. P ptX “ cuq ă 1@c P R.

For reference, we collect properties of averse coherent risk measures in the quadrangle:

A1. RpλXq “ λRpXq, @λ P R` (positive homogeneity)

A2. RpX ` Y q ď RpXq `RpY q (subadditivity)

A3. RpX ` cq “ RpXq ` c @c P R (translation equivariance)

A4. X ď Y P -a.s. ñ RpXq ď RpY q (monotonicity)

A5. Rpcq “ c @c P R, but RpXq ą ErXs for nonconstant X

A6. R is closed, i.e. it has closed sublevel sets tX P dompRq : RpXq ď cu, c P R. Here,
dompRq :“ tX : RpXq ă 8u.

In the top part of the quadrangle, there is a one-to-one correspondence between coherent
risk measures and coherent deviation measures, given by the relation RpXq “ EpXq`DpXq.
Such deviation measures are positively homogeneous, subadditive and closed and satisfy

Dpcq “ 0 @c P R, but DpXq ą 0 for nonconstant X
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DpXq ď ess suppXq ´ ErXs, ess suppXq :“ inf tλ P R : P pX ą λq “ 0u

DpX ` cq “ DpXq @c P R (translation invariance)

In practice, the variance is often employed to measure the deviation from the mean in a
distribution. In the context of finance, this is the classical mean-variance analysis (Markowitz,
1952). However, the variance is not a coherent deviation measure, as it fails to be subadditive.
Conceptually, the shortcoming is that the variance penalizes variability in both directions,
but due to the loss/gain asymmetry, we like to emphasize the importance of losses exceeding
the expectation.

In the bottom part of the quadrangle, there is a one-to-one correspondence between
coherent regret measures V and coherent error measures E, given by the relationship
V pXq “ EpXq ` EpXq. By coherent regret measure, we mean a functional which is
positively homogeneous, subadditive, monotonic, closed and averse in the sense that

V p0q “ 0, but V pXq ą ErXs for nonzero X, i.e. P pX “ 0q ă 1.

According to Rockafellar and Uryasev (2013), “the role of a measure of regret, V , is to
quantify the displeasure associated with the mixture of potential positive, zero and negative
outcomes of a random variable X that stands for an uncertain cost or loss.”. A coherent
regret measure lacks only translation equivariance as compared to a coherent risk measure.

A coherent error measure quantifies the nonzeroness of X, is positively homogeneous,
subadditive, closed and averse in the sense that

Ep0q “ 0, but EpXq ą 0 for nonzero X.

Furthermore, we require

EpXq ď Er´Xs for X ď 0,

which is equivalent to the monotonicity of the corresponding regret measure. A coherent
error measure is hence fundamentally asymmetrical. The bottom part of the quadrangle
projects to the top part via the operations

RpXq “ inf
cPR
tV pX ´ cq ` cu , DpXq “ inf

cPR
tEpX ´ cqu .

For a coherent regret and error measure, respectively, the result will be a coherent risk and
deviation measure. Note, however, that the backwards direction is not unique: one can find
an infinity of regret/error measures which project to the same risk/deviation measure.

The projections can be understood as infimal convolution. Let σQpXq :“ supQPQ xX,Qy
be the support function of the set Q “ tQ P Lq : xX,Qy ď σQpXq @X P Lpu.

Theorem 3. (Sun et al., 2020). Let V “ σQ be a positively homogeneous, subadditive,
monotonic and closed functional, i.e. a coherent regret measure, and Q be its supported
set. Suppose Q1 :“ Q X E1 ‰ H. Then R :“ σQ1 is a coherent risk measure and RpXq “
infcPR V pX ´ cq ` c.

This process can also be understood from Walley’s perspective, where the projection
from V to R is the natural extension (recall Section 2.1):
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Theorem 4. A coherent regret measure V avoids sure loss. Its natural extension coincides
with RpXq “ infcPR V pX ´ cq ` c.

Proof Due to aversity of V

@X1, .., Xn P Lp : sup
ωPΩ

«

n
ÿ

j“1

V pXjq ´Xjpωq

ff

ě sup
ωPΩ

«

n
ÿ

j“1

ErXjs ´Xjpωq

ff

ě 0,

and therefore V avoids sure loss. The converse implication (avoiding sure loss ñ aversity)
does not in general hold. Due to monotonicity and subadditivity and positive homogeneity
we know that V is the support function of some set Q and each Q P Q is nonnegative almost
everywhere. Computing the natural extension entails finding those linear previsions which
are dominated by V and forming the envelope of them, but these correspond to expectations
EµQr¨s induced by the set

tQ P Q : ErQs “ 1u “ QX E1,

which is the supported set of RpXq “ infcPR V pX ´ cq ` c.

The achievement of Rockafellar and Uryasev (2013) is to put risk in a broad conceptual
framework and to establish a link between optimization (R, V ) and estimation (D,E).
Consider the archetypical regression problem, framed in terms of a coherent error measure:

minimize EpY ´ fpX1, .., Xnqq over f P H

for random variables X1, .., Xn, outcomes Y and some hypothesis class H. Rockafellar et al.
(2008) proved that under a mild technical assumption this problem can be equivalently
phrased as

minimize DpY ´ fpX1, .., Xnqq over f P H s.t. 0 P argmincPR tEpY ´ fpX1, .., Xnq ´ cqu .

See also (Rockafellar and Royset, 2015). This provides a new perspective on regression,
where customized risk aversion is directly built in. In this paper, we mainly focus on coherent
risk measures rather than coherent error measures, since risk measures applied to a loss
random variable are not constrained by a dependence on the Y ´ f difference. However, our
results in Section 4 are also linked to coherent regret (and thus error) measures.

3.4 The Conditional Value at Risk

We now examine a coherent quadrangle of particular interest, that of the conditional value at
risk CVarα, with parameter α P r0, 1q. CVarα is a special case of the larger class of spectral
risk measures. In fact, we will see in Section 4.7 that the CVarα are the basic building
blocks not only of the spectral risk measures, but of all law invariant coherent risk measures.
Define the positive part of a random variable as X` :“ maxpX, 0q and the negative part as
X´ :“ maxp0,´Xq. For each α P p0, 1q, a coherent quadrangle is given by:

RpXq “ CVarαpXq, DpXq “ CVarαpX ´ EpXqq

V pXq :“
1

1´ α
ErX`s, EpXq “ E

„

1

1´ α
X` `X´

ȷ

.
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According to the projection from regret, CVarαpXq “ minct
1

1´αEppX ´ cq
`q ` cu. We also

define CVarα“0 :“ E in the same way, but this is only “weakly” averse in the degenerate
sense that E ě E. The random variable X has a right-continuous distribution function
FX with generalized inverse9 F´1

X pqq “ suptλ ě 0 : FXpλq ă qu. Then CVarα can be
equivalently expressed as an integral over quantiles

CVarαpXq “
1

1´ α

ż 1

α
F´1
X pqq dq.

If FX is continuous, this can be further written as

CVarαpXq “ E
“

X|X ě F´1
X pαq

‰

,

and is also called expected shortfall, tail conditional expectation or superquantile (Laguel et al.,
2021). Intuitively, CVarα takes the average of the p1´ αq-fraction of the worst outcomes
and neglects the more fortunate outcomes completely. In one extreme, CVarα“0 corresponds
to the expectation; in the other, CVarαÑ1 :“ limαÑ1CVarα gives the essential supremum
(worst-case) of X.

The envelope of CVarα is known to be Q “ tQ : 0 ď Q ď 1
1´α ,ErQs “ 1u, so coherence

can be directly verified from the envelope. We can interpret the elements of the envelope as
reweightings of the original distribution, where a reweighting of up to 1{p1´ αq is allowed.
As a consequence, the supremum is achieved when that reweighting is fully concentrated on
the p1 ´ αq-fraction of the largest losses. For α “ 0, the supremum is clearly attained at
Q “ 1, which corresponds to the expectation. On the other hand, for αÑ 1, the reweighting
may be arbitrarily large and hence the worst-case will receive all of the weight (but the
supremum will not be attained in general). To see that the above set is indeed the envelope
of CVarα, consider the regret V “ 1

1´αErX
`s. It is not hard to see that its envelope is the

set tQ : 0 ď Q ď 1{p1 ´ αqu. The projection of V to CVarα, i.e. the natural extension,
entails intersecting this set with the constraint ErQs “ 1.

3.5 Spectral Risk Measures

CVarα belongs to the family of spectral risk measures (Acerbi, 2002). We here work on
L2pΩ,F , P q, but in Section 4 we show that the natural space to work on is in fact more
subtle. Observe that a convex combination of coherent risk measures again yields a coherent
risk measure. Given a probability measure λ on r0, 1s, this can be generalized to the form

RλpXq :“

ż 1

0
CVarαpXq dλpαq, (4)

which yields a coherent risk measure. We assume that the measure λ does not have an
atom at 1, i.e. λpt1uq “ 0. By expanding CVarα as its integral representation and using
Fubini-Tonelli, this can be rewritten as

RλpXq “ RpwqpXq :“

ż 1

0
F´1
X pqqwpqq dq, (5)

9. For consistency with Section 4, we choose to work with the lower instead of the upper quantile.
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with a spectral weighting function w : r0, 1s Ñ R`. This generates a coherent risk measure
if and only if w is nonnegative, monotonically increasing and

ş1
0 wpqq dq “ 1 (Acerbi,

2002). These properties are automatically satisfied when w is induced by a probability
measure λ from (4). The spectrum w has a clear interpretation as a risk aversion profile.
A monotonically increasing w puts more weight on worse (highly positive) outcomes as a
penalty. In the special case of CVarα, α P r0, 1q, we have

wpqq “

#

0 0 ă q ă α

1{p1´ αq q ě α

hence all values below the α-th quantile are ignored, and values above it receive the constant
weight 1{p1´ αq ě 1. Note that by demanding that λ does not have an atom at 1, we have
excluded the supremum risk measure CVarαÑ1, which is represented by the Dirac measure
at 1. The corresponding weight function would be 0 everywhere, rendering a representation
of the form (5) impossible. The supremum risk measure, while being in the “closure” of
the family of spectral risk measures, cannot be considered a proper member due to its
pathological properties. It will lead to additional technical complications in Section 4.

For an arbitrary spectral risk measure Rpwq with spectrum w, the envelope representation
is (Pflug, 2006):

RpwqpXq “ sup
Q
txX,Qy : Q “ wpUqu , where U is uniformly distributed on r0, 1s wrt. P,

which requires that Ω is rich enough to support a uniform distribution. While this result
may seem somewhat mysterious, we will obtain a different perspective on it in Section 4,
which also supplies intuition.

3.6 Distortion Risk Measures

Assume again the space L2pΩ,F , P q. Equivalent to spectral risk measures are distortion
risk measures with concave distortions, which originate from distortion premium principles
in actuarial science (Wang et al., 1997; Wang, 2000). In insurance, the key challenge is to
price a contingent claim. That is, from the viewpoint of the insurer, a random variable X
represents an uncertain loss that corresponds to a claim made by a policyholder. Given a
probability model under which X has distribution FX , the question is how much should the
insurer charge in exchange for shouldering the risk? This is called the insurance premium.
Consider an equivalent definition of the usual expectation:

ErXs “ ´
ż 0

´8

FXpxq dx`

ż 8

0
p1´ FXpxqq dx

“

ż 0

´8

rSXpxq ´ 1s dx`

ż 8

0
SXpxq dx,

where we used the survival function SXpxq :“ 1 ´ FXpxq “ P pX ą xq. If the insurer
simply charged the expectation as the premium, they could not make any profit and could
face bankruptcy due to model misspecification. What if the specified probability does not
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accurately reflect the real risk? The idea of a distortion premium is to model risk aversion
by instead calculating the expectation with respect to another distribution, given by the
Choquet integral :

RϕpXq :“

ż 0

´8

rϕpSXpxqq ´ 1s dx`

ż 8

0
ϕ pSXpxqq dx, (6)

where ϕ : r0, 1s Ñ r0, 1s is a monotonically increasing concave function satisfying ϕp0q “ 0
and ϕp1q “ 1. In addition, we assume additionally that ϕ is continuous at 0, which excludes
the supremum risk measure but avoids technical issues. These boundary conditions ensure
that RpXq can be viewed as an expectation with respect to a valid (distorted) probability
distribution. Concavity of ϕ models risk aversion in the sense that the higher the loss
level, the higher the increase in the premium. Furthermore, the resulting functional R is a
coherent risk measure if and only if ϕ is concave (Gzyl and Mayoral, 2008). In the special
case of ϕptq “ t, we obtain the expectation and for all other distortion risk measures we have
RϕpXq ě EpXq. The difference DpXq “ RϕpXq ´ ErXs, Rockafellar and Uryasev’s (2013)
deviation measure, is also known as the risk premium. For coherence the critical property
is subadditivity of R, which corresponds to the concavity of the distortion. If instead ϕ is
convex, the functional is superadditive10. In Appendix B.3, we consider functionals of the
form (6), Choquet integrals, in more depth. Here we observe that distortion risk measures
are equivalent to spectral risk measures.

Theorem 5. (Gzyl and Mayoral, 2008; Ridaoui and Grabisch, 2016). For any distortion
risk measure Rϕ with concave distortion ϕ, with ϕp0q “ 0 and ϕp1q “ 1, there is an identical
spectral risk measure Rpwq “ Rϕ, with ϕ

1ptq “ wp1´ tq.

The proof is in Appendix A.1. For example, in the case of CVarα we have ϕptq “
şt
0wp1´ uq du “ mintt{p1´ αq, 1u.

From a given base probability measure P we obtain a distorted probability ϕpP q. We can
interpret this as an upper probability in Walley’s framework. Setting µpAq :“ ϕpP pAqq @A P
F defines a capacity on events. A capacity on pΩ,Fq is a set function µ : F Ñ R with the
normalization µpHq “ 0, µpΩq “ 1 and the monotonicity property A Ď B ñ µpAq ď µpBq.
In our case this is satisfied because ϕp0q “ 0 and ϕp1q “ 1 and ϕ is monotonically increasing.
A submodular capacity, sometimes called concave capacity, is a capacity which satisfies the
inequality

µpAYBq ` µpAXBq ď µpAq ` µpBq @A,B P F .

If and only if the function ϕ is concave and ϕp0q “ 0, µ is a submodular capacity
(Bednarski, 1981; Föllmer and Schied, 2016, Prop. 4.7.5). Submodularity is not only
convenient from a mathematical point of view, but as we will show in Section B.3 it has
a rich interpretation in terms of systematic risk aversion. It is known that a monotone

10. A functional R is superadditive if RpX ` Y q ě RpXq ` RpY q.
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submodular capacity is always coherent11, due to its envelope being non-empty:

corepµq “ tP : P pAq ď µpAq @A P F , P probability measureu

µpAq “ sup
PPcorepµq

P pAq

In the general case of a capacity, the envelope is also called the ‘core’ and consists of finitely
additive probability measures. However, we have defined our capacity on a σ-algebra and
therefore the core consists of countably additive measures. Employing the core, the Choquet
integral (6) for a submodular capacity is equivalently given by

RϕpXq “ sup
PPcorepµq

"
ż 8

´8

X dP

*

. (7)

Thus, for a submodular capacity, Walley’s natural extension coincides with the Choquet
integral. This can be understood by viewing (7) as forming the linear extensions via
integration of the additive probabilities which are dominated by the capacity. This is yet
another argument that demonstrates the specialness of distortion/spectral risk measures:
they are natural extensions of coherent upper probabilities.

To a given submodular capacity µ, we can define a corresponding dual capacity µpAq :“

1´ µpACq @A P F . This capacity is supermodular:

µpAYBq ` µpAXBq ě µpAq ` µpBq @A,B P F

and is a coherent lower probability. In our case, we can identify it as µ “ ϕ ˝ P , with the
convex function ϕptq “ 1´ ϕp1´ tq. The upper and lower distribution functions are then
defined as follows (Walley, 1991, p. 130):

FXpxq :“ P pX ď xq “ 1´ P pX ą xq

FXpxq :“ P pX ď xq “ 1´ P pX ą xq.

Hence we can compute upper and lower densities as fX “ F
1

X and f
X
“ F 1

X . This
terminology is, however, somewhat unfortunate: the upper distribution function owes its
name to the fact that it lies above the lower distribution function, but the upper distribution
function is obtained from the lower survival function. Figure 2 gives an intuition about the
lower and upper probabilities, survival functions and densities for an exemplary distortion.
To compute the distortion risk of X, i.e. the upper prevision, one computes the expectation
with respect to the upper survival function ϕpSXq or the lower density f .

We subsequently use the term distortion risk measure to refer to a distortion risk measure
with a concave distortion ϕ. Hence we may use the term interchangeably with spectral risk
measure.

11. The Choquet integral is convex if and only if the capacity is submodular (Alfonsi, 2015). Furthermore,
it is monotone and translation equivariant. Restricting the Choquet integral to events hence yields a
coherent upper probability, which coincides with the submodular capacity on events.
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Figure 2: Top left: the density of an exemplary skew-normal distribution, belonging to some
random variable X. Top right: lower and upper probabilities with distortion
function ϕptq “ 1 ´ p1 ´ tq2. Bottom left: lower and upper distortion of the
survival function, corresponding to the exemplary distribution. Bottom right:
lower and upper densities, resulting from the distortion. The vertical lines indicate
the expectation and the distortion risk. Note that RϕpXq is substantially greater
than ErXs.

3.7 Coherent Measures of Risk or Uncertainty?

In the finance context, the theory of coherent risk measures has been advanced as a theory
about risk, as the name suggests. There is still a conceptual reliance on a single “true”
probability measure and the goal is to embody a risk-averse attitude by specifying a more
conservative (pessimistic) summary of a distribution. Due to the envelope representation,
we can however interpret a risk measure as taking the worst-case decision with respect to a
set of probability measures. This amounts to introducing artificial “hallucinated” ambiguity
into a decision under risk. Hence a connection to Walley’s theory of imprecise probability is
established and the mathematical equivalence is given an interpretation. A key conceptual
difference is whether a distinguished base measure can still be identified, as in the case of
risk measures, or whether one deals with a credal set consisting of various linear previsions,
as in Walley’s case.

A decision maker who uses a law invariant coherent risk measure has an underlying
probability measure, but discounts her own belief in it. As an important example of this line
of thinking, following the financial crisis, “the Turner Review points to an excessive reliance
on a single probabilistic model P derived from past observations” (Föllmer and Weber,
2015). As a response, coherent risk measures have received increasing attention. Using such
a risk measure, a decision maker transforms the risky situation into an ambiguous situation
by considering other similar probability measures, as well. If she further employs a spectral
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risk measure which is based on a distortion of the original distribution, we can conclude
that she is coherent if and only if she assigns bigger weights to worse cases (Acerbi, 2002).
Thus she exhibits a systematic risk aversion attitude, which is encoded in the spectrum (or
equivalently, the distortion function).

The coincidence of the coherence concept in imprecise probability and the finance
literature on risk measures (Theorem 2) is particularly interesting because the axioms are
motivated in different fashion. Walley (1991) provides a behavioral justification for coherence,
tailored to the situation in which a decision maker finds herself when facing uncertainty.
Walley’s (1991) goal is to provide a guide to rational decision making. In finance, the agent
is an institution or a regulator. For instance, subadditivity is then motivated as encouraging
diversification; translation equivariance, in this context called “cash-invariance”, is motivated
by requiring that adding a certain amount of cash (negative loss) should decrease risk by
exactly that amount. That the extensions of these two coherence concepts coincides is
remarkable and serves as a corroboration of their groundedness.

Coherent risk measures are also intimately connected with generalized utility theories
in rational choice theory, situated in the context of economics. These theories offer formal
axiomatic bases for rational decision making under uncertainty. In Appendix B, we explore
the connections between risk measures and (non)-expected utility theories. In particular,
the class of spectral risk measures has been reinvented in this setting as Choquet expected
utility or, more precisely, as rank dependent expected utility.

In machine learning, the “excessive reliance on a single probabilistic model P derived
from past observations”, in the words of Föllmer and Weber (2015), is problematized in the
context of data set shift and more generally, it is problematic due to having only a finite
amount of training data, from which the “true” distribution can only be approximated. By
putting true in quotes, we wish to emphasize that the assumption of a single underlying
probability measure is itself a questionable one, although it has received little attention yet.
Data from the real world may exhibit unstable relative frequencies over time (Gorban, 2017)
and hence, at least from a frequentist perspective, cannot be based on a single probability
distribution (see Fröhlich et al. (2023)). Furthermore, predictions can even influence the
outcomes they aim to predict – a phenomenon known as performative prediction (Perdomo
et al., 2020). Our goal is to contribute to tackling such problems by demonstrating how
coherent risk measures, in particular spectral risk measure, can be helpful as a generalized
theory of uncertainty.

4 Rearrangement Invariant Banach Function Spaces

In this section, we show that coherent risk measures are an incarnation of rearrangement
invariant Banach function norms and are hence embedded in a rich mathematical literature.
This connection is, to the best of our knowledge, previously unknown and enables us to
obtain novel characterization results. While some authors have studied norms related to
risk measures (e.g. Pichler (2013), Mafusalov and Uryasev (2016) and Gotoh and Uryasev
(2016)), we here present a broader picture. We follow mainly the technical setup of Bennett
and Sharpley (1988). For a more accessible introduction we refer to (Rubshtein et al., 2016),
who use the term “symmetric spaces” instead. Throughout, we work with the probability
space Ω “ r0, 1s with the Lebesgue measure µ, so µpΩq “ 1. This space is a standard
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probability space and all such non-atomic standard spaces are Borel isomorphic (see e.g.
Bäuerle and Müller, 2006). Hence this introduces no loss of generality for our setting but
allows for a cleaner exposition. Let M denote the class of Lebesgue measurable functions
from Ω to R and M` the subset of Lebesgue measurable functions with values in r0,8s, i.e.
nonnegative random variables. (In)equalities between elements of M are to be understood
as holding µ-almost everywhere. Often, we will drop writing X PM for brevity, since we
have no concern for non-measurable functions throughout.

Definition 6. A functional R : M` Ñ r0,8s is called Banach function norm if the following
conditions hold for all Xn, X PM` and measurable E Ď Ω:

R1. RpXq “ 0ô X “ 0; RpλXq “ λRpXq @λ ě 0; RpX ` Y q ď RpXq `RpY q

R2. 0 ď X ď Y ñ RpXq ď RpY q

R3. 0 ď Xn Ò X µ-a.e.ñ RpXnq Ò RpXq

R4. RpχEq ă 8;
ş

E X dµ ă cERpXq for some 0 ă cE ă 8 depending only on E and R.

Since we work with a finite measure space, we also impose RpχΩq “ 1 without loss of
generality throughout the paper. Due to positive homogeneity, RpχΩq “ c would simply
correspond to a scaling of the function norm. Observe that a function norm R is defined
only on the positive cone of measurable functions. However, it induces a norm on the space
R “ tX : Rp|X|q ă 8u by setting

}X}R :“ Rp|X|q. (8)

Then it can be shown that the pair pR, } ¨ }Rq forms a Banach space, i.e. a complete normed
vector space. For completeness of the space, the key axiom is the Fatou property R3. In
the context of risk measures, however, it is undesirable to extend a function norm from
the positive cone to the whole space by stipulating (8). The reason is that we want to
treat negative values (gain) as different from positive values (loss). Hence we restrict
ourselves to nonnegative random variables M` in the following discussion. Then, in virtue
of R1 and R2, a coherent risk measure can be viewed as a valid Banach function norm,
if it also satisfies the mild technical axioms R3 and R4. A coherent risk measure further
satisfies translation equivariance, however. We discuss the subtle role of (non)negativity and
translation equivariance in Section 4.6 below.

We are specifically interested in rearrangement invariance of norms, which corresponds
to the law-invariance property of risk measures. The idea is that such a norm only attends
to the distribution of a function and hence respects the base measure µ in a suitable way,
thereby disregarding the order in which the values are arranged. To this end, one defines
the distribution function µX : R` Ñ r0, 1s of X PM as

µXpλq :“ µ tω P Ω : |Xpωq| ą λu . (9)

For nonnegative random variables, this decreasing (non-increasing) and right-continuous
function is just the survival function SX “ 1 ´ FX . Two functions X and Y are called
equimeasurable if their distribution functions coincide, i.e. µXpλq “ µY pλq @λ ě 0.
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Definition 7. A Banach function norm R is called rearrangement invariant if RpXq “ RpY q
for every equimeasurable X,Y . The space R is then called a rearrangement invariant Banach
space.

From now on we abbreviate rearrangement invariant as ri and call R an ri space. For
each X P M, we obtain a canonical equimeasurable function X˚ : r0, 1s Ñ R` as the
generalized inverse of its distribution function:

X˚pωq :“ inftλ ě 0 : µXpλq ď ωu, ω P r0, 1q (10)

X˚p1q :“ lim
ωÒ1

X˚pωq.

X˚ is called the decreasing rearrangement of X, as it arranges the (absolute) values of X in
decreasing order. It is therefore the continuous analog of sorting a list in descending order.
X˚ is clearly decreasing and right-continuous. In the context of standard probability theory,
this corresponds to the lower “backwards” quantile of |X|:

X˚pωq “ inftλ ě 0 : µXpλq ď ωu

“ suptλ ě 0 : µXpλq ą ωu

“ suptλ ě 0 : 1´ µXpλq ă 1´ ωu

“ suptλ ě 0 : F|X|pλq ă 1´ ωu

“ F´1
|X|
p1´ ωq.

The rationale for working with a decreasing, instead of an increasing rearrangement, is that
the ri Banach space theory generally considers spaces of potentially infinite measure; hence
a plot of an increasing rearrangement might not show anything interesting until `8. For an
ri function norm R, we have in particular RpXq “ RpX˚q. A law invariant coherent risk
measure induces an ri function norm, which is furthermore translation equivariant.

4.1 Duality and the Associate Space

Banach spaces have an interesting duality aspect, which we will connect to the envelope
representation. The dual space R˚ of a Banach space R consists of all linear, continuous
and bounded functionals u : RÑ R, and is equipped with the norm (Rubshtein et al., 2016,
p. 83)

}u}R˚ “ sup t|upXq| : }X}R ď 1u ă 8.

There exists a close relationship between the dual space and the associate space to a function
norm R, which is of more practical interest. For an ri norm R, the associate (function) norm
is defined by

R1pXq :“ sup

"
ż 1

0
X˚pωqY ˚pωq dω : RpY q ď 1, Y PM`

*

}X}R1 :“ sup

"
ż 1

0
X˚pωqY ˚pωq dω : }Y }R ď 1, Y P R

*

.

With this pairing, the associate space R1 is canonically isometrically isomorphic to a closed
“norm-fundamental” subspace of R˚ (Bennett and Sharpley, 1988, p. 13). For our purposes,
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we may ignore the subtle distinction between R1 and R˚. An important aspect of the
associate pairing is that Hölder’s inequality holds. If X P R and Y P R1 then

ż

Ω
|XY | dµ ď }X}R}Y }R1 .

Also, we have that R “ pR1q1 under the assumption of the Fatou property R3.

The prime example of ri spaces are the Lebesgue spaces Lp. A family of function norms
is defined as

RppXq :“

$

&

%

´

ş1
0X

p dµ
¯

1
p

1 ď p ă 8

ess suppXq p “ 8,

where ess suppXq :“ inf tλ ě 0 : µXpλq “ 0u. We label the space induced by Rp as Lp. The
associate space of Lp is Lq, where 1

p `
1
q “ 1. For example, R1 “ Er¨s is paired with its

associate R8 “ ess sup. On the other hand, the associate of R8 is R1, but the dual space
is more subtle and in this case, the canonical embedding of L1 into pL8q˚ is strict. For a
systematic treatment of this dual space, see (Schönherr and Schuricht, 2017).

4.2 The Embedding Theorem

Given ri spaces R and S, where S Ď R, there exists a constant c such that (Bennett and
Sharpley, 1988, p. 7)

}X}R ď c}X}S @X P S.

In this case, S continuously embeds into R, which we denote as S ãÑ R and refer to a
feasible c as embedding constant (not unique). Let R be any ri space. The following is
known (Bennett and Sharpley, 1988, p. 77, specialized to µpΩq “ 1):

L8 ãÑ R ãÑ L1,

and 1 is a feasible embedding constant:

}X}L1 ď }X}R @X P R, }X}R ď }X}L8 @X P L8.

Therefore, L1 and L8 are special as they are the extremes of all ri spaces. This implies
in particular that any law invariant coherent risk measure “lives between” the expectation
and the essential supremum, which stand in an associate relationship. This distinguished
status is also visible from their envelope representations (Section 3.2): the envelope of the
expectation is the singleton t1u (a singleton envelope c yields a constant multiple of the
expectation12), whereas the envelope of the worst-case risk measure consists of all probability
measures.

Note also that Er¨s “ CVarα“0 and ess sup “ CVarα�1, hence CVarα in a sense interpo-
lates between the smallest and largest ri function norms. We will later state a more refined
embedding theorem, which situates any law invariant coherent risk measure between the
spectral risk measure corresponding to its upper probability and the Marcinkiewicz norm.

12. However, requiring that Rp1Ωq “ 1 precludes such ri norms for constants c ‰ 1.
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4.3 Hardy-Littlewood’s Inequality

For nonnegative real sequences pxiq and pyiq, Hardy-Littlewood’s inequality asserts that

n
ÿ

i“1

xiyi ď
n
ÿ

i“1

x˚
i y

˚
i ,

where px˚
i q and py

˚
i q are the sequences where the elements of pxiq, respectively pyiq, are

arranged in decreasing order. This inequality carries over to the continuous case. If X and
Y are finite µ-almost everywhere, then (Bennett and Sharpley, 1988, p. 44):

ż

Ω
|XY | dµ ď

ż 1

0
X˚pωqY ˚pωq dω. (11)

While this inequality has been employed in the study of Kusuoka representations and
envelopes (see e.g. Pichler, 2015), the connection to the general theory of ri spaces has not
yet been made.

When Y is the indicator of a measurable set E with µpEq “ t ą 0, this specializes to

1

t

ż

E
|X| dµ ď

1

t

ż t

0
X˚pωq dω.

This suggests the definition of the maximal function (Bennett and Sharpley, 1988, pp.
52-53):

X˚˚ptq :“
1

t

ż t

0
X˚pωq dω “

1

t
sup

"
ż

E
|X| dµ : µpEq “ t

*

, t ą 0,

where the latter equality is here stated without proof. The maximal function achieves
the highest average of the function X over sets of measure t. This is done by integrating
quantiles backwards:

@t P p0, 1s : X˚˚ptq “
1

t

ż t

0
X˚pωq dω

“
1

t

ż t

0
F´1

|X|
p1´ ωq dω

“
1

1´ t

ż 1

1´t
F´1

|X|
pωq dω

“ CVar1´tp|X|q.

The special behaviour of CVarα is due to the fact that it integrates the function only in its
1´ α tail, where the function values are highest (recall that X˚ is decreasing). We observe
the following remarkable fact (Bennett and Sharpley, 1988, p. 61)

p@α P r0, 1q : CVarαp|X|q ď CVarαp|Y |qq ùñ }X}R ď }Y }R

for any ri norm } ¨ }R. We will later see that the special behaviour of CVarα is in some sense
shared by the wider class of spectral risk measures (Theorem 17). To this end, we need to
introduce the fundamental function of an ri space.
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4.4 The Fundamental Function

Definition 8. Let R be an ri space with function norm R. For each measurable subset
E Ď Ω with measure µpEq “ t, we define the fundamental function ϕR : r0, 1s Ñ R` as

ϕRptq :“ }χE}R “ RpχEq,

where the latter equality comes from the nonnegativity of indicator functions.

When the space is clear from the context, we drop the subscript. Due to the ri property,
the choice of the set E does not matter. If R is a law invariant coherent risk measure,
i.e. an upper prevision, ϕptq specifies a coherent upper probability and then13 ϕp1q “ 1.
Since we stipulated RpχΩq “ 1 for any ri function norm, it always holds that ϕp1q “ 1.
The value of t corresponds to the underlying probability with respect to the base measure,
µpEq, which is then distorted through R. For example, the expectation has the fundamental
function ϕL1ptq “ t, whereas the ess sup has fundamental function ϕL8ptq “ χp0,1s, so that
ϕL8p0q “ 0 and ϕL8ptq “ 1 otherwise. For any ri space, the fundamental function is
quasiconcave, that is, it satisfies (Bennett and Sharpley, 1988, p. 67):

ϕ is non-decreasing and ϕp0q “ 0

t ÞÑ ϕptq{t is decreasing

ϕ is continuous except perhaps at the origin.

However, we focus on concave fundamental functions. Every concave function is also
quasiconcave, but the converse is not necessarily true. The conceptual reason for our
restriction is that the fundamental function models risk aversion on events: the indicator
function χE represents the uncertain unit loss with probability µpEq and 0 loss with
probability 1´ µpEq. Then ϕptq “ ϕpµpEqq is our risk assessment for this simple random
variable. We argued before that a reasonable risk aversion profile is always concave, as
it then puts more weight on worse outcomes in a systematic way. Hence ϕ ˝ µ defines a
submodular capacity on events.

Mathematically, the restriction to concave fundamental functions is also not significant
since it can be shown that an ri space with quasiconcave fundamental function ϕ can always
be equivalently renormed to have a concave fundamental function, the least concave majorant
of ϕ (Bennett and Sharpley, 1988, p. 71). Henceforth we always assume ϕ to be concave.
We denote the class of concave functions ϕ : r0, 1s Ñ r0, 1s with ϕp0q “ 0 and ϕp1q “ 1 as Φ.
The right limit at 0 is ϕp0`q. If the additional condition of continuity at 0 is also satisfied,
i.e. ϕp0`q “ 0 and ϕ P Φ, we write ϕ P Φ0`.

Since ϕ only encodes the behavior of R on events, i.e. an upper probability, there is
some freedom left in specifying a corresponding risk measure. However, we will show
that ϕ still imposes significant structure (Section 4.8, 4.9). As an example, we consider
ϕptq “ 1 ´ p1 ´ tq2 “ 2t ´ t2. Two different risk measures, which share this fundamental
function, are MaxVar (Cherny and Madan, 2009) (MaxV) and the Dutch risk measure

13. A coherent risk measure satisfies translation equivariance, which also implies Rpcq “ c, hence RpχΩq “

ϕp1q “ 1.
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(Van Heerwaarden and Kaas, 1992) (Du):

MaxVpXq :“ E rmaxpX1, X2qs , X1, X2
ind
„ X @X PM` (12)

DupXq :“ E rmaxpX,ErXsqs @X PM`,

where X1, X2
ind
„ X means that the random variables are independent and share the same

distribution. MaxV is indeed the spectral risk measure corresponding to the distortion ϕ.
Let X PM`:

MaxVpXq “

ż 8

0
1´ p1´ SXpωqq

2 dω “

ż 8

0
1´ p1´ p1´ FXpωqqq

2 dω

“

ż 8

0
1´ F 2

Xpωq dω.

This is just the expectation of a random variable with distribution function FY “ F 2
X ,

i.e. Y “ maxpX1, X2q, X1, X2
ind
„ X. The Dutch risk measure, on the other hand, is also

law invariant but not spectral. It is also easy to see that ErXs ď DupXq ď MaxVpXq
@X PM` by applying Jensen’s inequality in (12). In this way, the Dutch risk measure is
more optimistic than MaxVar on general random variables, even if they share the same risk
aversion profile on indicator functions. This is no coincidence: we now show that, given
an arbitrary concave fundamental function, spectral risk measures correspond to the most
pessimistic extension of ϕ to all (nonnegative) random variables. In contrast, we observe in
Theorem 20 that the Dutch risk measure is the most optimistic extension for its specific ϕ.

4.5 The Lorentz and Marcinkiewicz Norms

Given any concave fundamental function ϕ P Φ, the Lorentz norm of X PM is defined as

}X}Λϕ
:“

ż 1

0
X˚pωq dϕpωq

“ X˚p0qϕp0`q `

ż 1

0
X˚pωqϕ1pωq dω

“ X˚p0qϕp0`q `

ż 1

0
F´1

|X|
p1´ ωqϕ1pωq dω,

where we immediately recognize the correspondence to the distortion (spectral) risk measure
(19) on the positive cone with distortion ϕ, if ϕ P Φ0`, i.e. if ϕ is continuous at 0. To the
best of our knowledge, this connection has not been reported yet. It is easy to check that
the Lorentz norm indeed has fundamental function ϕ. In particular, } ¨ }L1 and } ¨ }L8 are
both Lorentz norms for their respective fundamental functions. While ϕL1 P Φ0`, we have
ϕL8 R Φ0`. The effect of ϕp0`q ą 0 is to put a fixed weight on the supremum, meaning that
further decreasing its probability would not further decrease its weight. In the extreme case
of ϕL8 , all the weight is put on X˚p0q “ ess supp|X|q. In practice, we see little motivation
for choosing a ϕ P ΦzΦ0`.
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Another important norm, the Marcinkiewicz norm of X PM, is defined as

}X}Mϕ
“ sup

0ătď1
tϕptqX˚˚ptqu

“ sup
0ătď1

"

ϕptq
1

t

ż t

0
X˚pωq dω

*

“ sup
0ătď1

tϕptqCVar1´tp|X|qu

and also has fundamental function ϕ. It is clear that both the Lorentz and the Marcinkiewicz
norms are rearrangement invariant, as they are defined in terms of X˚. For the proof that
they are indeed valid ri norms, we refer to (Rubshtein et al., 2016, pp. 116, 143).

Theorem 9. (Bennett and Sharpley, 1988, p. 72). Let Λϕ (resp. Mϕ) be the ri spaces of
the functions for which the Lorentz (resp. Marcinkiewicz) norm is finite. For any other ri
space R with fundamental function ϕ P Φ we have the embedding

Λϕ ãÑ R ãÑMϕ

and 1 is a feasible embedding constant:

}X}Mϕ
ď }X}R @X P R, }X}R ď }X}Λϕ

@X P Λϕ.

Since an ri space consists of those functions for which the norm is finite, the largest
norm yields the smallest space and vice versa. We here state the theorem without proof.
In Section 4.8 we provide a novel proof, which also gives an intuition for the why behind
the result. This “sandwiching” result justifies the name fundamental function: it indeed
captures a fundamental aspect of an ri norm and confines all coherent risk measures with a
given fundamental function to live between the Marcinkiewicz and the Lorentz norm of that
fundamental function. From this it follows, for example, that DupXq ď MaxVpXq @X PM`,
as the MaxV is the Lorentz norm and they have the same fundamental function. This result
has direct behavioural implications for a decision maker: given a law invariant coherent
upper probability, the natural extension, which coincides with its spectral risk measure
(Section 3.6), hence the Lorentz norm, is the most pessimistic in the sense that it assigns the
highest risk to random variables, while being compatible with the specified upper probability.
On the other hand, the Marcinkiewicz norm is its most optimistic extension. However,
in contrast to the Lorentz norm, the Marcinkiewicz norm is not in general translation
equivariant (see Section 4.6,4.8) and thus not in general a coherent risk measure (on M`).

In fact, the Lorentz and the Marcinkiewicz norm stand in a dual relationship. The
dual fundamental function to ϕ is ϕ˚ptq :“ t{ϕptq and can be shown to be the fundamental
function of the associate space14. Then we can write the Lorentz norm as

}X}Λϕ
“ sup

"
ż 1

0
X˚pωqY ˚pωq dω : }Y }Mϕ˚ ď 1, Y PM`

*

,

using the Marcinkiewicz norm with the dual fundamental function as its associate norm. The
other direction is more complicated: if ϕ is concave, ϕ˚ might in general only be quasiconcave.

14. This holds true generally (Rubshtein et al., 2016, p. 135), not restricted to the Lorentz/Marcinkiewicz
duality. Note that if ϕ is concave, the dual fundamental function might only be quasiconcave.
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However, the Lorentz norm is only a norm for concave fundamental functions. It can be
shown that the dual of the Marcinkiewicz norm then is the Lorentz norm with respect to
the least concave majorant of ϕ˚ (Rubshtein et al., 2016, p. 147). For example, the associate
relationship of } ¨ }L8 and } ¨ }L1 is due to the Marcinkiewicz-Lorentz duality.

It has been observed (Rubshtein et al., 2016, p. 157) that in some special cases } ¨ }Λϕ
“

} ¨ }Mϕ
, that is, a coincidence of the Lorentz and the Marcinkiewicz norm for the same

fundamental function. As a consequence, the space of all ri norms collapses to a point due
to the embedding theorem: there is then only a single ri norm with the given fundamental
function. For instance, this holds true for L1: Let ϕptq “ t. Then }X}Λϕ

“ }X}L1 . Also,

}X}Mϕ
“ sup

0ătď1
tϕptqX˚˚ptqu “ sup

0ătď1
tt ¨X˚˚ptqu

“ sup
0ătď1

"
ż t

0
X˚pωq dω

*

“

ż 1

0
X˚pωq dω “ }X}L1 .

Similarly, one easily checks that the coincidence also holds for L8. Hence L1 and L8

are distuingished spaces as they allow only a single ri norm. We prove a novel result in
Section 4.8 (Theorem 21): the Lorentz and Marcinkiewicz norm coincide if and only if the
fundamental function is of the form ϕptq “ minpt{p1´ αq, 1q for some α P r0, 1q or αÑ 1,
i.e. for CVar-type fundamental functions. This further underlines the particularity of CVar,
as it is the single coherent risk measure with this fundamental function (upper probability).

4.6 Nonnegativity and Translation Equivariance

In the literature on ri spaces, a function norm is only defined on functions taking values
in r0,8s. Recall that to obtain a valid Banach space, this is then extended to a norm by
}X} “ Rp|X|q using the absolute value. In our context, this is undesirable, as we want
to distinguish loss from gain. Furthermore, we are interested in translation equivariant
functionals. One possibility to resolve this tension is to postulate that all random variables
are bounded from below — in the context of machine learning, losses are often bounded from
below by 0. If the lower bound is negative, we can compute in the presence of translation
equivariance:

RpXq “ RpX ` cq ´ c,

for some constant c so that ess infpX ` cq ě 0. It is then sufficient to define the norm
only for nonnegative random variables. However, the definition of translation equivariance
itself requires dealing with potentially negative random variables. We instead propose the
following restricted definition of positive translation equivariance (PTE).

Definition 10. An ri function norm R is called PTE if

@X PM`, c P R s.t. X ` c ě 0 : RpX ` cq “ RpXq ` c.

We also call an ri norm PTE if it is induced by an ri function norm which is PTE, and
similarly we call an ri space PTE if it carries an ri norm which is PTE.

The constant c can potentially be negative but we require that X ` c is nonnegative.
We now show that PTE is equivalent to the possibility of reducing the representation of a
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function norm via its associate to dual variables with ErY s “ R1pY q “ 1. Recall that any ri
function norm admits a representation of the form:

RpXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω : R1pY q ď 1, Y PM`

*

.

Theorem 11. An ri function norm R can be represented in the following reduced form if
and only if it is positive translation equivariant pPTEq:

RpXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω : ErY s “ R1pY q “ 1, Y PM`

*

. (13)

We call this the positive translation equivariant representation of R. The proof is in
Appendix A.2.

Remark 12. When risk measures R are defined on the whole M, translation equivariance
requires that for any Y in any envelope representation Y of R, it holds ErY s “ 1. Standard
proofs for this (see Section 3.2) rely on negative values. With the restriction to the positive
cone, we are only able to make the weaker statement that R allows such a representation,
not that any representation needs to be of this form.

Example 1. Consider R1 “ E. When it is defined on the whole space, the only envelope
representation of R is the singleton t1u. When R is restricted to the positive cone M`,
the set tY : R8pY q ď 1u is also a valid representation. To see that this set is not a valid
envelope on the whole space, consider the case of negative X and Y “ 0.

Example 2. It is easy to see that the Lorentz norm } ¨ }Λϕ
is PTE for any ϕ P Φ. In

contrast, the Marcinkiewicz norm } ¨ }Mϕ
is PTE if and only if ϕptq “ min tt{p1´ αq, 1u for

some α P r0, 1q or for αÑ 1, ϕptq “ χp0,1s (Theorem 21).

As an example of the above, consider the function norm R1, which can be written as

R1pXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω : R8pY q ď 1, Y PM`

*

@X PM`.

For nonnegative functions X PM`, this is the expectation ErXs. However, if we we want to
extend the above definition to work on general X PM, we must use its positive translation
equivariant representation

R1pXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω : ErY s “ R8pY q “ 1, Y PM`

*

@X PM`.

In fact, the singleton t1u is sufficient to represent this function norm. The two representations
are equivalent for nonnegative X, since in this case, the supremum will always be attained
for the constant Y “ 1. The second representation, but not the first, can easily be extended
to work on potentially negative X P M. We define the generalized distribution function
µ´
X : RÑ r0, 1s and the generalized decreasing rearrangement X˚´ : r0, 1s Ñ R as (cf. (9),

(10))

µ´
Xpλq :“ µ tω P Ω : Xpωq ą λu

X˚´pωq :“ inftλ P R : µ´
Xpλq ď ωu.

Clearly, X˚´pωq “ F´1
X p1´ ωq.
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Theorem 13. Let R be an ri function norm which has a positive translation equivariant
representation. Then the extended functional

R´pXq :“ sup

"
ż 1

0
X˚´pωqY ˚pωq dω : ErY s “ R1pY q “ 1, Y PM`

*

@X PM (14)

is a coherent law invariant risk measure, which coincides with R on nonnegative random
variables and is translation equivariant (for all c P R).

Proof For X PM`, the coincidence is obvious, since then X˚´ “ X˚. Law invariance is
obvious since the definition is only in terms of the distribution of X. The other properties of
a coherent risk measure are easily checked, but also follow from Kusuoka’s theorem discussed
in the next section.

Therefore, there is no real loss in generality when restricting ourselves to nonnegative
functions in the following discussion. All comparison results obtained for positive translation
equivariant ri norms defined on nonnegative functions, which are essentially bounded from
below, carry directly over to the extended functionals. Note, however, that for instance
the Marcinkiewicz norm is not in general positive translation equivariant, hence cannot be
extended to a translation equivariant functional. But see Theorem 20 for the construction
of a PTE norm related to the Marcinkiewicz norm.

4.7 Kusuoka Representations

The celebrated Kusuoka representation theorem (Kusuoka, 2001) states that CVar’s are the
basic building blocks of any law invariant coherent risk measure. Kusuoka (2001) proved the
theorem on L8 for law invariant coherent risk measures satisfying the Fatou property (akin
to R3) and it has been subsequently extended to Lp spaces (see e.g. Pflug and Romisch,
2007). In general, Kusuoka representations require an atomless15 probability space. We
continue to work on the atomless standard probability space r0, 1s with the Lebesgue measure
and restrict ourselves to the positive cone to draw the connection to ri function norms.

Theorem 14. Every ri function norm which is PTE admits a representation on the form

RpXq “ sup
λPM

"
ż 1

0
CVarαpXq dλpαq

*

@X PM` (15)

for some set M of probability measures on r0, 1s.

Proof We observe that in the framework of ri spaces, the Kusuoka representation is a
direct corollary of the representation of a norm via its associate norm:

RpXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω : R1pY q ď 1, Y PM`

*

@X PM`.

This is a particular instantiation of the result in convex analysis that a norm is the support
function of the unit ball of its dual norm. Here, the Y ˚ are nonnegative and decreasing. If R is

15. A set B Ď F on pΩ,F , P q is an atom if P pBq ą 0 and A ⊊ B ñ P pAq “ 0. A probability space is
atomless if it has no atoms.
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a coherent risk measure, it is positive translation equivariant. Therefore it suffices to restrict
ourselves to the subset of dual variables Y1 :“ tY

˚ : R1pY q “ ErY s “ 1u (Theorem 11), that
is
ş1
0 Y

˚pωq dω “ 1. Then we can write this as (Y PM`)

RpXq “ RY1pXq “ sup

"
ż 1

0
F´1
X p1´ ωqY ˚pωq dω : R1pY q “ ErY s “ 1

*

@X PM`. (16)

We recognize a supremum over a set of spectral risk measures, as each wpωq :“ Y ˚p1´ ωq
is a legitimate spectral weighting function (Section 3.5). Thus we can also write this as a
supremum over distortion risk measures with concave distortions Z :“ tt ÞÑ

şt
0 Y

˚pωq dω :
Y P Y1u. For each Z P Z, Z : r0, 1s Ñ r0, 1s, we have Zp0q “ 0, Zp1q “ 1 (due to PTE),
since Zp1q “

ş1
0 Y

˚pωq dω. Therefore we obtain a representation as the supremum over
Choquet integrals:

RY1pXq “ RZpXq “ sup

"
ż 8

0
ZpµXpωqq dω : Z P Z

*

@X PM`.

We call either of the sets Z or Y1 a Kusuoka set of R, since either fully characterizes the
risk measure; in general, we notate dual variables as Y and the integrals of their decreasing
rearrangements as Z. In subsequent discussions, we shall also use the term “Kusuoka set”
when PTE is not satisfied and the representation therefore describes a general ri function
norm, without the constraint that Zp1q “ 1 ô

ş1
0 Y

˚pωq dω “ 1. Finally, each spectral
weighting function wpωq “ Y ˚p1´ ωq can be associated with a probability measure λw on
r0, 1s, via the relationship (see e.g. Pichler, 2015)

λwpEq :“ wp0qδ0pEq `

ż

E
1´ α dwpαq E measurable,

where δ0 is the Dirac measure at 0. With this family of measures M :“ tλw : wpωq “
Y ˚p1 ´ ωq, Y ˚ P Y1u, the representation (15) is recovered. We remark that Kusuoka
representations need not be unique in general. Conversely, we can specify a functional RY
directly as

RYpXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω : Y P Y

*

@X PM`.

For any set of nonnegative decreasing functions Y, we are guaranteed to obtain a valid ri
norm16, since the supremum over a set of Lorentz norms preserves the relevant properties
(Lemma 52). However, Y need not be the maximal envelope.

When PTE is satisfied, the domain of R can be extended from M` to M to yield
a coherent risk measure via the extension in Section 4.6, so that the original Kusuoka
representation on the whole space is recovered. Observe that if only a single Y ˚ suffices to
represent the risk measure (of course, Y ˚ which never obtain the supremum may be added to
an envelope representation) and the normalization

ş1
0 Y

˚pωq dω “ 1 holds, then (16) reduces
to the definition of a Lorentz norm with ϕp0`q “ 0, i.e. a spectral risk measure. This relates
to the observation made by Pichler and Shapiro (2012) that if the Kusuoka set is generated
by a single element (modulo equimeasurability), then the risk measure is spectral. On the

16. The normalization RYp1q “ 1 may not hold in general when no constraints on Y are imposed.
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other hand, when starting with a single measure λ on r0, 1s, the situation is technically more
subtle. If λ does not have an atom at 1, i.e. λpt1uq “ 0, then it is equivalent to a concave
distortion, which is continuous at 0, and hence a spectral risk measure. Consider for instance
the supremum risk measure R8, represented by the Dirac measure at 1. This cannot be
expressed as a single distortion function, when demanding continuity at 0. However, it can
be represented as a supremum over a family of such functions.

This way of arriving at the Kusuoka representation provides new insights as compared to
standard proofs. First, it reveals that the natural space to work on with coherent risk
measures is not in general an Lp space, but rather a specific ri space. In the case of a spectral
risk measure, this is a Lorentz space. A similar observation has been made by Pichler (2013),
but the author did not establish the link to the general theory of ri spaces. Moreover, it
reveals that the Kusuoka representation is nothing more than the representation of a norm
via its dual norm in the presence of the ri property. In general, a Banach function norm
which is not ri can be written as

RpXq “ sup

"
ż 1

0
XpωqY pωq dω : RpY q ď 1

*

@X PM`.

Under the ri property, X and Y can be replaced by any distributionally equivalent choice.
The Hardy-Littlewood inequality (11) tells us that the supremum is achieved for X˚ and Y ˚.
Another statement is in terms of Fréchet bounds. Let H be a bivariate distribution function
with marginals F and G, where “distribution function” is in the classical probabilistic sense.
Then it holds (see e.g. Pflug and Ruszczynski (2001, Section 1.2.2)):

maxtF pxq `Gpyq ´ 1, 0u ď Hpx, yq ď mintF pxq, Gpyqu, @x, y P R.

Let X have distribution F and Y have distribution G. The lower bound is achieved when
X and Y are antimonotone; the upper bound is achieved when they are comonotone.
Comonotonicity means that any of the following equivalent conditions hold:

C1) Hpx, yq “ µpX ď x, Y ď yq “ minpF pxq, Gpyqq

C2) pXpωq ´Xpω1qqpY pωq ´ Y pω1qq ě 0 @ω, ω1 P Ω

C3) DZ PM, non-decreasing functions f, g such that X “ fpZq, Y “ gpZqq.

Comonotone X and Y have perfect rank correlation. The definition of antimonotonicity is
the opposite, perfect negative rank correlation17. It is known that

ErXY s ď ErX̃Ỹ s,

where X̃ and Ỹ are coupled in a comonotone way, but with the same marginals as X and Y ,
respectively. Note that for any pair of random variables, X˚ and Y ˚ are comonotone (C2
obviously holds). Therefore we recover Hardy-Littlewoods inequality (11).

The concept of comonotonicity is relevant both from a financial as well as from a purely
uncertainty-motivated perspective. In finance, a desirable property for a risk measure is
additivity for comonotone risks. That is, if X and Y are comonotone:

RpX ` Y q “ RpXq `RpY q.

17. Antimonotonicity means that pXpωq ´ Xpω1
qqpY pωq ´ Y pω1

qq ď 0 @ω, ω1
P Ω.
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The rationale is that in the presence of perfect rank correlation, X cannot work as a hedge
against Y and vice versa. Essentially, comonotone gambles are bets on the same event in
the world (due to C3). A decision maker under uncertainty may reason in an analogous way
that when adding two comonotone uncertain losses, no hedge against uncertainty is possible.

Theorem 15. (Kusuoka, 2001) on L8. A law invariant coherent risk measure with the
Fatou property (akin to R3) is comonotonically additive if and only if it has a Kusuoka
representation by a single probability measure on r0, 1s.

That is, only spectral risk measures and its pathological neighbours (e.g. the supremum
risk measure) are comonotonically additive.

4.8 Families of Fundamental Functions

The Kusuoka representation suggests a new way to characterize an ri norm fully by a family
of fundamental functions. Recall that any ri norm has the representation

RpXq “ sup

"
ż 1

0
X˚pωqY pωq dω : Y P Y

*

, Y “ tY ˚ : Y PM`, R1pY q ď 1u

for a set Y of nonnegative decreasing functions Y . Let E Ď Ω be a measurable subset with
µpEq “ t. The fundamental function induced by R is

ϕptq “ RpχEq “ sup

"
ż t

0
Y pωq dω : Y P Y

*

“ sup
ZPZ

Zptq,

where Z “ tt ÞÑ
şt
0 Y pωq dω : Y P Yu. Depending on the context, we may call either Y or Z

a Kusuoka set, as either fully describes the representation18. The fundamental function ϕ P Φ
can be expressed as a supremum of concave distortions Z, each of which can be seen as the
fundamental function of a spectral risk measure. Conceptually, we may say that ambiguity
about the risk aversion spectrum exhausts the whole space of coherent risk measures. From
this angle, it is possible to derive intuitive and instructive proofs, for instance for the extremal
status of the Marcinkiewicz and the Lorentz norm. Furthermore, we construct the smallest
translation equivariant norm, given an arbitrary concave fundamental function. First, we
need a technical lemma, which we specialize to the domain p0, 1s.

Lemma 16. Hardy’s lemma (Bennett and Sharpley, 1988). Let Y1 and Y2 be nonnegative
measurable functions on p0, 1s and

ż t

0
Y1pωq dω ď

ż t

0
Y2pωq dω @t P p0, 1s.

If η is any nonnegative decreasing function on p0, 1s, then

ż 1

0
ηpωqY1pωq dω ď

ż 1

0
ηpωqY2pωq dω.

18. We typically use Y as the primary objects, as they appear directly in the ri space version of the Kusuoka
representation. When starting with Z, we need that their derivatives be defined almost everywhere. If R
is PTE, then the set of probability measures M offers yet another representation.
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As an example, in our context this implies that if a concave distortion Z1ptq “
şt
0 Y1pωq dω

majorizes another Z2 pointwise (Z1, Z2 P Φ0`), then the Lorentz norm corresponding to Z1

majorizes the one corresponding to Z2 for all random variables (set η “ X˚). This does not
apply to Lorentz norms, where the distortion is not continuous at 0, however, as such a
distortion cannot be represented by an integral of the form Z1ptq “

şt
0 Y1pωq dω.

Theorem 17. (Bennett and Sharpley, 1988, p. 72). Given any ri norm R with fundamental
function ϕ P Φ0`, we have RpXq ď }X}Λϕ

@X PM`.

Proof Let RpXq “ supY PYt
ş1
0X

˚pωqY pωq dωu. We know that ϕptq “ supY PYt
şt
0 Y pωq dωu.

Recall that }X}Λϕ
“

ş1
0X

˚pωqϕ1pωq dω if ϕ P Φ0`. But since ϕ majorizes all elements

of tt ÞÑ
şt
0 Y pωq dω : Y P Yu pointwise and ϕ P Φ0`, we immediately obtain from the

qualification in Hardy’s lemma
ż t

0
ϕ1pωq dω ě

ż t

0
Y pωq dω @0 ă t ď 1 @Y P Y

that it holds

RpXq “ sup

"
ż 1

0
X˚pωqY pωq dω : Y P Y

*

ď sup

"
ż 1

0
X˚pωqϕ1pωq dω : Y P Y

*

“ }X}Λϕ
.

The statement also holds true if ϕ P ΦzΦ0` (Rubshtein et al., 2016).

Theorem 18. (Bennett and Sharpley, 1988, p. 70). Given any ri norm R with fundamental
function ϕ P Φ, we have }X}Mϕ

ď RpXq @X P R.

Proof Write

RpXq “ sup
ZγPZ

"
ż 1

0
X˚pωqZ 1

γpωq dω

*

, ϕptq “ sup
ZγPZ

Zγptq

for some Kusuoka set Z of R. Each Zγ is concave since it is the integral of a nonnegative
decreasing function. Hence, Zγ pointwise majorizes all of the piecewise linear functions19

@t P p0, 1s : Zγ,tpxq :“

#

Zγptq
x
t , x ď t

Zγptq , x ą t.

The Zγ,t are constructed as the integrals of the functions20

@t P p0, 1s : Z 1
γ,t :“

#

Zγptq
t , x ď t

0 , x ą t.

19. Let Zγ : r0, 1s Ñ R` be concave, i.e. @α P r0, 1s : Zγpαt ` p1 ´ αqxq ě αZγptq ` p1 ´ αqZγpxq. Choosing
x “ 0 yields Zγpαtq ě αZγptq. For any x ď t hence x “ αt for some α P r0, 1s, we obtain Zγpxq ě x

t
Zγt.

For x ą t the statement is obvious, as the concave Zi has nonnegative derivative, whereas Zγ,t has zero
derivative.

20. The “derivatives” Z 1
γ,t are here the primary objects. The derivative of Zγ,t at a kink may not exist, but

we have defined Z 1
γ,t as prior to Zγ,t. This enables us to apply Hardy’s lemma, which works with the

integrals of Z 1
γ,t directly.
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Applying Hardy’s lemma yields

RpXq “ sup
ZγPZ

"
ż 1

0
X˚pωqZ 1

γpωq dω

*

ě sup
Zγ,t

"
ż 1

0
X˚pωqZ 1

γ,tpωq dω

*

“ sup
Zγ,t

"

Zγptq

t

ż t

0
X˚pωq dω

*

ě sup
0ătď1

#

sup
Zγ,t

"

Zγptq

t

*
ż t

0
X˚pωq dω

+

“ sup
0ătď1

"

ϕptq

t

ż t

0
X˚pωq dω

*

“ }X}Mϕ
,

since we have ϕptq “ supZγ
Zγptq “ supZγ

Zγptq
t
t “ supZγ,t

Zγ,tptq.

Remark 19. Throughout the paper, we use shorthand notation to avoid explicitly writing
the set over which a supremum ranges, when it is clear from context. For instance, in the
above, the notation supZγ,t

Zγ,tptq means suptZγ,tptq : Zγ P Z, t P p0, 1su. In general, if not
stated otherwise explicitly, we always take the supremum over all the respective defined
quantities.

We constructed the functions Zγ,t so that they are linear up to t and then constant. This
yields the Marcinkiewicz norm. A slight extension, where the functions are piecewise linear
and reach Zγ,tp1q “ 1 yields the smallest positive translation equivariant ri norm.

Theorem 20. Given any concave fundamental function ϕ P Φ, we can construct the smallest
positive translation equivariant ri norm as:

}X}TMϕ
“ sup

0ătă1

"

ϕptq

t

ż t

0
X˚pωq dω `

ϕptq ´ 1

t´ 1

ż 1

t
X˚pωq dω

*

.

For any other PTE ri norm R with fundamental function ϕ we have }X}Mϕ
ď }X}TMϕ

ď

RpXq @X P R. We call TMϕ the positive translation equivariant Marcinkiewicz norm.

Example 3. Recall that both the Dutch risk measure and the spectral MaxVar share the
fundamental function ϕptq “ 2t ´ t2. Then: }X}TMϕ

“ Dup|X|q. This result implies that
given this fundamental function, the Dutch risk measure is the most optimistic coherent risk
measure, whereas MaxVar is the most pessimistic one.

The proof is in Appendix A.3.1. Next, we show when equality of all ri norms for a given
fundamental function holds.

Theorem 21. Given any concave fundamental function ϕ P Φ, it holds that

}X}Mϕ
“ RpXq “ CVarαpXq “ }X}Λϕ

@X PM`
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Figure 3: The red curve is the fundamental function ϕptq “ 1´p1´ tq2. Left: the black lines
correspond to five selected ϕt in the Marcinkiewicz norm construction. Right: the
black lines correspond to five selected ϕt in the positive translation equivariant
Marcinkiewicz norm construction. In this particular case, the latter yields the
Dutch risk measure. Due to PTE, the ϕt need to reach 1 at t “ 1. In both cases,
the supremum over the (infinite) family of black lines recovers the red line, i.e.
the fundamental function ϕ.

for all ri function norms R with fundamental function ϕ if and only if ϕptq “ min tt{p1´ αq, 1u
for some α P r0, 1q or for αÑ 1, ϕptq “ ϕ8ptq :“ χp0,1sptq. For αÑ 1, RpXq “ }X}L8.

The proof is in Appendix A.3.2. This result implies that for CVarα-type fundamental
functions (including L1 and L8 as special cases21), there is only a single ri norm and hence
a single law invariant coherent risk measure. However, there is another interesting class of
fundamental functions, for which all law invariant coherent risk measures coincide, but not
all ri norms.

Theorem 22. Let ϕptq “ βt ` p1 ´ βqminp1, t{p1 ´ αqq for any α, β P r0, 1q. Then the
Lorentz norm coincides with the positive translation equivariant Marcinkiewicz norm

}X}Λϕ
“ }X}TMϕ

“ βErXs ` p1´ βqCVarαpXq “: RIMα,βpXq @X PM`.

Proof The Lorentz norm is easily computed

}X}Λϕ
“

ż 1´α

0
X˚pωq

ˆ

β ` p1´ βq
1

1´ α

˙

dω `

ż 1

1´α
X˚pωqβ dω

“ βEr|X|s ` p1´ βqCVarαp|X|q.

A Kusuoka set of concave functions for the PTE Marcinkiewicz norm is

@t P p0, 1q : ϕTM,tpxq :“

#

ϕptqxt , x ď t
1´ϕptq
1´t x`

ϕptq´t
1´t , x ą t

Observe that ϕ is piecewise linear with a kink at t “ 1 ´ α, irrespective of the value
of β, which adjusts the slope. Choose t “ 1 ´ α. Tedious calculation reveals what is

21. More precisely, L1 and L8 are in fact the only two spaces for which the Marcinkiewicz and Lorentz norm
coincide. This is due to the fact that for α P r0, 1q, the space induced by CVarα is L1, whereas α Ñ 1
yields the L8 space. See Section 4.9.
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obvious, that ϕpxq “ ϕTM,1´αpxq. Therefore this ϕTM,1´α dominates all other ϕTM,t and
the supremum in the Kusuoka representation is in fact attained. But then }X}TMϕ

“
ş1
0X

˚pωqϕ1
TM,1´αpωq dω “ }X}Λϕ

.

As a consequence, for this family of fundamental functions, the space of law invariant
coherent risk measures collapses to a point. Moreover, the result is a spectral risk measure
which is useful in practice as it can be easily computed. This function norm is called the risk
measure for integrated risk measurement (Pflug and Ruszczynski, 2001). The parameters
α, β are intuitive knobs to adjust the tradeoff of tail-sensitivity (risk aversion) and globality
(taking the full range of risk into account). Note also the close relation to the Dutch risk
measure. From the representation

DupXq “ sup
0ăβă1

tβErXs ` p1´ βq ¨ CVarβpXqu @X PM`

we observe that the Dutch risk measure can be seen as an ambiguity set over RIMα,βs,
where α “ β. This can be interpreted as a combination of risk and ambiguity aversion. To
understand the relationship, consider the fundamental function ϕptq “ 2t´ t2 of the Dutch
risk measure and construct the corresponding ϕTM,t. Each such ϕTM,t can be written as
a ϕTM,tpxq “ βx` p1´ βqminp1, x{p1´ αqq, where t “ 1´ α “ 1´ β. More generally, let
ϕpxq “ 1´ p1´ xqn for some natural number n ě 2. As n increases, risk aversion increases.
Then:

}X}TMϕ
“ sup

0ăβă1
βn´1Er|X|s ` p1´ βn´1q ¨ CVarβp|X|q @X PM.

The corresponding Lorentz norm is (Cherny and Madan, 2009)

}X}Λϕ
“ E rmaxpX1, .., Xnqs , X1, .., Xn

ind
„ |X| @X PM.

We can generalize this further to find that the PTE Marcinkiewicz norm has a family of
RIMs as its basic building blocks.

Theorem 23. Let ϕ P Φ0` a fundamental function. Then

}X}TMϕ
“ sup

0ătă1

1´ ϕp1´ tq

t
Er|X|s `

ˆ

1´
1´ ϕp1´ tq

t

˙

¨ CVartp|X|q

“ sup
0ătă1

RIMαptq,βptqp|X|q, where αptq “ t, βptq “
1´ ϕp1´ tq

t
.

Proof Set ϕTM,1´αpxq “ ϕRIMα,β
pxq “ βx ` p1 ´ βqmint1, x{p1 ´ αqu. Both ϕTM,1´α

and ϕRIMα,β
are piecewise linear with a kink at 1´ α. A piecewise calculation shows that

β “ 1´ϕp1´αq

α is a solution for both pieces. Then }X}TMϕ
has a Kusuoka representation in

terms of spectral risk measures corresponding to the family of ϕRIMα,β
, but these are just

the RIMα,β.

We remark that RIMα,β admits the following variational representation:

RIMα,βpXq “ inf
µPR

µ` EvpX ´ µq @X PM,
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where the regret function v is given by the piecewise linear function

vptq “

#

βt t ď 0
βα´1
α´1 t t ą 0.

For the proof, see Appendix A.3.3, which translates a result from Pflug and Ruszczynski
(2001). Note that V pXq “ EvpXq fulfills the requirements of a coherent regret measure in
the quadrangle (Figure 1).

4.9 Norm Equivalences and Tail Risk

The fundamental function ϕ, which corresponds to a coherent upper probability, imposes
substantial structure on the compatible norms, which have this ϕ as their fundamental
function. In this section, we expand on this claim by proving several (non)-equivalence
results based on the derivative of ϕ at the origin. Recall that two norms } ¨ }R1 and } ¨ }R2 are
said to be equivalent if Dc1, c2 ą 0 : c1}X}R1 ď }X}R2 ď c2 ¨ }X}R1 @X P R1 “ R2. While
a theoretical norm equivalence does not imply equivalence from a practical standpoint, it
is nevertheless interesting how much of the norm behaviour is controlled by ϕ1p0q already.
From our findings we conclude that the theoretically most essential differences between ri
norms concern their behaviour with regard to tails of the random variables, an observation
which we further develop in (Fröhlich and Williamson, 2023).

We take inspiration from a result for coherent risk measures by Pichler (2013). Here we
restate it in terms of ri norms.

Theorem 24. Let } ¨ }R1 be an ri norm with Kusuoka set Z1 “ tϕ1γu and } ¨ }R2 another
ri norm with Kusuoka set Z2 “ tϕ2ζu, where γ and ζ are from some arbitrary index sets.
Denote the corresponding Banach spaces of functions, on which the norms are finite, as R1

and R2. Then if the constant

C :“ sup
ϕ2ζPZ2

inf
ϕ1γPZ1

sup
0ăαď1

ϕ2ζpαq

ϕ1γpαq
(17)

is finite, we have the relationship

}X}R2 ď C ¨ }X}R1 @X P R1

and R1 Ď R2, therefore R1 ãÑ R2. If furthermore Dc ą 0 : c ¨ }X}R1 ď }X}R2@Y P R2, then
R1 “ R2 and we say that the norms } ¨ }R1 and } ¨ }R2 are equivalent.

The proof is in Appendix A.4.1, where we also discuss a subtle issue with the original result.
In contrast, if C “ 8, we cannot make a statement for general ri norms (possibly, R1 Ď R2

or R1 ⊈ R2). At first sight one might conjecture that C “ 8 implies nonequivalence, but
we provide a counterexample in Theorem 31. However, we can state the following slightly
refined result.

Theorem 25. Let the quantities } ¨ }R1 , } ¨ }R2 , R1, R2, Z1 “ tϕ1γu, Z2 “ tϕ2ζu, be defined
as in Theorem 24, so that ϕ1ptq “ supϕ1γPZ1

ϕ1γptq and ϕ2ptq “ supϕ2γPZ2
ϕ2γptq are the

respective fundamental functions. If the constant

C 1 :“ sup
αÑ0

sup
ϕ2ζPZ2

inf
ϕ1γPZ1

ϕ2ζpαq

ϕ1γpαq
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is infinite, then the norms are not equivalent; we have R1 ⊈ R2 and

∄c : }X}R2 ď c ¨ }X}R1 @X P R1.

Proof Suppose C 1 “ 8. The norm of the identity embedding R1 ãÑ R2 is

} id } “ sup

"

}X}R2

}X}R1

: X P R1

*

.

We restrict the supremum to measurable indicator functions and obtain:

} id } ě sup
χA

}χA}R2

}χA}R1

“ sup
αÑ0

sup
ϕ2ζPZ2

ϕ2ζpαq

supϕ1γPZ1
ϕ1γpαq

“ sup
αÑ0

sup
ϕ2ζPZ2

inf
ϕ1γPZ1

ϕ2ζpαq

ϕ1γpαq
“ C 1 “ 8.

Since } id } is unbounded, the norms are not equivalent.

Note, however, that this criterion is not useful to test for non-equivalence of two norms with
the same fundamental function, since in this case C 1 “ 1.

Throughout this section, we focus on those fundamental functions with ϕp0`q “ 0 since
otherwise both the Marcinkiewicz Mϕ and the Lorentz space Λϕ are equal to L8 (Rubshtein
et al., 2016, p. 164). We now give various characterization results in terms of ϕ1p0q. To
intuitively understand why this particular value is of interest, consider the Lorentz norm
(ϕ P Φ0`q:

}X}Λϕ
“

ż 1

0
X˚pωqϕ1pωq dω,

and recall that these are the basic building blocks of any ri norm (Section 4.7). Since X˚ are
the backwards quantiles, ϕ1p0q is the highest weight which the most extreme loss receives.
Due to concavity of ϕ, its derivative ϕ1 is nonnegative and decreasing. Risk measures
fundamentally differ with respect to their tail behaviour: for instance, the expectation is
maximally insensitive to tails, as all quantiles receive constant weight 1. On the other hand,
for CVarα we have ϕ1p0q “ 1{p1´αq, which for αÑ 1 may grow arbitrarily large. In general,
the most benign situation occurs when ϕ1p0q is finite.

Theorem 26. Let ϕ P Φ0`. If the derivative of ϕ at 0, i.e. ϕ1p0q, is finite, then there exists
a constant K such that

}X}Λϕ
ď K ¨ }X}Mϕ

@X PMϕ.

In view of the embedding theorem, we then have Λϕ “Mϕ, i.e. equivalence of the Marcinkie-
wicz and the Lorentz norm. This implies in particular that given such a fundamental function,
all law invariant coherent risk measures are equivalent. Moreover, a feasible constant is
K “ 1{pϕp 1

ϕ1p0q
qq.

The proof is in Appendix A.4.2. Depending on the value of ϕ1p0q, the constant K can
be relatively small: as an example, for the fundamental function ϕptq “ 1´ p1´ tq2 of the
Dutch risk measure and MaxVar, ϕ1p0q “ 2, the constant is only K “ 4

3 , implying that

}X}Mϕ
ď Dup|X|q ď MaxVp|X|q ď

4

3
}X}Mϕ

@X PMϕ.

The smallest K, however is achieved for CVarα: K “ 1{ϕp 1
ϕ1p0q

q “ 1 @α P r0, 1q, a sanity
check for Theorem 21.
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Remark 27. Assume R1 and R2 are coherent risk measures. Then R1pXq ď K ¨ R2pXq
@X PM implies K “ 1 necessarily due to translation equivariance (Pichler, 2017). Therefore,
to obtain interesting and useful comparisons, we must restrict ourselves to the positive cone
M`. Working with the norm } ¨ } instead of the function norm has this effect.

Theorem 28. Let ϕ P Φ0` with ϕ1p0q “ 8. Then the Marcinkiewicz and the Lorentz norm
are not equivalent. We have

}X}Mϕ
ď }X}Λϕ

@X P Λϕ but ∄K : }X}Λϕ
ď K ¨ }X}Mϕ

@X PMϕ.

The proof is in Appendix A.4.3.

Theorem 29. Given any two ri norms } ¨ }R1,} ¨ }R2 with possibly different fundamental
functions ϕ1, ϕ2 P Φ0`. If ϕ1

1p0q and ϕ
1
2p0q are finite, then the norms are equivalent. In

particular, all such norms are equivalent to the L1 norm, i.e. the expectation of a nonnegative
random variable.

The proof is in Appendix A.4.4.

Corollary 30. Given any two ri norms } ¨ }R1,} ¨ }R2 with possibly different fundamental
functions ϕ1, ϕ2 P Φ0`. If ϕ1

1p0q “ 8 but ϕ1
2p0q is finite, then they are not equivalent.

Proof We use the following result from (Rubshtein et al., 2016, p. 164): If ϕ1
1p0q “ 8 then

Mϕ1 ⊊ L1. On the other hand, we have shown before that all norms with ϕ1
2p0q finite are

equivalent to L1. Altogether, using the embedding theorem, we have

R1 ĎMϕ1 ⊊ L1 “ R2.

If the spaces do not coincide, the norms cannot be equivalent (Bennett and Sharpley, 1988,
p. 7).

Theorem 31. Given any ϕ P Φ0` with ϕ1p0q “ 8. Then the Marcinkiewicz norm } ¨ }Mϕ
is

equivalent to the positive translation equivariant Marcinkiewicz norm } ¨ }TMϕ
, even though

C “ 8.

The proof is in Appendix A.4.5.

Corollary 32. Let ϕ P Φ0` with ϕ1p0q “ 8. In view of the embedding theorem, Theorem 28
and Theorem 31, we have the embeddings:

Λϕ ⊊ TMϕ “Mϕ

for the spaces induced by the Lorentz, PTE Marcinkiewicz and the Marcinkiewicz norm.
This means that if ϕ1p0q “ 8 not all coherent risk measures are equivalent; however, the
smallest ri norm is equivalent to the smallest coherent risk measure. On the other hand, we
have shown that if ϕ1p0q ă 8, all of these are equivalent.
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We have seen that ϕ1p0q plays an important role. If ϕ1p0q is bounded, such as for the
fundamental function of the Dutch risk measure and MaxVar, the space of compatible law
invariant coherent risk measures is very “small”: from a theoretical perspective, they are
all equivalent. We may summarize the role of ϕ1p0q by stating that it’s all about the tails.
On a coarse level, ϕp0`q controls how much weight is given to the most extreme event (the
supremum), hence a risk measure with ϕp0`q ą 0 mimics the supremum (or if ϕp0`q “ 1, it
is the supremum). On a more fine grained level, ϕ1p0q is the weight that the extreme tails
receive in the Lorentz norm. For an arbitrary ri norm, the interpretation of ϕ1p0q is more
subtle due to the involved supremum in the Kusuoka representation.

4.10 Rearrangement Invariant Norms and Risk

We have seen that, on the positive cone, a law invariant coherent risk measure can be seen
as a rearrangement invariant Banach function norm with the additional property of positive
translation equivariance. Philosophically, this implies agreement about a base probability
measure; however, decision makers may disagree about their risk aversion attitudes or they
might want to introduce ‘hallucinated’ ambiguity to account for a degree of distrust in
the base measure. This is the specification of a fundamental function, a coherent upper
probability. After a fundamental function is specified, there exist in general many different
compatible norms. Among them, the Marcinkiewicz norm and the positive translation
equivariant Marcinkiewicz norm are distinguished as the most optimistic extensions (subject
to a constraint of requiring positive translation equivariance or not). Diametrically opposed,
the Lorentz norms (spectral risk measures) are the most pessimistic extensions. In virtue of
the Kusuoka representation, any other ri norm can be understood as being formed from an
ambiguity set over spectral risk measures. Hence ambiguity about risk aversion exhausts
the whole space of coherent risk measures. When there is no specific motivation for such a
construction, the Lorentz norm is however the natural extension (indeed, also in Walley’s
terms) of the fundamental function: it is the only ri norm with a singleton Kusuoka set (if
ϕ P Φ0`) and therefore fully described by its risk aversion profile.

We remark that ri function norms, which are not positive translation equivariant, are
candidates for regret measures in the risk quadrangle (Rockafellar and Uryasev, 2013). First,
the ri function norm needs to be extended to the whole space, including potentially negative
functions. Given an arbitrary ri norm V , a similar extension to (14) can be constructed:

V ´pXq :“ sup

"
ż 1

0
X˚´pωqY ˚pωq dω : V 1pY q ď 1, Y PM`

*

@X PM

It is easy to check that this fulfills the desiderata of a coherent regret measure except
perhaps aversity22. The corresponding coherent risk measure can then be obtained by
infimal convolution (Theorem 3). We believe that this opens up room for future research
concerning risk-averse regression in the quadrangle, where the fundamental function offers
fine control over the degree and shape of risk aversion.

22. However, a “weak aversity” condition V ´
pXq ě ErXs follows from the embedding theorem (essentially

from law invariance). Note that we presupposed Rp1Ωq “ 1 for any ri norm R. Many regret measures
will not satisfy this. Monotonicity holds since Y P M`, cf. Section 3.2. Positive homogeneity and
subadditivity are easily checked.
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5 Creating New Risk Measures from Old

In this section we investigate how one can combine several risk measures (ri function norms)
to create new ones. Our motivation is two-fold. First, one can develop a better understanding
of a “thing” by understanding the various transformations of the thing — a heuristic known
as Grothendieck’s relative method. We shall see, for example, that by considering the
result of combining two risk measures reinforces the importance of the fundamental function.
Second, risk measures can be not only used to encode risk aversion attitudes, but also fairness
requirements (Williamson and Menon, 2019), and since people will sometimes disagree on
the right notion of fairness for a given situation (fairness being a prototypical example of
an “essentially contested concept” (Gallie, 1955)), a means is needed to reach a compromise
between two distinct views on fairness, as codified by choices of risk measures. The same
argument applies sans fairness where two people have different risk aversion attitudes.

5.1 Properties of Quasiconcave Functions

We will first present some elementary results concerning quasiconcave functions and the
effect of various combinations of ri Banach function norms on the corresponding fundamental
functions.

Lemma 33. Suppose ϕ : Rě0 Ñ Rě0 and ϕp1q “ 1. If ϕ is quasiconcave then

@t ě 0, 1^ t ď ϕptq ď 1_ t.

The proof is in Appendix A.5.1.

Lemma 34. (Rubshtein et al., 2016, p. 127). The function ϕ : Rě0 Ñ Rě0 is quasiconcave
if and only if t ÞÑ t{ϕptq is quasiconcave.

Lemma 34 has a natural interpretation in terms of fundamental functions:

Lemma 35. (Krĕın et al., 1982, p. 106). If ϕ is the fundamental function of an ri space X ,
then t ÞÑ t{ϕptq is the fundamental function of the associate space X 1.

Quasiconcavity is preserved under pointwise minima and maxima:

Lemma 36. Suppose ϕi : Rě0 Ñ Rě0 are quasiconcave, i P rns. Then
Ź

iPrns ϕi and
Ž

iPrns ϕi
are quasiconcave.

The proof is in Appendix A.5.2. Lemma 36 suggests the question as to what other
combinations of quasiconcave functions are guaranteed to be quasiconcave. We now show
that quasiconcavity is preserved under a range of binary operations induced by another
quasiconcave function.

Definition 37. Suppose ψ : Rě0 Ñ Rě0 is quasiconcave and ψp1q “ 1. The perspective of
ψ is the function

ψ̆ : Rě0 ˆ Rě0 Q px, yq ÞÑ yψpx{yq.

Let P denote the set of functions Rě0 ˆ Rě0 Ñ Rě0 which are positively homogeneous,
non-zero (except at p0, 0q) and nondecreasing (in both arguments), and let Q denote the set
of quasiconcave functions on Rě0.
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Lemma 38. Suppose ψ : Rě0 Ñ Rě0. The perspective ψ̆ P P if and only if ψ P Q.

The proof is in Appendix A.5.3. The following lemma shows that combining two
quasiconcave functions using ψ̆ is guaranteed to result in a quasiconcave function, and that
this is the only way to ensure such a preservation of quasiconcavity.

Lemma 39. Suppose ϕ0, ϕ1, ψ : Rě0 Ñ Rě0, and let fϕ0,ϕ1ptq :“ ψ̆pϕ0ptq, ϕ1ptqq, t ě 0.
Then rfϕ0,ϕ1 P Q, @ϕ1, ϕ2 P Qs if and only if ψ P Q.

The proof is in Appendix A.5.4. Observe that if ψp1q “ 1, and ϕ1 “ ϕ0, then

ψ̆pϕ0ptq, ϕ1ptqq “ ϕ0ptqψpϕ0ptq{ϕ0ptqq “ ϕ0ptq.

5.2 Interpolation Spaces

The creation of new ri norms from given norms can be viewed as the construction of an
“interpolation space” (Bennett and Sharpley, 1988, pp. 99ff). Given two ri spaces X0 and
X1, embedded in some separable linear topological space, let ∆pX0,X1q :“ X0 X X1 and
ΣpX0,X1q :“ X0 ` X1 with the corresponding norms

}f}∆pX0,X1q :“ }f}X0 _ }f}X1

}f}ΣpX0,X1q :“ inft}f0}X0 ` }f1}X1 : f “ f0 ` f1, f0 P X0, f1 P X1u.

The spaces ∆pX0,X1q (resp. ΣpX0,X1q) are the smallest (resp. largest) intermediate
spaces between X0 and X1 in the sense that any intermediate space X is continuously
embedded between them:

∆pX0,X1q ãÑ X ãÑ ΣpX0,X1q.

(This serves as a definition of intermediate space). If 1 is a feasible embedding constant, which

we notate by
1

ãÑ, and which can always be ensured by simple scaling, for any intermediate
space X , for all f P X0 ` X1,

}f}ΣpX0,X1q ď }f}X ď }f}∆pX0,X1q.

In order to appeal to results in the literature, we need to make some assumptions
regarding the measure spaces pΩ, µq upon which our ri spaces are defined. We can restrict
ourselves to finite measures spaces µpΩq ă 8, and in fact will assume µpΩq “ 1; for example,
Ω “ r0, 1s with the Lebesgue measure as in Section 4. All of the results below then hold for
any measure space that is purely non-atomic, or completely atomic which all atoms having
equal measure. (This is a consequence of (Bennett and Sharpley, 1988, Theorem II.2.7).)
Recall that we denote the associate space of X as X 1.

Lemma 40. (Bergh and Löfström, 1976, Theorem 2.7.1). Suppose X0 and X1 are ri
spaces and ∆pX0,X1q is dense in both X0 and X1. Then ∆pX0,X1q

1 “ ΣpX 1
0,X 1

1q and
ΣpX0,X1q

1 “ ∆pX 1
0,X 1

1q.

We subsequently have the following analog of Lemma 36 in terms of fundamental
functions.
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Lemma 41. Suppose X0 and X1 are ri spaces over a measure space pΩ, µq with corresponding
fundamental functions ϕX0 and ϕX1 . Then ϕ∆pX0,X1q “ ϕX0_ϕX1 and ϕΣpX0,X1q “ ϕX0^ϕX1 .

Proof For t ě 0, let Et Ă Ω be such that µpEtq “ t. Equation 5.2 implies that for all t ě 0,

ϕ∆pX0,X1qptq “ }χEt}∆pX0,X1q “ }χEt}X0 _ }χEt}X1 “ ϕX0ptq _ ϕX1ptq.

Lemmas 35 and 40 together imply that for all t ě 0,

ϕΣpX0,X1qptq “
t

ϕΣpX0,X1q1ptq
“

t

ϕ∆pX 1
0,X 1

1qptq
“

t

ϕX 1
0
ptq _ ϕX 1

1
ptq

“
t

t
ϕX0

ptq _
t

ϕX1
ptq

“ ϕX0ptq ^ ϕX1ptq.

Since ψ̆px, 1q “ ψpxq, we see that the ψ functions from Lemma 39 corresponding to max and
min are ψmaxpxq “ maxpx, 1q and ψminpxq “ minpx, 1q, which are indeed both quasiconcave.

5.3 Interpolation Functors and their Fundamental Functions

We make use of a number of definitions and results of Brudnyi et al. (1986). Given
the pair pX0,X1q and an intermediate space X for this pair, the triple ppX0,X1q;X q is
called an interpolation triple. The triple ppX0,X1q;X q is called an interpolation triple
relative to the triple ppY0, Y1q;Yq if any bounded linear operator from the pair pX0,X1q

to pY0,Y1q maps X into Y. When that occurs, there exists c ą 0 such that for any
linear operator T P L pX ,Yq, }T }XÑY ď c}T }pX0,X1qÑpY0,Y1q, where the operator norm
}T }XÑY “ supt}TX}Y : X P X and }X}X ď 1u. If c ď 1 then ppX0,X1q;X q is called a
normal interpolation triple relative to the triple ppY0,Y1q;Yq. Let B denote the category of
Banach spaces and B̄ denote the category of Banach pairs (for what follows it suffices to
just consider these as sets).

Definition 42. An interpolation functor is a functor F : B̄ Ñ B which assigns to each
Banach pair X̄ “ pX0,X1q a Banach space F pX̄ q intermediate between X0 and X1, and to
each operator T P LpX̄ , Ȳq it assigns the restriction to the space F pX̄ q.

The triples pX̄ ;F pX̄ qq and pȲ ;F pȲqq are interpolation triples relative to each other. If
for any pairs X̄ and Ȳ the resulting triples are normalised then F is said to be a normalised
interpolation functor. The functors ∆ and Σ introduced in (5.2) and (5.2) are both normalised
interpolation functors.

For α ą 0, the space αR is the set R along with norm given by }x}αR “ α|x|, for
x P R. Suppose α, β ą 0. Given an interpolation functor F , if we apply it to the
Banach pair pαR, βRq we obtain F pαR, βRq “ ϕF pα, βqR, where the constant ϕF pα, βq
is known as the fundamental function of the functor F (Brudny̆ı and Krugljak, 1991).
(Sometimes ϕF is called the characteristic function of the functor F (Brudnyi et al., 1986),
but such terminology conflicts with the characteristic function χE of a set E which we
make considerable use of.) For any functor F , pα, βq ÞÑ ϕF pα, βq is positive, positively
homogeneous, and nondecreasing in each argument. The dual fundamental function of the
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functor F is given by ϕ˚
F pα, βq “

1
ϕp1{α,1{βq

. If F is normalised, ϕF p1, 1q “ 1. Normalised

interpolation functors, when restricted to the Banach pair pαR, βRq are characterised by
their fundamental function ϕF .

Given a Banach pair X̄ “ pX0,X1q, the K-functional is defined as

Kps0, s1, X, X̄ q :“ infts0}X0}X0`s1}X1}X1 : X0 P X0, X1 P X1 s.t. X “ X0`X1u, s0, s1 ě 0

Pick an arbitrary function ϕ P P (recall definition 37), and let F denote the interpolation
functor on pαR, βRq with fundamental function ϕF “ ϕ. On one dimensional spaces, the
interpolation functor is entirely determined by its fundamental function; taking ϕ as given,
then Fϕ is given as F pαR, βRq “ ϕpα, βq. If one defines an interpolation functor on one
dimensional spaces, then it can be extended in many ways to arbitrary pairs of spaces. It
turns out (Brudnyi et al., 1986, Section 1.16) that there is a lower F and upper extension
F such that for all pairs of Banach spaces X “ pX0,X1q and all interpolation functors F ,

F pX q 1
ãÑ F pX q 1

ãÑ F pX q.

The lower and upper extensions are characterised by the following (Brudnyi et al., 1986,
Section 1.17):

Lemma 43. Let X̄ “ pX0,X1q be an arbitrary Banach pair. The lower and upper extensions
F pX̄ q “ ΛϕpX̄ q and F pX̄ q “ MϕpX̄ qq correspond to the space of all elements of X0 ` X1

with (respectively) finite norms

}X}ΛϕpX̄ q :“ inf
ÿ

k

ϕp}Xk}X0 , }Xk}X1q,

where the infimum is taken over all representations of X of the form X “
ř

kXk, with
Xk P X0 ` X1 for all k; and

}X}MϕpX̄ q :“ sup
s0,s1

Kps0, s1, X, X̄ q
ϕ˚ps0, s1q

.

The spaces ΛϕpX̄ q and MϕpX̄ q are called the abstract Lorentz space and abstract Marcin-
kiewicz space respectively23, and the functors Λϕ and Mϕ are known as the lower and upper

23. That these define norms is obvious enough except perhaps for the convexity of } ¨ }ΛϕpX̄ q. Since ϕ is
positively homogeneous and thus obviously } ¨ }ΛϕpX̄ q is, it suffices to demonstrate subadditivity, namely

that (writing Z “ X ` Y ),

}X}ΛϕpX̄ q ` }Y }ΛϕpX̄ q ě }Z}ΛϕpX̄ q

ô inf
ř

k1
Xk1

“X

ÿ

k1

ϕp}Xk1}X0 , }Xk1}X1q ` inf
ř

k2
Yk2

“Y

ÿ

k2

ϕp}Yk2}X0 , }Yk2}X1q ě inf
ř

k Zk“Z

ÿ

k

ϕp}Zk}X0 , }Zk}X1q

ô inf
ř

k1
Xk1

“X
ř

k2
Yk2

“Y

˜

ÿ

k1

ϕp}Xk1}X0 , }Xk1}X1q `
ÿ

k2

ϕp}Yk2}X0 , }Yk2}X1q

¸

ě inf
ř

k Zk“Z

ÿ

k

ϕp}Zk}X0 , }Zk}X1q,

which holds since
ř

k1
Xk1 `

ř

k2
Yk2 “ X ` Y “ Z and the infimum on the left is taken over a smaller

set since the Xk1s have to sum to X and separately the Yk2s have to sum to Y , but on the right this
choice is also available plus additional ones where no subset of the Zk are constrained to sum to X, and
thus its infimum is less than or equal to that on the left.
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extensions of the functor Fϕ defined on pαR, βRq in terms of the fundamental function
ϕ P P because they bound the behaviour of interpolation functors with a given fundamental
function:

Lemma 44. (Brudnyi et al., 1986, Section 1.17). X̄ “ pX0,X1q be an arbitrary pair of
Banach spaces. Let X be a normal interpolation space between X0 and X1, and let F be
some normalised interpolation functor for which F pX̄ q “ X with fundamental function ϕ.
Then

ΛϕpX̄ q
1

ãÑ X 1
ãÑMϕpX̄ q,

and thus
}X}MϕpX̄ q ď }X}X ď }X}ΛϕpX̄ q.

Recall that the Lorentz space Λϕ is always positive translation equivariant (PTE)
(Example 2). We might thus conjecture that the interpolation functor Λϕ : B̄Ñ B would
preserve PTE; indeed that is the case as the lemma below shows.

Lemma 45. Suppose X0,X1 are PTE, and ϕ P Q, then ΛϕpX0,X1q is PTE.

The proof is in Appendix A.6.1. Lemma 41 implies that if ϕ is the fundamental function
of X , an intermediate space between X0 and X1, we have for all t ě 0,

ϕ0ptq ^ ϕ1ptq ď ϕptq ď ϕ0ptq _ ϕ1ptq.

Observe that if ϕ0 “ ϕ1, this means if X is an intermediate space between X0 and X1 with
fundamental function ϕ, then ϕ0 ď ϕ ď ϕ0 and hence ϕ “ ϕ0. We formalise this observation
as follows.

Lemma 46. Suppose X̄ “ pX0,X1q is an arbitrary pair of ri spaces, that X0 and X1 have
the same fundamental function ϕ, and that X is an intermediate space of X̄ with feasible

embedding constant 1: X0
1

ãÑ X 1
ãÑ X1. Then ϕX “ ϕ.

Proof The embedding ensures that for all X P X , we have }X}X1 ď }X}X ď }X}X0 and
thus choosing X “ χr0,ts for some arbitrary t ą 0 we obtain

ϕptq “ }χr0,ts}X1 ď }χr0,ts}X “ ϕX ptq ď }χr0,ts}X0 “ ϕptq.

Thus ϕX ptq “ ϕptq for all t ą 0.

This illustrates the significance of the fundamental function and justifies its name: interpola-
tion between two spaces with the same fundamental function does not change the fundamental
function. Thus the fundamental function provides a natural stratification of all possible ri
spaces and their associated norms. When the fundamental functions of X0 and X1 differ,
Lemma 41 shows a simple functional dependence of the fundamental functions of ΣpX0,X1q

and ∆pX0,X1q on the fundamental functions of X0 and X1. We now develop a general result
along these lines that appears to be new. We need some additional lemmas first.

Lemma 47. Suppose X̄ “ pX0,X1q is an arbitrary pair of ri spaces over a measure space
pΩ, µq, with corresponding fundamental functions ϕ0 and ϕ1. Let ϕ̄ P P. Then the funda-
mental function of Mϕ̄pX̄ q satisfies

ϕMϕ̄pX̄ qptq “ ϕ̄pϕ0ptq, ϕ1ptqq, t ą 0.

48



Risk Measures and Upper Probabilities: Coherence and Stratification

The proof is in Appendix A.6.2. We have an analogous (one-sided) result for ΛϕpX̄ q:

Lemma 48. Suppose X̄ “ pX0,X1q is an arbitrary pair of ri spaces with corresponding
fundamental functions ϕ0 and ϕ1. Let ϕ̄ P P. Then the fundamental function of Λϕ̄pX̄ q
satisfies

ϕΛϕ̄pX̄ qptq ď ϕ̄pϕ0ptq, ϕ1ptqq, t ą 0.

The proof is in Appendix A.6.3. Lemmas 43, 47, and 48 combined with (44) from
Lemma 44 imply that for all t ą 0,

ϕ̄pϕ0ptq, ϕ1ptqq “ ϕMϕ̄pX̄ q “ }χEt}Mϕ̄pX̄ q ď }χEt}X “ ϕΛϕ̄pX̄ qptq ď }χEt}Λϕ̄pX̄ q ď ϕ̄pϕ0ptq, ϕ1ptqq,

and thus by Lemma 46, we have for all t ą 0,

ϕΛϕ̄pX̄ qptq “ ϕ̄pϕ0ptq, ϕ1ptqq.

We have thus proved:

Theorem 49. Suppose pX0,X1q is an arbitrary pair of ri spaces and that the fundamental
functions of X0 and X1 are ϕ0 and ϕ1 respectively. Suppose F is a normalized interpolation
functor with fundamental function ϕF . Then F pX0,X1q is an intermediate space for pX0,X1q

and its fundamental function satisfies

ϕF pX0,X1q “ ϕF pϕ0, ϕ1q.

5.4 Implications and Examples

The “fundamental function” ϕX of an ri space X is justified in name from a mathematical
viewpoint, as a risk aversion profile, and from an ethical perspective. Mathematically, we
have seen that combining two ri norms with the same fundamental function will always
result in another norm with the same fundamental function. Thus the function ϕX really
does pick out something fundamental. From the risk aversion perspective, it captures the
broad brush features of a decision maker’s risk aversion. From an ethical perspective, if we
conceive of our function X : ΩÑ R as representing some ‘bad’ over a population of people
Ω, then the fundamental function t ÞÑ ϕptq of a norm } ¨ } captures a coarse aspect of the
ethical implications of our choice: it tells us what value we ascribe to assigning a bad of 1 to
fraction t of the population and a no bad to the rest. (Recall we are consistently adopting
the loss perspective in this paper, where larger values are worse.) The extreme cases of
} ¨ }L1 and } ¨ }L8 then correspond to the ethical choices of John Harsanyi and John Rawls
respectively; see (Williamson and Menon, 2019) for an elaboration of this.

Since the choice of fundamental function is a personal choice (risk aversion, or ethical),
different designers will likely make different choices. This begs the question of how a
compromise between different choices can be made. An obvious approach is to interpolate
between the two choices using an exact interpolation functor. But which functor? The
results and arguments above show that the choice of functor has just as wide a scope as
the original choice of ri norm. Essentially, the choice in both cases is as large as the set of
quasiconcave functions. Thus there is no easy mechanical method to achieve a compromise
between two distinct ethical positions (as encoded by two fundamental functions ϕ1 and ϕ2)
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because the result of interpolation between the two norms is dependent upon the choice of
the interpolation functor, which is stratified by precisely the same class of functions as the
original norms24.

This perspective is further strengthened by noting the fact that every ri space is an
exact interpolation space between L1 and L8 (Bennett and Sharpley, 1988, Theorem III.2.2).
Notwithstanding the previous somewhat negative conclusion, the use of interpolation functors
to create new ri norms is valuable from a practical and computational perspective in offering
a wider choice of explicitly parametrised and easily computable norms. Some examples of
special cases of Theorem 49 are given below.

Example 4. When ϕX0 “ ϕX1 , Theorem 49 implies ϕX ptq “ ϕpϕX1ptq, ϕX1ptqq “ ϕX1ptq
using (5.1) and the fact that ϕp1, 1q “ 1 since F is a normalised interpolation functor. This
agrees with the observation made earlier following (5.3).

Example 5. Consider two interpolation functors from Lemma 41: ∆pX0,X1q “ X0XX1 and
ΣpX0,X1q “ X0 ` X1. For α, β ą 0, we have }X}∆pαR,βRq “ α|X| _ β|X| “ pα_ βq|X| and
thus ϕ∆pα, βq “ α_β. Similarly, we have }X}ΣpαR,βRq “ inftα|X0| `β|X1| : X0`X1 “ Xu.
The infimum is achieved by choosing X0 “ X and X1 “ 0 when α ď β and X0 “ 0 and
X1 “ X when α ě β, in which case }X}Σpα,βq “ pα ^ βq|X| and thus ϕΣpα, βq “ α ^ β.
Both cases correspond to the elementary results of Lemma 41.

Example 6. Simple mean: } ¨ }X0 ˜̀X1
:“ 1

2p} ¨ }X0 ` } ¨ }X1q. It is immediate that X0 ˜̀X1 is
rearrangement invariant if both X0 and X1 are. We have }f}X0`X1 ď }f}X0 ˜̀X1

ď }f}X0XX1 ,
where the first inequality follows from the fact that the formula for the norm }f}X0`X1 takes
the infimum over all additive decompositions f “ f0 ` f1 but that for }f}X0 ˜̀X1

chooses
f1 “ f2 “ f{2. The second inequality is a consequence of the mean of two numbers being
no greater than their maximum. Thus X0 ˜̀X1 is an intermediate space between X0 and X1.
It is immediate then that for all t ě 0, we have

ϕX0 ˜̀X1
ptq “

1

2
pϕX0ptq ` ϕX1ptqq .

Example 7. More generally, let ρ be a norm on R2 normalised such that ρp1, 1q “ 1, and
define } ¨ }ρpX0,X1q :“ ρp} ¨ }X0 , } ¨ }X1q. Obviously ρpX0,X1q is rearrangement invariant if both
X0 and X1 are. It is standard that α` β ď ρpα, βq ď α_ β and it immediately follows from
the definition that for all t ě 0,

ϕρpX0,X1qptq “ ρpϕ0ptq, ϕ1ptqq.

Example 8. A special case of theorem 49 (albeit stated for the interpolation of N distinct ri
spaces, and not just 2) is presented by Cobos and Fernández-Cabrera (2017), who considered

24. The perspective developed here can be compared to that of Semmes, who considered geodesics in
the Banach space of all Banach spaces (Semmes, 1988) and argued that we should not restrict our
thinking about interpolation between normed spaces to the notion of interpolation of operators. In
finite dimensional spaces, the question of interpolation can be posed in terms of constructing families
of centre symmetric convex bodies (i.e. norm balls) “in-between” two given norm balls. Similarly,
the “interpolation” between two or more proper losses is essentially controlled by another proper loss
(Williamson and Cranko, 2023).

50



Risk Measures and Upper Probabilities: Coherence and Stratification

a particular family of interpolation functors F θ “of exponent θ”, θ P p0, 1q. They showed
that for all t ě 0,

ϕF θpX0,X1qptq “ ϕ1´θ
X0
ptqϕθX1

ptq,

which can be seen to be of the form of (49). An analogous result is shown in (Fernández-
Cabrera, 2017) for a related but more complex interpolation method. A related result (for
“envelopes,” which are inversely related to fundamental functions (Haroske, 2006, section
3.3)) was presented in Haroske (2007).

Example 9. Consider two Lorentz norms Λϕ0 and Λϕ1 and an arbitrary interpolation
functor F . A natural question to ask is when (if ever) is F pΛϕ0 ,Λϕ1q a Lorentz space Λϕ,
and when it is, is there some nice formula expressing ϕ “ ψpϕ0, ϕ1q? We conjecture that
when F corresponds to the abstract Lorentz norm this is true.

We do know that if F “ Λϕ̄p¨, ¨q then ϕF “ ϕ̄, since Λϕ̄ is the extension of the functor
defined on one dimensional spaces with fundamental function ϕ̄. We also know by (5.3) that
ϕΛϕ̄pX0,X1q “ ϕ̄pϕ0, ϕ1q, where ϕ0 “ ϕX0 and ϕ1 “ ϕX1 . By 9, we thus have for all X,

}X}Λϕ̄pX0,X1q ď }X}Λϕ̄pϕ0,ϕ1q
.

We conjecture, but do not know, that the above inequality is in fact an equality.

Regardless of whether our conjecture is true, it does suggest a simple means of interpo-
lating between a pair of Lorentz spaces (i.e. spectral risk measures) Λϕ0 and Λϕ1 by choosing

ψ P Q and letting ϕ̄ “ ψ̆ and then constructing the space Λϕ̄pϕ0,ϕ1q — all one needs to do is

to combine the fundamental functions ϕ0 and ϕ1 via ϕptq “ ϕ̄pϕ0ptq, ϕ1ptqq. In combining
two spectral risk measures in this fashion, one may wish to ensure that ϕ̄ is symmetric
(for equity reasons, so that the order in which the spaces are provided will not affect the
outcome). Fortunately this has a simple characterisation. In order that ψ̆px, yq “ ψ̆py, xq
for all x, y ą 0, it is necessary and sufficient that ψ˛ptq “ ψptq for all t P p0, 1s, where
ψ˛ptq :“ tψp1{tq is the Csiszár conjugate of ψ. One can thus readily construct symmetric
ϕ̄ “ ψ̆ by choosing an arbitrary quasiconcave function ψ on r0, 1s and extending it to r1,8q
via ψptq “ tψp1{tq for t ě 1, the resulting ψ is then guaranteed to satisfy the Csiszár
conjugate condition and thus the induced perspective ψ̆ is guaranteed symmetric.

Observe that in contrast to the method in Example 7, the present method enables the
construction of an interpolated norm } ¨ } from } ¨ }X0 and } ¨ }X1 that can give finite values to
}X} even when one of the values of }X}X0 or }X}X1 is infinite (because of the tail behaviour
of X).

Interpolation of certain (classical) Lorentz spaces was considered in (Cobos and Mart́ın,
2005, Section 5) and an analogous question for Marcinkiewicz spaces in (Fernández-Cabrera,
2017, Section 5), however the form of results is different to those which we sought here.

Example 10. In order to provide some insight into (49), especially for its use in Example
9, in Figure 4 we illustrate the interpolation between two given fundamental functions,
and show how the choice of the functor (in particular its fundamental function) affects the
interpolation.
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Figure 4: Illustration of the interpolation between two quasiconcave fundamental functions.
The graph shows ϕredptq “ t1{4 (in red) and ϕblueptq “ 3t^ 1 (in blue). The grey
curves are obtained via ϕptq “ ϕ̆apϕredptq, ϕblueptqq where ϕ̆a is the perspective of
ϕaptq “ t1{a, with a “ α1{4 and α ranges from 2 to 400 in steps of 10. Small values
of a result in ϕ being closer to ϕred and larger values result in ϕa being closer to
ϕblue. Observe that at the three points where ϕred and ϕblue agree, so too does ϕa.

6 Experiments

Coherent risk measures have already been successfully used in machine learning. For instance,
Williamson and Menon (2019) have employed them in a fairness context and demonstrated
that using CVarα on subgroup losses leads to them being more commensurate. In the context
of machine learning, CVarα has also been reinvented as “average top-k loss” (Fan et al.,
2017). Curi et al. (2020) have proposed an adaptive sampling method for optimizing CVarα
in a batch setting. Takeda and Sugiyama (2008) have established a close relation of CVarα
and the ν-support vector machine. In reinforcement learning, coherent risk measures have
been used e.g. by Singh et al. (2020); Urṕı et al. (2021); Dabney et al. (2018); Tamar et al.
(2015); Vijayan and Prashanth (2021). Furthermore, distributionally robust optimization
approaches based on f -divergence or Wasserstein ambiguity sets, which have been used
extensively in machine learning, are subsumed in the framework of coherent risk measures
(Rahimian and Mehrotra, 2019).

In our experiments, we aim to illustrate how spectral risk measures can lead to more
robust solutions and attenuate inequality in the loss distribution. We focus on two kinds of
problems: first, a coherent risk measure can act directly on the individual losses. We then
have the risk minimization problem

argmin
f

RpℓpfpXq, Y qq

for a risk measure R, a function f from some hypothesis space, a loss function ℓ, input X
and ground truth labels Y . For its empirical counterpart, we use the empirical distribution
of training losses. The risk measure R then aggregates the observed losses, where each
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datum has a corresponding individual loss. Here, replacing the expectation E by a coherent
risk measure R, in particular a spectral risk measure, has the effect of emphasizing large
individual losses. As a consequence, a distribution of individual losses with less extreme
losses (tail risk) will be preferred. There appears to be a fundamental trade-off between
optimizing average loss versus reducing inequality. The precise nature of this trade-off is
encoded in the choice of the fundamental function. In general, this setup is attractive in
situations where relevant subgroups are not known or when a regulating agency disallows
making decisions about people based on divisions into subgroups.

Second, we can apply coherent risk measures on subgroup losses. In a fairness context,
we may wish to divide our data into ethically salient subgroups (e.g. based on gender or
race) and then ask for commensurate subgroup losses. In a technical context, for instance in
multiclass classification, we may wish to achieve good performance not only on average, but
also good performance for underrepresented classes in the training data. This is especially
relevant if the distribution of the number of instances per class is heavy-tailed, as for example
in natural species classification (Van Horn et al., 2018).

Typically, the performance of a machine learning system is summarized by the average
error on a test set. However, we think that this is a poor way of describing its performance,
as it neglects the tail risk. In some settings, heavy-tailed risk must be avoided. This raises
the question of a better performance representation which is sensitive to tail risks. We put
forward two proposals.

6.1 CVar Curves

In light of the Kusuoka representation, the family CVarα is the fundamental building block
of all coherent risk measures. In a sense, CVarα can be seen as measuring tail risks in
purest form, as it merely integrates the 1´ α tail. We also have the property (Bennett and
Sharpley, 1988, p. 61) which is clear from the Kusuoka representation:

p@α P r0, 1q : CVarαpXq ď CVarαpY qq ñ RpXq ď RpY q (18)

for any ri function norm R and X,Y PM`. Interestingly, the condition that @α P r0, 1q :
CVarαpXq ď CVarαpY q is equivalent to saying that X is dominated by Y in the second
stochastic order (Ding, 2023; Bäuerle and Müller, 2006). Then (18) states that any ri
function norm is consistent with the second stochastic order.25

Due to this characterization, we propose to measure the performance by CVarα loss
curves. The x-axis of this visualization corresponds to α P r0, 1q and the y-axis shows
CVarαpXq for some X. As an example, we draw 500 samples from a standard normal
distribution and a t-distribution with 2 degrees of freedom. We keep only the nonnegative
samples and interpret them as losses. The empirical CVarα curves are shown in Figure 5.
Standard risk minimization takes only the value CV arα“0 into account, whereas we assert
that the whole curve is relevant for measuring the performance. In theory, the outcomes are
unbounded for both distributions. In practice, however, we only ever observe finite values
which enables plotting the CVarα curves from samples. Another possibility is to introduce a
cutoff value, so only values until for example α “ 0.99 are plotted.

25. Note that the assumption that the measure space is resonant is crucial here (Bennett and Sharpley, 1988,
p. 61); for a thorough discussion regarding atomic probability spaces see (Bäuerle and Müller, 2006).
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Figure 5: Left: CVarα curves for 500 randomly drawn samples from a standard normal
and a t-distribution with 2 degrees of freedom, respectively. Only nonnegative
samples were kept. Both have approximately the same mean CV arα“0, but the
t-distribution has substantially more weight in the tails. Right: empirical Lorenz
curves for the same samples. Here, the curve of the standard normal is closer to
the diagonal. The diagonal corresponds to perfect equality. The t-distribution
exhibits higher inequality as compared to the standard normal.

6.2 Lorenz Curves

A second possibility is to plot Lorenz curves, which are widely used in economics to visualize
inequality. The Lorenz curve of a random variable X with quantiles F´1

X is defined as
(Gastwirth, 1971):

LXpqq :“
1

ErXs

ż q

0
F´1
X ppq dp, 0 ă q ď 1; LXp0q “ 0.

The empirical counterpart is defined in the obvious manner. For perfect equality, i.e.
Xpωq “ c @ω P Ω, the Lorenz curve is the diagonal. Intuitively, Lpqq corresponds to the
share of total loss which the individuals with the lowest q-percent of losses have. For an
example, look at Figure 5. At q “ 0.9, the empirical Lorenz curve of the t-distribution lies
substantially below the curve of the standard normal. This means that the bottom 90%
of the t-distribution, i.e. the individuals with the 90% smallest losses, have a smaller share
of the total loss than for the standard normal. This implies that for the t-distribution, a
larger share of losses is in the 10% tail. Hence the t-distribution has higher tail risk; given
the same mean, a risk-averse decision maker would favor the standard normal.

One advantage of Lorenz curves is that even for unbounded random variables X, we can
plot the full theoretical Lorenz curve, where CVarα curves approach infinity. On the other
hand, we find that in the context of losses, the interpretation is somewhat unintuitive. In
economics, it is undesirable to belong to the bottom; in the context of losses, the bottom
is constituted by the well-off. Another disadvantage is that absolute levels of loss are
disregarded in this representation, whereas the CVarα curves also give cardinal information.
Therefore we find the CVarα curves more useful to express the tradeoff between controlling
average risk and tail risk.

Like the CVarα curve, the Lorenz curve is also tightly linked to the second stochastic
order (Muliere and Scarsini, 1989): given X,Y P M with ErXs “ ErY s, it is easy to see
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that:
p@α P r0, 1q : CVarαpXq ě CVarαpY qq ô p@q P p0, 1s : LXpqq ď LY pqqq .

For a visualization, see Figure 5. To concisely summarize performance across multiple runs of
an experiment, we suggest using the Gini coefficient, a single-number measure of inequality.
The Gini coefficient of a Lorenz curve is defined as the ratio of the area between the diagonal
(perfect equality) and the Lorenz curve over the total area under the diagonal. Therefore, if
a distribution is perfectly equal, the Gini coefficient is 0; for a perfectly unequal distribution,
where a single ω receives the total loss, it is 1.

6.3 Spectral Risk Measures on Individual Losses

Throughout, we focus on spectral risk measures in our experiments. First, we apply them to
individual losses, i.e. subgroups of size 1. This setup is useful when we do not know relevant
classes or care about individual loss in general. Consider, for instance, a self-driving car,
which was mostly trained in snow-free environments. When the car is then deployed in a
snowy environment, for which training data is scarce, its performance may be diminished.
Since it can be a priori hard to partition data into fixed classes, we may employ a risk
measure on the individual losses to account for risk aversion. Thus difficult training examples
are emphasized. We illustrate this with a simple variant of principal component analysis
(PCA), which could of course be replaced with a more sophisticated non-linear method.
Since we focus on the risk measures, not the models themselves, we use simple methods for
better interpretability of our results.

6.3.1 Data

We use the MNIST26 and the adult27 data set. MNIST is a standard classification task. The
problem is typically to classify grayscale images of handwritten digits, with 28ˆ 28 pixels,
into the classes 0-9. However, we view it as a dimensionality reduction task, where the goal
is to compress the images. MNIST has 60,000 training images and 10,000 test images.

The adult data set contains census data of 48,842 persons with 14 attributes and a
binary target attribute, which specifies whether a person earns more or less than 50,000$
per year. We disregard the binary target attribute and use the other 14 attributes.

To preprocess both MNIST and adult, we apply a MinMaxScaler with the feature range
r´1, 1s. We split the data into training and test sets. For MNIST, we use 6000 training
images and test on the remaining 54,000 images. For adult we use 10,000 data points as
the training set and the remaining 38,842 as the test set.

6.3.2 Method

Standard PCA can be solved using singular value decomposition. Recall that PCA minimizes
the least squares reconstruction error. Assume our n data points xi P Rm with m features
are centered, i.e. features have zero mean. Then the PCA objective is

min
Vk

n
ÿ

i“1

}xi ´ V
⊺
k Vkxi}

2
L2 so that VkV

⊺
k “ Ik

26. http://yann.lecun.com/exdb/mnist/
27. https://archive.ics.uci.edu/ml/datasets/Adult
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where Vk P Rkˆm and Ik is the identity matrix of size k. In contrast to the typical formulation
in terms of an eigendecomposition or singular value decomposition, this formulation makes
the individual losses explicit. Instead of only the expectation, we use different risk measures
on the empirical distribution of reconstruction errors. Hence we obtain a variant of PCA
(precisely, of a linear autoencoder) which is sensitive to large individual losses. We replace
the objective by:

min
Vk

R
`

}X ´ V ⊺
k VkX}

2
L2

˘

for a risk measure R and where the distribution of the random loss variable follows the
empirical distribution P̂n. We dropped the orthonormality constraint, which does not
essentially alter the solution (cf. Plaut (2018)). We label this variant of PCA, where risk
measures are employed, as PCA*.

We use the pytorch library to implement our experiments and the Adam optimizer with a
learning rate of 0.001. We initialize the matrix Vk with the classical PCA solution, obtained
from sklearn.decomposition.PCA. For MNIST we use k “ 50 components and for adult
k “ 5. We train for 2000 epochs with a learning rate of 0.001. To avoid additional challenges
from the stochasticity of mini-batches (see Section 6.5), we use the full data for each epoch.
We repeat the experiments over 25 independent runs with random training and test splits.

6.3.3 Risk Measures

We compare the results when using CVarα, where α P t0.0, 0.2, 0.4, 0.6, 0.8u. Recall that
CVar0.0 “ E. As α increases, sensitivity to tail risk increases. Moreover, we compare
variations of the risk measure for integrated risk management (RIMα,β), where α is fixed at
0.7 and β P t0.2, .., 0.8, 1.0u. Recall that

RIMα,βpXq :“ βErXs ` p1´ βqCVarαpXq

Hence β “ 1 yields the expectation, whereas β “ 0 would yield CVarα“0.7. As β increases,
sensitivity to tail risk decreases. In pytorch, this risk measure can be easily implemented
by combining the topk and mean function, incurring virtually no computational overhead.

6.3.4 Results

We here show CVarα curves and Lorenz curves for the test losses on MNIST under the different
risk measures. The curves are averaged over the independent runs. The results on adult

are in Appendix C. In Appendix C, we also show boxplots of the Gini coefficients over
the 25 independent runs. From the CVarα curves, we observe that employing CVarα or
RIMα,β as a risk measure leads to lower tail risks as compared to the expectation. For
moderate choices of α and β, we find that performance on average is hardly diminished,
but there is substantial gain in tail performance. When choosing a high α such as α “ 0.8,
however, we clearly incur a cost in terms of average performance. From the Lorenz curves
and Gini coefficient boxplots we observe that the expectation leads to the highest inequality
of loss. As expected, increasing α for CVarα and decreasing β for RIMα,β (with fixed α)
gradually achieves a more equal distribution. This is most clearly visible in the Gini boxplots
(Appendix C).
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Figure 6: PCA* results on MNIST. Top row: CVarα curves of test losses for CVarα risk
measures (left) with different α and RIMs risk measures (right) with α “ 0.7 and
different β, indicated by subscript. For better visibility of the differences, we cut
off α at 0.98. Bottom row: Lorenz curves of test losses for CVarα (left) and RIMs
(right) with α “ 0.7 and different β.

6.4 Spectral Risk Measures on Subgroup Losses

In this experiment, we use spectral risk measures on the aggregated losses of pre-specified
subgroups. Denote the random variable which indicates the subgroup belonging as S. The
objective in standard expected risk minimization can be written in a two-stage manner as

ErℓpfpXq, Y qs “ ES
“

EX,Y |SrℓpfpXq, Y qs
‰

using a conditional expectation. Our approach is to replace the outer expectation with a
risk measure R, as in Williamson and Menon (2019). Within each subgroup, individuals
are then treated as fungible and are identified with the subgroup aggregate, since the risk
neutral expectation is used. Yet differences between subgroups are considered and punished
in a risk-averse fashion, thereby favoring less spread in the distribution of subgroup losses.
In our experiments, we employ the respective empirical versions of R and E, i.e. with respect
to the empirical distribution.

6.4.1 Data

In this experiment we perform multi-class classification on MNIST (see Section 6.3.1) and
linear regression with the loss ℓ1px, yq “ |x ´ y| on winequality. On MNIST, we create
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Fröhlich and Williamson

imbalance in the training data to simulate a setting of label shift. We use the following
number of random samples (without replacement) for a class with index s P r0, 9s:

Npsq “ 5000 ¨ exp

ˆ

´2s

10

˙

where we round to the nearest integer. The resulting distribution of class frequencies has a
moderate imbalance, with frequencies t5000, 4098, 3351, 2744, 2246, 1839, 1505, 1232, 1009, 826u,
see Figure 11 in Appendix C. In the test data, we leave frequencies unchanged, so that the
test images are approximately balanced with regard to class.

The task in winequality is to predict the perceived quality of a wine (on a numeric
scale with integers from 3 to 9) by physiochemical properties (e.g. fixed acidity and alcohol
content). In total, there are 11 input attributes. Here, we consider the two subgroups of
red and white wine. In contrast to MNIST, we here purposefully rebalance the data set. The
frequency of red and white examples is then the same. This experiment serves to illustrate
that balancing data does not necessarily solve the problem of disparate subgroup losses.
We use 80% of the red wines (1279 examples) in the training set and correspondingly, 1279
examples of white wine. The test set consists of 320 red wines and 3619 white wines. We
preprocess both MNIST and winequality using a MinMaxScaler as in Section 6.3.1.

6.4.2 Method

For MNIST, we use a simple multiclass logistic regression, i.e. a cross entropy loss after a
single linear layer. We pretrain for 2000 epochs using the expectation as the risk measure
and the Adam optimizer with a learning rate of 0.01. Using this initialization, we then train
for each risk measure for 5000 epochs with a learning rate of 0.001.

For winequality we use a simple feedforward network (one hidden layer of 24 units
followed by a nonlinear ReLu activation) with the ℓ1 loss. We train for 3000 epochs using
the Adam optimizer with a learning rate of 0.01. Again, we use the full data in each epoch to
avoid additional challenges due to stochastic mini-batches (see Section 6.5). We compare
the same risk measures as in the first experiment (Section 6.3.3). For both data sets we
conduct 50 independent runs. On MNIST, for each of these runs we randomly shuffle the
assignment of the imbalanced frequencies to the classes.

6.4.3 Results

For MNIST, we report the average subgroup test accuracies and Gini coefficients of subgroup
accuracies in Figure 7. Due to the data set shift setting, we find that the risk measures even
lead to better average subgroup performance on the test set. Furthermore, as is visible from
the Gini coefficient boxplot, the inequality of subgroup accuracies is reduced.

For winequality we show the average of the two subgroup means (red, white) and the
absolute difference of the subgroup error means across the 50 runs (Figure 8). In general,
predictions for white wines incur a higher error than for red wines on average, even though
the data is balanced. In this setting, the risk measures yield slightly higher errors on average.
However, they reduce the difference between the two subgroup means.
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Figure 7: Results of logistic regression on MNIST across 50 independent runs. Left: average
subgroup accuracies. Right: Gini coefficients of subgroup accuracies. We abbrevi-
ate CVarα“0.f as C.f and RIMα“0.7,β“0.f as R.f .
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Figure 8: Results of linear regression on winequality across 50 independent runs. Left:
averages of the two subgroup error means on test data. Right: subgroup absolute
error differences on test data across 50 independent runs. We abbreviate CVarα“0.f

as C.f and RIMα“0.7,β“0.f as R.f .

6.5 Discussion

We have seen that simple spectral risk measures can substantially improve tail performance
and hence reduce inequality in the loss distribution. On the other hand, there is a natural
trade-off between average and tail performance. In many settings, accounting for tail risk
will imply some reduction in average performance. However, this is specific to the train-test
data relationship. In the label shift setting on MNIST, we have seen that the increase in
robustness by using a spectral risk measure can even lead to better average performance
on the test set. Emphasizing “difficult” training examples (associated with high loss) in
the optimization process guards against possible data set shift scenarios. For a spectral
risk measure, the exact nature of this trade-off is directly encoded in the choice of the
fundamental function.
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However, there is yet another trade-off: that between robustness and estimatibility. We
conjecture that it generally holds that higher tail sensitivity of a risk measure is accompanied
with higher difficulty in estimating it from empirical samples. For CVarα this is intuitive,
since only a 1´α fraction of the sample is actually used in the estimation. How this trade-off
depends exactly on the fundamental function is, to our knowledge, as of now unclear. Since
estimating tail-sensitive risk measures may lead to highly variable estimates, using risk
measures in a mini-batch setting is problematic; but see Curi et al. (2020) for an approach
to optimize CVarα in a batch setting. See also the recent review by Laguel et al. (2021) on
the role of CVarα in machine learning. The use of other spectral risk measures in practice,
which do not admit a simple representation as CVarα or RIMα,β , also raises challenges. To
tackle this, Mehta et al. (2023) have recently proposed a practical stochastic gradient-based
method for optimizing spectral risk measures and f -divergence risk measures. Leqi et al.
(2022) have obtained uniform convergence results that justify the optimization of a wide
class of risk measures (including the spectrals) on the empirical distribution.

7 Conclusion

In this paper, we have questioned the assumption that the expectation is the only sensible
functional to aggregate losses. Instead, we have considered a wide family of possible
replacements, the coherent risk measures. These can be used to encode robustness, risk
aversion and even fairness. The choice of risk measure is an additional choice to make for
the ML engineer and it is orthogonal to the choice of loss function. Therefore we have aimed
to stratify the space of possible risk measures. The fundamental function provides such a
natural stratification. Depending on the application, it can be interpreted as an imprecise
probability, a risk aversion profile or an inequality aversion profile. We have also seen that
the fundamental function plays a major role in the combination of different risk measures
which further justifies the appellation “fundamental.”

Specifically, we have focused on the subclass of spectral risk measures which, as we have
shown, are extremal risk measures with a given fundamental function, and are particularly
convenient to work with. These occupy a prime position in the theory of coherent risk
measures, can be motivated in different fashions and have been rediscovered multiple times.
We assert that this convergence signals that they form a well-founded and important class.
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Appendix A. Proofs

A.1 Proof of Theorem 5

Proof (Gzyl and Mayoral, 2008; Ridaoui and Grabisch, 2016):

RϕpXq “

ż 0

´8

rϕpSXpxqq ´ 1s dx`

ż 8

0
ϕ pSXpxqq dx (19)

“

ż 0

´8

rϕp1´ FXpxqq ´ 1s dx`

ż 8

0
ϕ p1´ FXpxqq dx

“t“FXpxq

ż FXp0q

0
rϕp1´ tq ´ 1s pF´1

X q1ptq dt`

ż 1

FXp0q

ϕp1´ tqpF´1
X q1ptq dt

“

ż FXp0q

0
ϕ1p1´ tqF´1

X ptq dt`

ż 1

FXp0q

ϕ1p1´ tqF´1
X ptq dt (20)

“

ż 1

0
F´1
X p1´ tqϕ1ptq dt “ RpwqpXq,

where the step (20) comes from partial integration and FX is assumed to be continuous.
Hence we have the equivalence ϕ1ptq “ wp1´tq, where w is the spectral weighting function.

A.2 Proof of Theorem 11

Proof First observe that it is always true that ErY s ď R1pY q, due to the L1 norm being
the smallest of all ri norms (recall that we assume RpχΩq “ 1, implying also R1pχΩq “ 1 due
to the associate relationship). Hence we never have any ErY s ą 1 in the unit ball of the
associate norm. We label the logical proposition of allowing a representation in the form
(13) as TErep, that is, the possibility of a representation of the form:

RpXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω : ErY s “ R1pY q “ 1, Y PM`

*

.

That TErep implies PTE is trivial:

RpX ` cq “ sup

"
ż 1

0
pX ` cq˚pωqY ˚pωq dω : ErY s “ R1pY q “ 1, Y PM`

*

“ sup

"
ż 1

0
X˚pωqY ˚pωq dω ` c

ż 1

0
Y ˚pωq dω : ErY s “ R1pY q “ 1, Y PM`

*

“ RpXq ` c,

where we used the fact that pX ` cq˚ “ X˚ ` c holds even if c ă 0 as long as X ě 0 and
X ` c ě 0. The other direction is more involved. We show PTE ñ TErep by showing
␣TErepñ ␣PTE. To show this, we need a technical lemma. Define the statement A as:
DZ PM`, Z ą ϵ, for some ϵ ą 0, so that:

RpZq “ sup

"
ż 1

0
Z˚pωqY ˚pωq dω : ErY s ă 1, R1pY q ď 1, Y PM`

*

, (21)
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that is, the supremum is not decreased when taking it only over the subset tErY s ă
1, R1pY q ď 1u. However, the supremum need not be actually attained.

Lemma 50. ␣A^ PTEñ TErep, which is logically equivalent to ␣TErepñ A_␣PTE.

Proof So now assume ␣A^ PTE. This means that R is positive translation equivariant
and that @Z PM`, Z ą ϵ, for some ϵ ą 0, it holds

RpZq “ sup

"
ż 1

0
Z˚pωqY ˚pωq dω : ErY s “ R1pY q “ 1, Y PM`

*

. (22)

To see that this is indeed the negation of A, observe that ␣A means @Z PM`, Z ą ϵ, for
some ϵ ą 0

RpZq ą sup

"
ż 1

0
Z˚pωqY ˚pωq dω : ErY s ă 1, R1pY q ď 1, Y PM`

*

. (23)

Negating the equality in (21) here must yield “strictly greater”, since the set on the
righthand side in (23) is a subset of the full envelope tY : R1pY q ď 1u, which is implicit
in the lefthand side of (23). Now we continue to analyze the statement (23). Formally,
we can write it as supC fpY q ą supCzB fpY q, where B Ď C. Here, C :“ tY : R1pY q ď 1u

and B :“ tY : ErY s “ R1pY q “ 1u. The function fpY q :“
ş1
0 Z

˚pωqY ˚pωq dω runs over
the respective set in the subscript. But then supC fpY q “ supB fpY q holds, because
supC fpY q “ suppCzBqYB fpY q “ maxpsupCzB fpY q, supB fpY qq “ supB fpY q, where we
used that by assumption supC fpY q ą supCzB fpY q. It is legitimate to “decompose” the
supremum over the union into a maximum over the two suprema, cf. for instance (Hiriart-
Urruty and Lemaréchal, 2004, p. 3). We conclude therefore that (22) is the negation of A.
Intuitively, ␣A is a slightly weakened form of TErep. But we now show that when it is
combined with PTE, we can strengthen it and obtain TErep.

Then for any X PM` (for brevity, we drop explicitly writing Y PM`):

RpXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω : R1pY q ď 1

*

(general representation for any R)

ñ @ϵ ą 0 : RpXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω ` ϵ

ż 1

0
Y ˚pωq dω ´ ϵ

ż 1

0
Y ˚pωq dω : R1pY q ď 1

*

,

from which it follows due to PTE that:

@ϵ ą 0 : RpXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω ` ϵ

ż 1

0
Y ˚pωq dω : ErY s “ R1pY q “ 1

*

´ ϵ.
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Since due to PTE: RpX ` ϵ´ ϵq “ RpX ` ϵq´ ϵ since pX ` ϵq´ ϵ ě 0. Taking the supremum
over tY : ErY s “ R1pY q “ 1u suffices due to ␣A. Then:

@ϵ ą 0 : RpXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω ` ϵ

ż 1

0
Y ˚pωq dω ´ ϵ

ż 1

0
Y ˚pωq dω : ErY s “ R1pY q “ 1

*

ñ RpXq “ sup

"
ż 1

0
X˚pωqY ˚pωq dω : ErY s “ R1pY q “ 1

*

.

Hence R has a positive translation equivariant representation, i.e. TErep holds. We have
thus shown that ␣A^ PTEñ TErep, which is equivalent to ␣TErepñ A_␣PTE.

Recall that our goal is to show that ␣TErep ñ ␣PTE. Using the lemma 50, that
␣TErepñ A_␣PTE, it only remains to show that Añ ␣PTE. So now assume A. This
means that DZ PM`, Z ą ϵ, for some ϵ ą 0, so that

RpZq “ sup

"
ż 1

0
Z˚pωqY ˚pωq dω : ErY s ă 1, R1pY q ď 1, Y PM`

*

.

Write now X ` ϵ “ Z, which is possible by assumption. Then X PM` and:

RpX ` ϵq “ sup

"
ż 1

0
pX ` ϵq˚pωqY ˚pωq dω : ErY s ă 1, R1pY q ď 1, Y PM`

*

ď RpXq ` ϵ sup

"
ż 1

0
Y ˚pωq dω : ErY s ă 1, R1pY q ď 1, Y PM`

*

(subadditivity)

ă RpXq ` ϵ.

Therefore R is not PTE and the proof is complete.

A.3 Families of Fundamental Functions

A.3.1 Proof of Theorem 20.

Proof Suppose R is an ri norm which is PTE and has fundamental function ϕ. Write

RpXq “ sup
ZPZ

"
ż 1

0
X˚pωqZ 1pωq dω

*

, ϕptq “ sup
ZPZ

Zptq.

for some Kusuoka set Z of R. And define

@t P p0, 1s : Ztpxq :“

#

ϕptqxt , x ď t
1´ϕptq
1´t x`

ϕptq´t
1´t , x ą t

Then the TM norm can be written as:

}X}TMϕ
“ sup

"
ż 1

0
X˚pωqZ 1

tpωq dω : t P p0, 1s

*

. (24)

63
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Lemma 51. Using the above definitions, it holds that:

@t P p0, 1s : RpXq ě

ż 1

0
X˚pωqZ 1

tpωq dω.

Proof [of the Lemma] Consider some fixed t P p0, 1s. Since ϕptq “ supZPZ Zptq, we can,
to any ε ą 0, find some Zε P Z so that 0 ď ϕptq ´ Zεptq ă ε. Let εn Ó 0 be an arbitrary
sequence converging to zero and denote by Zεn a corresponding sequence of selected concave
functions from the Kusuoka set Z. Next, define

hεnpxq “

#

Zεnptq
x
t , x ď t

1´Zεn ptq
1´t x` Zεn ptq´t

1´t , x ą t
, h1

εnpxq :“

#

Zεn ptq
t , x ď t

Zεn ptq´1
t´1 , x ą t

where the derivative is defined first so that hεnpxq :“
şx
0 h

1
εnpωq dω.

We observe that by construction Zεn ě hεn ; the condition for Hardy’s lemma is fulfilled, i.e.
şx
0 Z

1
εnpωq dω ě

şx
0 h

1
εnpωq dω. Therefore

Ipεnq :“

ż 1

0
Z 1
εnpωqX

˚pωq dω ě

ż 1

0
h1
εnpωqX

˚pωq dω “: IIpεnq.

By definition of h1
εn ,

IIpεnq “
Zεnptq

t

ż t

0
X˚pωq dω `

Zεnptq ´ 1

t´ 1

ż 1

t
X˚pωq dω.

Now consider Ipεnq. We know that RpXq ě Ipεnq by our choice of the Zεn . Hence

RpXq ě sup
nPN

"
ż 1

0
Z 1
εnpωqX

˚pωq dω

*

“ lim sup
εnÓ0

Ipεnq ě lim sup
εnÓ0

IIpεnq,

since 0 ď an ď bn implies lim sup an ď lim sup bn.
We find that

lim
nÑ8

Zεnptq

t

ż t

0
X˚pωq dω “

ϕptq

t

ż t

0
X˚pωq dω,

since the integral term is constant, and as nÑ8, Zεnptq Ñ ϕptq by construction (note that
t is fixed). Similarly

lim
nÑ8

Zεnptq ´ 1

t´ 1

ż 1

t
X˚pωq dω “

ϕptq ´ 1

t´ 1

ż 1

t
X˚pωq dω.

Since both limits exist, the limit of their sum exists:

lim
nÑ8

IIpεnq “
ϕptq

t

ż t

0
X˚pωq dω `

ϕptq ´ 1

t´ 1

ż 1

t
X˚pωq dω “

ż 1

0
Z 1
tpωqX

˚pωq dω.

Therefore RpXq ě
ş1
0 Z

1
tpωqX

˚pωq dω for fixed t. Since this holds for all t P p0, 1s, we also

get RpXq ě suptPp0,1s

!

ş1
0X

˚pωqZ 1
tpωq dω

)

“ }X}TMϕ
.
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Thus, taking the embedding theorem into account, for any PTE ri norm (‘coherent risk
measure’) R:

}X}Mϕ
ď }X}TMϕ

ď RpXq ď }X}Λϕ
@X P Λϕ.

We show explicitly that } ¨ }TMϕ
is positive translation equivariant. Let X PM` and

c P R so that X ` c ě 0:

}X ` c}TMϕ

“ sup
0ătă1

"

ϕptq

t

ż t

0
pX ` cq˚pωq dω `

ϕptq ´ 1

t´ 1

ż 1

t
pX ` cq˚pωq dω

*

“ sup
0ătă1

"

ϕptq

t

ż t

0
X˚pωq dω `

ϕptq ´ 1

t´ 1

ż 1

t
X˚pωq dω `

ϕptq

t

ż t

0
c dω `

ϕptq ´ 1

t´ 1

ż 1

t
c dω

*

“ sup
0ătă1

"

ϕptq

t

ż t

0
X˚pωq dω `

ϕptq ´ 1

t´ 1

ż 1

t
X˚pωq dω `

ϕptq

t
ct`

ϕptq ´ 1

t´ 1
pc´ ctq

*

“ sup
0ătă1

"

ϕptq

t

ż t

0
X˚pωq dω `

ϕptq ´ 1

t´ 1

ż 1

t
X˚pωq dω ` c

*

“ }X}TMϕ
` c

and therefore the norm is PTE.
Recall that both the Dutch risk measure and the spectral MaxVar share the fundamental

function ϕptq “ 2t´ t2. We show that the Dutch risk measure is a special case of this TMϕ

norm. In this case, we have ϕptq{t “ 2´ t and pϕptq ´ 1q{pt´ 1q “ 1´ t, t ‰ 1. Therefore

}X}TMϕ
“ sup

0ătă1

"

p2´ tq

ż t

0
X˚pωq dω ` p1´ tq

ż 1

t
X˚pωq dω

*

“ sup
0ătă1

"

2

ż t

0
X˚pωq dω ´ t

ż 1

0
X˚pωq dω `

ż 1

t
X˚pωq dω ´ t

ż 1

t
X˚pωq dω

*

“ sup
0ătă1

"

p1´ tq

ż 1

0
X˚pωq dω `

ż t

0
X˚pωq dω

*

“ sup
0ătă1

tp1´ tqEr|X|s ` t ¨ CVar1´tp|X|qu “ Dup|X|q.

According to Pichler and Shapiro (2012, Corollary 5.1), the last expression is equal to the
Dutch risk measure.

We still need to show that } ¨ }TMϕ
is indeed a valid ri norm. First, consider it on the

positive cone as an ri function norm. In (24), we have it expressed as a supremum over a
set of Lorentz norms. Indeed a supremum over a non-empty but otherwise arbitrary set
of ri function norms is a valid ri function norm (see Lemma 52). Recall that we assume
RpχΩq “ 1 throughout the paper.

Lemma 52. Let tRi : i P Iu be a non-empty family of ri function norms (Definitions 6,7).
Then RpXq :“ suptRipXq : i P Iu is an ri function norm.

Proof [of the Lemma] Recall that we globally assume that any ri function norm R̃ satisfies
R̃pχΩq “ 1 (which clearly implies RpχΩq “ 1 here). Properties R1 and R2 are easy to check.
For R3 we want to show that

p@i P I : 0 ď Xn Ò X µ-a.e.ñ RipXnq Ò RipXqq ùñ p0 ď Xn Ò X µ-a.e.ñ RpXnq Ò RpXqq.
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So let us assume @i P I : 0 ď Xn Ò X µ-a.e. ñ RipXnq Ò RipXq. Then RpXq “
supiPI RipXq “ supiPI limnÑ8 RipXnq. First, assume RpXq ă 8. From the definition of
RpXq as the sup, we know that @ε ą 0 : Dipεq P I : RipXq ą RpXq ´ ε{2. Second, we know
that

@δ ą 0 : @i P I : Dni P N : @n ě ni : RipXnq ą RpXq ´ δ{2.

Choosing ε :“ δ and taking the corresponding ipδq yields:

@δ ą 0 : Dipδq : Dni P N : @n ě ni : RipXnq ą RipXq ´ δ{2 ą RpXq ´ δ{2

ô @δ ą 0 : Dni P N : @n ě ni : sup
iPI

RipXnq ą RpXq ´ δ

ô lim
nÑ8

sup
iPI

RipXnq ě RpXq. (25)

The statement limnÑ8 RpXnq “ RpXq can be written as

lim
nÑ8

sup
iPI

RipXnq “ sup
iPI

lim
nÑ8

RipXnq.

Since limnÑ8 supiPI RipXnq ď supiPI limnÑ8 RipXnq is obvious, we have, taking this to-
gether with (25), shown both inequalities and thus equality, i.e. limnÑ8 RpXnq “ RpXq.
That the convergence is from below is clear; hence RpXnq Ò RpXq. Finally, if RpXq “ 8
then it is obvious that RpXnq Ò 8.

As to R4, note that RipχΩq “ 1 @i P I implies RpχΩq “ 1, which by monotonicity
implies RpχEq ď 1 for measurable E. Also,

ş

E X dµ ď
ş

ΩX dµ “ ErXs ď RipXq@i P I by
assumption that RipχΩq “ 1 and the embedding theorem. Hence choosing e.g. c “ 2 gives
ş

E X dµ ă cRpXq for any measurable E. Finally, the ri property is obvious.

The theorem is thus proved.

A.3.2 Proof of Theorem 21

Proof Let ϕptq “ min tt{p1´ αq, 1u for some α P r0, 1q. Hence ϕ P Φ0` We show that
}X}Mϕ

“ CVarαp|X|q “ }X}Λϕ
. Clearly, the Lorentz norm for such ϕ is CVarα, as

}X}Λϕ
“

1

1´ α

ż 1´α

0
X˚pωq dω “ CVarαp|X|q.

The Marcinkiewicz norm is

}X}Mϕ
“ sup

0ătď1

"

ϕptq

t

ż t

0
X˚pωq dω

*

We claim that the supremum is reached at t “ 1´ α. Then:

}X}Mϕ
“

1

1´ α

ż 1´α

0
X˚pωq dω “ }X}Λϕ

“ CVarαp|X|q.

Hence it remains to show that the supremum is indeed reached at t “ 1´α. Let t “ 1´α`ϵ,
ϵ ą 0. Then

ϕptq

t

ż t

0
X˚pωq dω “ ϕp1´ α` ϵqX˚˚p1´ α` ϵq “ 1 ¨ CVarα´ϵp|X|q ă CVarαp|X|q.
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Let t ă 1´ α. Then

ϕptq

t

ż t

0
X˚pωq dω “

1

1´ α

ż t

0
X˚pωq dω ă

1

1´ α

ż p1´αq

0
X˚pωq dω “ CVarαp|X|q,

since X˚ is nonnegative. For αÑ 1, the Marcinkiewicz and the Lorentz norm both coincide
with the L8 norm. If αÑ 1, then ϕptq “ χp0,1s R Φ0`.

}X}Λϕ
“

ż 1

0
X˚pωqϕ1pωq dω `X˚p0qϕp0`q “ X˚p0q “ }X}L8

}X}Mϕ
“ sup

0ătď1

"

1 ¨
1

t

ż t

0
X˚pωq dω

*

“ X˚p0q “ }X}L8 .

Therefore we have established that the coincidence of Marcinkiewicz and Lorentz norm
holds, implying that there is then only a single coherent risk measure CVarα with the
given fundamental function. It remains to show the converse direction, }X}Mϕ

“ }X}Λϕ

only if ϕ is of CVarα-type, i.e. ϕptq “ min tt{p1´ αq, 1u for some α P r0, 1q or ϕptq “
ϕ8ptq “ limαÑ1min tt{p1´ αq, 1u. We show that the Marcinkiewicz norm is only positive
translation equivariant if ϕ is of that type. Since the Lorentz norm is always positive
translation equivariant, the norms can only then coincide. Let tϕtu be the Kusuoka set of
the Marcinkiewicz norm constructed as before.

@t P p0, 1s : ϕtpxq :“

#

ϕptqxt , x ď t

ϕptq , x ą t.

If the norm is PTE, we can reduce it (Theorem 11) to a representation consisting only
of those ϕt1 with ϕt1p1q “ 1. While the collection tϕtu need not be the maximal Kusuoka
set tt ÞÑ

şt
0 Y

˚pωq dω : }Y }M 1
ϕď1u, the proof of Theorem 11 is agnostic to the used Kusuoka

representation; uniqueness is not assumed. But then, these ϕt1 by their definition are

ϕt1pxq :“

#

x
t1 , x ď t1

1 , x ą t1
“ min tx{p1´ αq, 1u , α “ 1´ t1.

The fundamental function is then ϕpxq “ supt1 ϕt1pxq “ supt1 min tx{t1, 1u, and therefore ϕ
is of CVarα type. More specifically, either a single t1 “ 1´ α suffices in the representation
or αÑ 1, for which an uncountable infinity of t1 is needed, i.e. ϕt1pxq “ supt1Ñ0mint xt1 , 1u,
thus ϕ “ χp0,1s.

A.3.3 Variational representation of RIMα,β

Recall that (Theorem 22):

RIMα,βpXq :“ βErXs ` p1´ βqCVarαpXq.

We show that RIMα,β admits the following variational representation:

RIMα,βpXq “ inf
µPR

µ` EvpX ´ µq @X PM,
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where the regret function v is given by the piecewise linear

vptq “

#

βt t ď 0
βα´1
α´1 t t ą 0.

Proof We here translate a result from (Pflug and Ruszczynski, 2001) to a loss-based
formulation. Let 0 ă λ1 ă 1 ă λ2. Consider the function:

fµpxq “ µ` λ2px´ µq
` ´ λ1px´ µq

´

“ µ` pλ2 ´ λ1qpx´ µq
` ` λ1px´ µq

“ µ` pλ2 ´ λ1qpx´ µq
` ` λ1x´ λ1µ

“ pλ2 ´ λ1qpx´ µq
` ` λ1x` p1´ λ1qµ

“ λ1x` p1´ λ1q

ˆ

µ`
λ2 ´ λ1
1´ λ1

px´ µq`
˙

.

Now,

RIMα,βpXq “ inf
µPR

ErfµpXqs

“ λ1ErXs ` p1´ λ1q inf
µPR

ˆ

µ`
λ2 ´ λ1
1´ λ1

EpX ´ µq`
˙

“ βErXs ` p1´ βqCVarαpXq,

where λ1 “ β and 1
1´α “

λ2´λ1
1´λ1

, hence λ2 “
βα´1
α´1 .

A.4 Norm Equivalences and Tail Risk

A.4.1 Proof of Theorem 24

Proof The proof in (Pichler, 2013) relies on translation equivariance, i.e. that ϕ1γp1q “ 1@γ
and ϕ2ζ “ 1@ζ (cf. Section 4.7). To enable comparison for not necessarily translation
equivariant ri norms, as well, we give a new and shorter proof. First, assume that }¨}R1 , }¨}R2

have singleton Kusuoka sets Z1 “ tϕ1u and Z2 “ tϕ2u, where ϕ1, ϕ2 are concave functions
which are not required to satisfy ϕ1p1q “ 1, ϕ2p1q “ 1. Then let

K :“ sup
0ăαď1

ϕ2pαq

ϕ1pαq
.

Thus @α P p0, 1s: ϕ2pαq ď K ¨ ϕ1pαq. Then it directly follows from Hardy’s lemma that

}X}R2 “

ż 1

0
X˚pωqϕ1

2pωq dω ď K ¨

ż 1

0
X˚pωqϕ1

1pωq dω “ K ¨ }X}R1 .

Note that the use of the formal derivatives ϕ1
1, ϕ

1
2 is unproblematic even with kinks, since

the Kusuoka sets are constructed as integrals of nonnegative decreasing functions. That
is, we use the dash symbol here not as a differentiation operator, but as a mapping which
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assigns to a ϕ1 the function from which it was constructed as the integral of. If Z1 and Z2

are not singletons, the constant C according to (17) is equal to (Pichler, 2013)

C “ inftc ą 0 : @ϕ2ζ P Z2 : Dϕ1γ P Z1 : @α P p0, 1s : ϕ2ζpαq ď C ¨ ϕ1γpαqu,

which ensures that @ϵ ą 0 : @ϕ2ζ P Z2 : Dϕ1γ P Z1 : @α P p0, 1s: ϕ2ζpαq ď pC ` ϵq ¨ ϕ1γpαq.
But then,

}X}R2 “ sup

"
ż 1

0
X˚pωqϕ1

2ζpωq dω : ϕ2ζ P Z2

*

ď pC ` ϵq ¨ sup

"
ż 1

0
X˚pωqϕ1

1γpωq dω : ϕ1γ P Z1

*

“ pC ` ϵq ¨ }X}R1 ,

where we applied Hardy’s lemma to each of the replacements of ϕ2ζ Ñ ϕ1γ such that the
above inequality holds. Let ϵ Ó 0 to obtain }X}R2 ď C ¨ }X}R1 .

The converse direction: Pichler (2013) stated that C “ 8 (17) implies non-equivalence
of the norms. However, no proof was provided for the statement. In Theorem 31 we
provide a counterexample. We raise the following point: our counterexample involves the
Marcinkiewicz norm, which is not positive translation equivariant. In this specific case, the
constant C cannot be bounded because of the behaviour for large values of α. This can only
happen since the Kusuoka set does not satisfy @ϕ1 : ϕ1pαq ě α, which would be the case
when } ¨ }R1 is PTE. In contrast, when both involved norms are PTE, C “ 8 can hold only
because limαÑ0 grows unbounded. This then concerns the tail behaviour of the norms. We
conjecture that when both norms are PTE, the original statement holds, i.e. C “ 8 implies
non-equivalence. However, we have been unable to prove this statement.

A.4.2 Proof of Theorem 26

Proof Denote by ϕt the family of functions

@t P p0, 1s : ϕtpxq :“

#

ϕptqxt , x ď t

ϕptq , x ą t

which generate a Kusuoka set of the Marcinkiewicz norm with fundamental function ϕ. Then
the problem of finding a C as in Theorem 24 reduces to

C “ inf
ϕt

sup
0ăαď1

ϕpαq

ϕtpαq
“ inf

ϕt
sup

0ăαď1

#

ϕpαq

α
t

ϕptq , α ď t
ϕpαq

ϕptq , α ą t.

Fix any t. Then certainly

C ď sup
0ăαď1

ϕpαq

ϕtpαq
“ sup

0ăαď1

#

ϕpαq

α
t

ϕptq , α ď t
ϕpαq

ϕptq , α ą t.

The supremum over the second term (for α ą t) is bounded, since t is fixed and ϕ is bounded

by r0, 1s. As to the first term (α ď t), since ϕpαq

α is decreasing in α (due to the quasiconcavity
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of ϕ), the supremum must occur28 for α Ñ 0, or otherwise it occurs in the second term.

Observe that ϕ1p0q “ limαÑ0
ϕpαq

α by definition of the difference quotient since ϕp0q “ 0.
Therefore:

lim
αÑ0

ϕpαq

α

t

ϕptq
“
ϕ1p0q

1

t

ϕptq
ă 8.

Therefore C is finite. As an example of this statement, with the choice ϕptq “ 2t´ t2, we
obtain equivalence of the Dutch risk measure and MaxVar.

It remains to show that K “ 1{pϕp 1
ϕ1p0q

qq is a feasible constant. Obviously, this K is

finite under the assumption that ϕ1p0q ă 8. Consider a linear function with slope ϕ1p0q. It
reaches 1 at t “ 1{ϕ1p0q. With this choice of t, we have

ϕtpαq “

#

ϕp1{ϕ1p0qq

1{ϕ1p0q
α , α ď t

ϕp1{ϕ1p0qq , α ą t.

Then

ϕpαq ď K ¨ ϕ1{ϕ1p0q “

#

ϕ1p0q ¨ α , α ď 1{ϕ1p0q

1 , α ą 1{ϕ1p0q.

To see that this holds, observe that @α P p0, 1s ϕpαq

α ď ϕ1p0q “ limtÑ0
ϕptq
t due to quasi-

concavity and also ϕpαq ď 1. Indeed K is the smallest constant such that the statement
Dt1 P p0, 1s : @α P p0, 1s ϕpαq ď K 1 ¨ ϕt1pαq holds. Assume t1 ă t “ 1{ϕ1p0q. For α ą t1

we require K 1 ¨ ϕpt1q ě 1, otherwise the majorization does not hold as ϕpαq approaches 1.
But since ϕpt1q ă ϕptq, this implies K 1 ą K. Now assume t1 ą t. Clearly, we must require
pK 1 ¨ ϕt1q

1p0q ě ϕ1p0q for the majorization to hold in the limit as α Ñ 0 (this comes from

letting α Ñ 0 in the condition K 1 ¨
ϕpt1q
t1 α ě ϕpαq). That is, pK 1 ¨ ϕt1q

1p0q “ K 1 ¨
ϕpt1q
t1 . By

design, we have K ¨ ϕ1
tp0q “ K ¨

ϕptq
t “ ϕ1p0q. Due to quasiconcavity and t1 ą t we have

ϕpt1q
t1 ą

ϕptq
t . Hence pK 1 ¨ ϕt1q

1p0q ě ϕ1p0q implies K 1 ą K.

However, we note that K need not be the smallest constant such that }X}Λϕ
ď K ¨}X}Mϕ

holds, but it is the smallest constant so that Dt1 P p0, 1s : @α P p0, 1s ϕpαq ď K 1 ¨ ϕt1pαq,
which guarantees the previous statement to hold.

A.4.3 Proof of Theorem 28

Proof The result can be easily derived by combining two statements from Rubshtein et al.
(2016)29. According to (Rubshtein et al., 2016, p. 164), a Lorentz space is separable if
and only if ϕp0`q “ 0 (ϕ P Φ0`). On the other hand, if ϕp0`q “ 0 and ϕ1p0q “ 8, the
Marcinkiewicz space is not separable. Hence the two spaces do not coincide if ϕ1p0q “ 8
and the norms are therefore not equivalent. This result implies that for a ϕ with ϕ1p0q “ 8,
not all ri norms are equivalent.

28. When writing occur, we do not mean to imply that a supremum is actually attained.
29. Note that Rubshtein et al. (2016) denote the Marcinkiewicz space with fundamental function V as MV ˚ .

With this notation, the associate space to the Lorentz space ΛV is MV . In our notation, however, the
associate relationship is Λ1

V “ MV ˚ , that is, the subscript indicates the fundamental function.
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As a sanity check, we show that also C “ 8, which is a necessary condition for non-
equivalence. Assume by contradiction that C ă 8, that is:

C “ inf tc ą 0 : Dϕt : @α P p0, 1s : ϕpαq ď c ¨ ϕtpαqu ă 8.

Then @ϵ ą 0 : Dt : @α P p0, 1s : ϕpαq ď pC ` ϵq ¨ ϕtpαq. Fix some ϵ. With this choice of t,

1 ě sup
0ăαď1

#

ϕpαq

α
t

pC`ϵq¨ϕptq , α ď t
ϕpαq

pC`ϵq¨ϕptq , α ą t.

If the supremum occurs in the first term, it occurs as α Ñ 0 due to the quasiconcavity
of ϕ. Recall that ϕ1p0q “ limαÑ0

ϕpαq

α by definition of the difference quotient. Therefore

1 ě sup0ăαďt
ϕpαq

α
t

pC`ϵq¨ϕptq “ limαÑ0
ϕpαq

α
t

pC`ϵq¨ϕptq “ ϕ1p0q t
pC`ϵq¨ϕptq “ 8, a contradiction.

Thus no finite C exists. Finally, the inequality }X}Mϕ
ď }X}Λϕ

stems from the embedding
theorem.

A.4.4 Proof of Theorem 29

Proof Assume that } ¨ }R1 “ L1. Let Z2 “ tϕ2ζu be the Kusuoka set of } ¨ }R2 . Then, since
tα ÞÑ αu is a Kusuoka set for the L1 norm:

C “ sup
ϕ2ζ

sup
0ăαď1

ϕ2ζpαq

α
.

Due to the concavity of ϕ2ζ , the fraction is decreasing in α and hence

C “ sup
ϕ2ζ

lim
αÑ0

ϕ2ζpαq

α
“ sup

ϕ2ζ

ϕ1
2ζp0q.

It remains to show that ϕ1
2p0q ă 8 ñ supϕ2ζ ϕ

1
2ζp0q ă 8 @ϕ2ζ P Z2. We have

ϕ2pαq “ sup
Z2

tϕ2ζpαqu.

We know that
ϕ2ptq

t
ě
ϕ2ζptq

t
@t @ϕ2ζ ,

since we know the limit of the left hand side exists, we have

8 ą ϕ1
2p0q “ lim

hÑ0

ϕ2ptq

t
ě lim

hÑ0

ϕ2ζptq

t
“ ϕ1

2ζp0q @ϕ2ζ .

Therefore C is finite and we obtain }X}L1 ď }X}R1 ď C ¨ }X}L1 @X P L1. As a
consequence, any two ri norms with finite ϕ1

1p0q, ϕ
1
2p0q are equivalent.
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A.4.5 Proof of Theorem 31

Proof First we show that C “ 8. Denote by ϕTM,t, ϕM,t the respective Kusuoka sets,
constructed as:

@t P p0, 1s : ϕTM,tpxq :“

#

ϕptqxt , x ď t
1´ϕptq
1´t x`

ϕptq´t
1´t , x ą t

, ϕM,tpxq :“

#

ϕptqxt , x ď t

ϕptq , x ą t.

The desired constant is

C “ sup
ϕTM,t

inf
ϕM,t1

sup
0ăαď1

ϕTM,tpαq

ϕM,t1pαq

“ inf
␣

c ą 0 : @ϕTM,tDϕM,t1 : @α P p0, 1s : ϕTM,tpαq ď c ¨ ϕM,t1pαq
(

.

We show that no such finite constant can exist. Let some t be given. We wish to find
t1 such that @α P p0, 1s : ϕTM,tpαq ď K ¨ ϕM,t1pαq. The argument in Theorem 26 shows
that the smallest feasible K with the Marcinkiewicz norm on the right hand side is K “

1{ϕTM,tp1{ϕ
1
TM,tp0qq. Since ϕ1

TM,tp0q “
ϕptq
t , K “ 1{ϕTM,tp

t
ϕptqq. Now t

ϕptq ą t unless t “ 1

(or we have ϕptq “ 1) so that by definition of ϕTM,t

1

K
“

1´ ϕptq

1´ t

t

ϕptq
`
ϕptq ´ t

1´ t
.

For each fixed t, this is the best feasible constant (Theorem 26) and it is finite. However,

as t Ñ 0, we find that limtÑ0K “
ϕptq
t “ ϕ1p0q “ 8. As t Ñ 0, we need not consider the

case of ϕptq “ 1, since in the limit this condition does not hold (noting that ϕ P Φ0`). We
conclude that C “ 8.

We now show that, despite C “ 8, the Marcinkiewicz and PTE Marcinkiewicz norm are
equivalent. Note that

}X}TMϕ
“ sup

0ătă1

"

ϕptq

t

ż t

0
X˚pωq dω `

ϕptq ´ 1

t´ 1

ż 1

t
X˚pωq dω

*

ď }X}Mϕ
` sup

0ătă1

"

ϕptq ´ 1

t´ 1

ż 1

t
X˚pωq dω

*

. (26)

Knowing that }X}Mϕ
ď }X}TMϕ

, the norms could only not be equivalent if }X}Mϕ
ă 8

for some X, while }X}TMϕ
“ 8. Such an X cannot exist, since the second term in (26)

behaves nicely:
ş1
t X

˚pωq dω ď
ş1
0X

˚pωq dω ă 8 due to L1 being the largest ri space, in

which any Marcinkiewicz space is embedded. Furthermore, the factor ϕptq´1
t´1 does not exhibit

pathological behaviour. Noting that ϕ is bounded from below and above, we only have to
check the limits as tÑ 0 and tÑ 1:

lim
tÑ0

ϕptq ´ 1

t´ 1
“ 1, lim

tÑ1

ϕptq ´ 1

t´ 1
“ ϕ1p1q ă 8.

As tÑ 0, we can apply the quotient rule, since both limits exist. As tÑ 1, we use L’Hôpital’s
rule. Hence we conclude that the sets of functions, for which the Marcinkiewicz and PTE
Marcinkiewicz norms are finite, coincide. Therefore the norms are equivalent (Bennett and
Sharpley, 1988, p. 7).
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A.5 Properties of Quasiconcave Functions

A.5.1 Proof of Lemma 33

Proof By quasiconcavity, and assumption, we have ϕp0q “ 0, ϕp1q “ 1 and

0 ď t0 ď t1 ñ ϕpt0q ď ϕpt1q and ϕpt0q{t0 ě ϕpt1q{t1.

Taking t1 “ 1 we have ϕpt0q ď ϕpt1q “ 1. Taking 1 “ t0 ď t1 implies 1 “ ϕp1q ď ϕpt1q.
Furthermore, t0 ď t1 “ 1 implies ϕpt0q{t0 ě 1 which implies ϕpt0q ě t0. Additionally,
1 “ t0 ď t1 implies 1 ě ϕpt1q{t1 and thus ϕpt1q ď t1. Combining all these facts we have
shown

t ď 1 ñ t ď ϕptq ď 1

t ě 1 ñ 1 ď ϕptq ď t.

For 0 ď t ď 1, t “ 1^ t and 1 “ 1_ t. For t ě 1, 1 “ 1^ t and t “ 1_ t. Hence Lemma 33
holds.

A.5.2 Proof of Lemma 36

Proof Since max and min are continuous, and the composition of continuous functions is
continuous, we have that t ÞÑ

Ź

iPrns ϕiptq and t ÞÑ
Ž

iPrns ϕiptq are continuous for all t ą 0.
Furthermore, min and max are increasing (i.e. non-decreasing) in each argument, and

the composition of increasing functions is increasing, and thus t ÞÑ
Ź

iPrns ϕiptq and t ÞÑ
Ž

iPrns ϕiptq are increasing. Suppose t0 ď t1. Let i
˚ “ argmaxi ϕipt1q{t1. Then

Ž

iPrns ϕipt0q

t0
ě
ϕi˚pt0q

t0
ě
ϕi˚pt1q

t1
“

Ž

iPrns ϕipt1q

t1
,

and thus t ÞÑ
´

Ž

iPrns ϕiptq
¯

{t is decreasing. A similar argument holds for
Ź

i ϕi.

A.5.3 Proof of Lemma 38

Proof (If): For α ą 0, ψ̆pαx, αyq “ αyψpαx{pαyqq “ αψ̆px, yq, and thus ψ̆ is positively
homogeneous. Furthermore, ψ̆px, yq is nondecreasing in each argument as we now show. Let
y P Rě0 be arbitrary but fixed and consider x ÞÑ ψ̆px, yq “ yψpx{yq. This is nondecreasing
since ψ is nondecreasing. Now let x P Rě0 be arbitrary but fixed and let gpyq :“ yψpx{yq.
Observe that z ÞÑ gp1{zq “ ψpxzq{z which is nonincreasing (since ψ is quasiconcave). Hence
y ÞÑ gpyq is nondecreasing. Thus ψ̆ is nondecreasing in both of its arguments concluding the
demonstration that ψ̆ P P.

(Only if): If x ď y then ψpxq “ ψ̆px, 1q ď ψ̆py, 1q “ ψpyq and thus ψ is nondecreasing.
Since ψ̆ is positively homogeneous and nonzero, ψpsq ‰ 0 unless s “ 0. Finally, for x ď y,

ψpxq

x
“
ψ̆px, 1q

x
“ ψ̆

ˆ

1,
1

x

˙

ě ψ̆

ˆ

1,
1

y

˙

“
ψ̆py, 1q

y
“
ψpyq

y
,
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which shows that x ÞÑ ψpxq{x is nonincreasing, demonstrating that ψ is quasiconcave.

A.5.4 Proof of Lemma 39

Proof (If): Since ψ is quasiconcave, it is continuous everywhere except at the origin and
thus so is t ÞÑ ϕ1ptqψpϕ0ptq{ϕ1ptqq. Furthermore, since ϕ0 and ϕ1 are nondecreasing, and ψ̆
is nondecreasing in each argument, then fϕ0,ϕ1ptq is nondecreasing in t. Finally, we need to
show that

t0 ď t1 ñ
ψ̆pϕ0pt0q, ϕ1pt0qq

t0
ě
ψ̆pϕ0pt1q, ϕ1pt1qq

t1
. (27)

Since ψ̆ is positively homogeneous, (27) is equivalent to

t0 ď t1 ñ ψ̆

ˆ

ϕ0pt0q

t0
,
ϕ1pt0q

t0

˙

ě ψ̆

ˆ

ϕ0pt1q

t1
,
ϕ1pt1q

t1

˙

.

But by assumption on ϕ0 and ϕ1 we have

t0 ď t1 ñ
ϕ0pt0q

t0
ě
ϕ0pt1q

t1
and

ϕ1pt0q

t0
ě
ϕ1pt1q

t1
.

Since ψ̆ is nondecreasing in each argument, we can thus conclude that (27) holds, thus
demonstrating the final property needed to show quasiconcavity of fϕ0,ϕ1 .

(Only if): Using the definition of ψ̆ we have fϕ0,ϕ1ptq “ ϕ1ptqψ
´

ϕ0ptq
ϕ1ptq

¯

. We need to show

that r@ϕ0, ϕ1 P Q, fϕ0,ϕ1 P Qs ñ ψ P Q. Now fϕ0,ϕ1 P Q means that

1. t0 ď t1 ñ ϕ1pt0qψ
´

ϕ0pt0q

ϕ1pt0q

¯

ď ϕ1pt1qψ
´

ϕ0pt1q

ϕ1pt1q

¯

.

2. t0 ď t1 ñ
ϕ1pt0q

t0
ψ
´

ϕ0ptq0q

ϕ1pt0q

¯

ě
ϕ1pt1q

t1
ψ
´

ϕ0pt1q

ϕ1pt1q

¯

.

3. fϕ0,ϕ1ptq “ 0ô t “ 0.

Choose ϕ1ptq “ t and ϕ0 P Q. Then condition 2 above requires that

t0 ď t1 ñ ψ

ˆ

ϕ0pt0q

t0

˙

ě ψ

ˆ

ϕ0pt1q

t1

˙

.

But since ϕ0 P Q, t0 ď t1 ñ
ϕ0pt0q

t0
ě

ϕ0pt1q

t1
and thus ψ must be nondecreasing.

Now choose ϕ1ptq “ 1 and ϕ0ptq “ t. Then the second condition implies

t0 ď t1 ñ
ψpt0q

t0
ě
ψpt1q

t1
.

Furthermore, with the same choice for ϕ0 and ϕ1, we have fϕ0,ϕ1ptq “ 0 ô t “ 0 which
implies that ψptq “ 0ô t “ 0. We have thus shown all the required properties of quasicon-
cavity for ψ.
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A.6 Interpolation Functors and their Fundamental Functions

A.6.1 Proof of Lemma 45

Proof Recalling the definition of PTE (10), we show that for any X PM` and c P R such
that X ` c ě 0 that }X ` c}ΛϕpX̄ q

“ }X}ΛϕpX̄ q ` c, where X̄ “ pX0,X1q. First consider the

case that c ě 0. Writing } ¨ }Λ “ } ¨ }ΛϕpX̄ q, } ¨ }0 “ } ¨ }X0 and } ¨ }1 “ } ¨ }X1 for brevity we
have

}X}Λ ` c “ inf

#

K
ÿ

k

ϕp}Xk}0, }Xk}1q ` c : Xk P X0 ` X1, K P N, X “
ÿ

k

Xk

+

“ inf

#

K
ÿ

k

ϕp}Xk}0, }Xk}1q ` ϕpc, cq : Xk P X0 ` X1, K P N, X “
ÿ

k

Xk

+

since ϕp1, 1q “ 1 and ϕ is positively homogeneous,

“ inf

#

K
ÿ

k

ϕp}Xk}0, }Xk}1q `
ÿ

k

ϕ
`

c
K ,

c
K

˘

: Xk P X0 ` X1, K P N, X “
ÿ

k

Xk

+

“ inf

#

K
ÿ

k

“

ϕp}Xk}0, }Xk}1q ` ϕ
`

c
K ,

c
K

˘‰

: Xk P X0 ` X1, K P N, X “
ÿ

k

Xk

+

ď inf

#

K
ÿ

k

ϕp}Xk}0 `
c
K , }Xk}1 `

c
K q : Xk P X0 ` X1, K P N, X “

ÿ

k

Xk

+

since ϕpz1q ` ϕpz2q ď ϕpz1 ` z2q for arbitrary z1, z2 P R2
` because ϕ is a concave gauge

function (Barbara and Crouzeix, 1994, Proposition 2.1)

“ inf

#

K
ÿ

k

ϕp}Xk `
c
K }0, }Xk `

c
K }1q : Xk P X0 ` X1, K P N, X “

ÿ

k

Xk

+

since } ¨ }0 and } ¨ }1 are positive translation equivariant. Now let X 1
k “ Xk `

c
K , for k and

thus Xk “ X 1
k ´

c
K , k. Thus

“ inf

#

K
ÿ

k

ϕp}Xk}0, }Xk}1q : X
1
k P X0 ` X1, K P N, X “

ÿ

k

pX 1
k ´

c
K q

+

“ inf

#

K
ÿ

k

ϕp}Xk}0, }Xk}1q : X
1
k P X0 ` X1, K P N, X “

˜

ÿ

k

X 1
k

¸

´ c

+

“ inf

#

K
ÿ

k

ϕp}Xk}0, }Xk}1q : X
1
k P X0 ` X1, K P N, X ` c “

˜

ÿ

k

X 1
k

¸+

“ }X ` c}Λ.

Since } ¨ }Λ is a norm it satisfies the triangle inequality }X ` c}Λ ď }X}Λ ` }c}Λ “ }X}Λ ` c.
Thus combining with the above we have

}X}Λ ` c ď }X ` c}Λ ď }X}Λ ` c
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and thus }X ` c}Λ “ }X}Λ ` c as required.
If instead we have c ă 0 but X ` c ě 0, then there exists some c0 ě 0 such that c0 ě ´c

and X “ X0 ` c0, with X0 PM`. Consequently,

}X`c}Λ “ }X0`c0`c}Λ “ }X0`pc0`cq}Λ
p˚q
“ }X0}Λ`pc0`cq

p˚˚q
“ }X0`c0}Λ`c “ }X}Λ`c,

where (*) holds from the case already shown, since X0 ě 0 and pc0 ` cq ě 0, and (**) holds
similarly (since c0 ě 0).

A.6.2 Proof of Lemma 47

Proof For t ą 0, we need to compute

ϕMϕ̄pX̄ qptq “ }χr0,ts}Mϕ̄pX̄ q “ sup
s0,s1ě0

Kps0, s1, χr0,ts, X̄ q
ϕ̄˚ps0, s1q

.

Thus for arbitrary s0, s1 we need to determine

Kps0, s1, χEt , X̄ q “ infps0}X0}X0 ` s1}X1}X1q,

with the infimum taken over all X0, X1 such X0 ` X1 “ χEt , where Et is chosen such
that µpEtq “ t. Since by Theorem 9, the Marcinkiewicz norm minorises any ri norm with
fundamental function ϕX : }Xi}Mϕ̄

ď }X}X , we have

Kps0, s1, χEt , X̄ q ě inf
X0`X1“χEt

s0}X0}Mϕ0
` s1}X1}Mϕ1

,

and since }X}Mϕ̄
“ sup

0ără8

X˚˚prqϕ̄prq, we have

Kps0, s1, χEt , X̄ q ě inf
X0`X1“χEt

s0

ˆ

sup
0ără8

X˚˚
0 prqϕ0prq

˙

` s1

ˆ

sup
0ără8

X˚˚
1 prqϕ1prq

˙

ě inf
X0`X1“χEt

sup
0ără8

ps0ϕ0prqX
˚˚
0 prq ` s1ϕ1prqX

˚˚
1 prqq

and by choosing r “ t we obtain

Kps0, s1, χEt , X̄ q ě inf
X0`X1“χEt

pc0X
˚˚
0 ptq ` c1X

˚˚
1 ptqq,

where c0 “ s0ϕ0ptq and c1 “ s1ϕ1ptq are constants (since t is fixed),

“ inf
X0`X1“χEt

ppc0X0q
˚˚ptq ` pc1X1q

˚˚ptqq .

But pf ` gq˚˚ptq ď f˚˚ptq ` g˚˚ptq for all t ą 0 and any f, g, and so

Kps0, s1, χEt , X̄q ě inf
X0`X1“χEt

pc0X0 ` c1X1q
˚˚ptqq.
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Since for any f we have f˚ptq ď f˚˚ptq, for all t, we have

Kps0, s1, χEt , X̄ q ě inf
X0`X1“χEt

pc0X1 ` c1X1q
˚ptq

“ inf
X0`X1“χEt

inftλ : µc0X0`c1X1pλq ď tu

“ inf
X0`X1“χEt

inftλ : µts P R : pc0X0 ` c1X1qpsq ą λu ď tu.

Now let Aλ :“ µts P R : pc0X0` c1X1qpsq ą λu and Bλ :“ µts P R : pc0^ c1qpX0`X1qpsq ą
λu. Since pc0 ^ c1qpX0 ` X1q “ pc0 ^ c1qX0 ` pc0 ^ c1qX1 ď c0X0 ` c1X1 we have that
Bλ ď Aλ for all λ. Furthermore, λ ÞÑ Aλ and λ ÞÑ Bλ are nonincreasing and thus
inftλ : Aλ ď tu ě inftλ : Bλ ď tu, and hence

Kps0, s1, χEt , X̄ q ě inf
X0`X1“χEt

inftλ : µts P R : pc0 ^ c1qpX0 `X1qpsq ą λu ď tu

“ inf
X0`X1“χEt

pc0 ^ c1qpX0 `X1q
˚ptq

“ pc0 ^ c1qχr0,tsptq

“ c0 ^ c1

“ s0ϕ0ptq ^ s1ϕ1ptq.

The infimum in the definition of K is in fact attained by choosing X0 “ αχr0,ts and
X1 “ p1´ αqχr0,ts for some α P r0, 1s.

In this case we have

inf
αPr0,1s

s0}αχEt}X0 ` s1}p1´ αqχEt}X1

“ inf
αPr0,1s

s0αϕ0ptq ` s1p1´ αqϕ1ptq

“s0ϕ0ptq ^ s1ϕ1ptq.

Thus Kps0, s1, χr0,ts, X̄ q “ s0ϕ0ptq ^ s1ϕ1ptq.
Consequently

}χr0,ts}Mϕ̄pX̄ q “ sup
s0,s1ě0

s0ϕ0ptq ^ s1ϕ1ptq

ϕ̄˚ps0, s1q
.

Noting that both numerator and denominator are positively homogeneous in ps0, s1q it
suffices to enforce s0 ` s1 “ 1 and thus by setting s0 “ s and s1 “ p1´ sq for s P r0, 1s,

}χr0,ts}Mϕ̄pX̄ q “ sup
sPr0,1s

sϕ0ptq ^ p1´ sqϕ1ptq

ϕ̄˚ps, 1´ sq
.

Now ϕ̄˚pα, βq “ βψ̄pα{βq for some ψ̄ P Q and so ϕ̄˚ps, 1 ´ sq “ p1 ´ sqψ̄ps{p1 ´ sqq.
Furthermore sϕ0ptq ^ p1´ sqϕ1ptq can be written as

sϕ0ptq if sϕ0ptq ď p1´ sqϕ1ptq

p1´ sqϕ1ptq if sϕ0ptq ě p1´ sqϕ1ptq.
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Setting γ :“ ϕ1ptq{ϕ0ptq, we have sϕ0ptq ď p1 ´ sqϕ1ptq ô s{p1 ´ sq ď γ ô s ď γ{p1 ` γq.
Hence

sϕ0ptq ^ p1´ sqϕ1ptq “

#

sϕ0ptq, s ď γ
1`γ

p1´ sqϕ1ptq, s ě γ
1`γ

.

Hence

ϕMϕ̄pX̄ qptq “ }χr0,ts}Mϕ̄pX̄ q “ min

¨

˝ sup
sď

γ
1`γ

sϕ0ptq

p1´ sqψ̄
´

s
1´s

¯ , sup
sě

γ
1`γ

p1´ sqϕ1ptq

p1´ sqψ̄
´

s
1´s

¯

˛

‚.

Since ϕ0ptq, ϕ1ptq ě 0, we only need to determine

a :“ sup
0ďsď

γ
1`γ

fpsq and b :“ sup
γ

1`γ
ďsă8

gpsq,

where fpsq “ s
p1´sqψ̄ps{p1´sqq

and gpsq “ 1
ψ̄ps{p1´sqq

, and ϕMϕ̄pX̄ qptq “ aϕ0ptq ^ bϕ1ptq. Consid-

ering f first, and setting t :“ s{p1´ sq and so s “ t{p1` tq we have

a “ sup
tPr0,γs

t

ψ̄ptq
.

But ψ̄ is quasiconcave and thus t ÞÑ ψ̄ptq{t is positive and nonincreasing and so t ÞÑ t{ψ̄ptq
is nondecreasing and the supremum is attained at t “ γ and a “ γ{ψpγq. Similarly for g, we
have

b “ sup
těγ

1

ψ̄ptq
.

Since ψ̄ is quasiconcave, it is positive and nondecreasing and so t ÞÑ 1{ψ̄ptq is nonincreasing
and the supremum is attained at t “ γ and b “ 1{ψ̄pγq. Recalling γ “ ϕ1ptq{ϕ0ptq, we have

}χr0,ts}Mϕ̄pX̄ q “ min

ˆ

γϕ0ptq

ψ̄pγq
,
ϕ1ptq

ψ̄pγq

˙

“ min

ˆ

ϕ1ptq

ψ̄pγq
,
ϕ1ptq

ψ̄pγq

˙

“
ϕ1ptq

ψ̄pϕ1ptq{ϕ0ptqq
“

ϕ1ptqϕ0ptq

ϕ̄˚pϕ1ptq, ϕ0ptqq
.

But ϕ̄˚ is positively homogeneous, and thus

}χr0,ts}Mϕ̄pX̄ q “
ϕ1ptqϕ0ptq

ϕ̄˚pϕ1ptq, ϕ0ptqq
“ ϕ1ptqϕ0ptqϕ̄

ˆ

1

ϕ1ptq
,

1

ϕ0ptq

˙

“ ϕ̄

ˆ

ϕ1ptqϕ0ptq

ϕ1ptq
,
ϕ1ptqϕ0ptq

ϕ0ptq

˙

“ ϕ̄pϕ0ptq, ϕ1ptqq.
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A.6.3 Proof of Lemma 48

Proof We have

ϕΛϕ̄pX̄ qptq “ }χEt}Λϕ̄pX̄ q,

where Et is such that µpEtq “ t,

“ inf
pXkqk : χEt“

ř

kXk

ÿ

k

ϕ̄p}Xk}X0 , }Xk}X1q.

Taking the particular choice X1 “ χr0,ts and Xk “ 0 for k ą 1, gives an upper bound on the
infimum:

ϕΛϕ̄pX̄ qptq ď ϕ̄p}χEt}X0 , }χEt}X1q

“ ϕ̄pϕ0ptq, ϕ1ptqq.

Appendix B. (Non)-Expected Utility Theories

Coherent risk measures in finance are intimately connected with generalized utility theories
in rational choice theory, situated in the context of economics. These theories offer formal
axiomatic bases for rational decision making under uncertainty. Our motivation is that
we take the following two ideas seriously: empirical risk minimization (ERM) in machine
learning is a decision problem not only under risk, but also under ambiguity, and a loss
function is an outcome-contingent disutility (Berger, 1985).

In the ERM problem, the decision maker, i.e. the machine learning engineer, faces the
problem of summarizing the loss distribution in a single number, which is then employed in
a minimization routine. This summary is typically the expectation, reducing to summation
under the empirical distribution. Loss is a disutility in the sense that the decision maker
wants to have as little as possible of it. Therefore, modulo a sign flip, loss minimization
can be described in the framework of expected utility theory, where the aim is to maximize
utility in an uncertain setting.

First, if we knew the ‘true’ probability distribution, risk minimization is indeed a decision
problem under risk. We can model a risky situation with a probability distribution. In
an economics context, the analogy is a choice for the decision maker between different
lotteries with known probabilities. Think for instance of a coin flip. Probability theory was
historically developed to handle such decisions under risk, where probabilities are “well-
behaved”: relative frequencies are stable and can be known, e.g. by combinatorial arguments
(Hacking, 1990).

In contrast to risk is the challenge of ambiguity or, in the extreme, Knightian uncertainty.
These are “non-probabilized” forms of uncertainty (Etner et al., 2012) and cannot be captured
by a single probability distribution. In empirical risk minimization, we have no good reason
to believe that the observed data perfectly represents the ‘true’ distribution. Moreover, in a
dynamically changing environment, such a stable distribution may not exist (Gorban, 2017).
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Hence it may be better to assume a whole set of probability distributions to represent the
belief of the decision maker, from a subjectivist view, or to represent the behavior of the
loss sequence, from a frequentist view30.

In the presence of risk and ambiguity, different attitudes are conceivable: a decision
maker might be risk loving, risk-neutral, risk-averse and ambiguity-loving, ambiguity-neutral,
ambiguity-averse. We shall focus on a risk-averse and ambiguity-averse attitude. First, we
frame the standard ERM problem in the framework of expected utility theory. Throughout,
we make the translation to a loss-based formulation. Our aim is to demonstrate the
limitations of the classical approach and illuminate attractive alternatives. In particular,
we will find yet more ways to arrive at the classes of coherent and spectral risk measures.
These new perspectives offer additional motivation for why employing a coherent or spectral
risk measure in place of the expectation is normatively permissible and motivated.

B.1 Expected Utility

Classical expected utility theory comes in two flavors: objective and subjective. In the
objective setting developed by von Neumann and Morgenstern (1947), the decision maker
chooses between lotteries, which yield specified losses/rewards with known probabilities.
In contrast, in the subjective setting of Savage (1954), the decision maker does not know
the probability measure a priori. The two formulations differ mainly in interpretation.
Mathematically they are closely related. For ease of exposition, we focus on von Neumann’s
framework. We refer to Föllmer and Schied (2016) for a detailed account. Denote by C a
set of possible consequences. Typically, C “ R and we interpret the elements as monetary
outcomes. Assume some σ-algebra F is given on C. Let P denote the set of probability
distributions over C with finite support.

P “ tP : F Ñ r0, 1s : P ptcuq ‰ 0 only for finitely many c P C,P pCq “ 1u.

An element P P P is called a lottery. We characterize a decision maker by her preference
relation ≽ on P . The meaning of X ≽ Y is that the lottery P is preferred over the lottery Q.
Similarly, P „ Q denotes indifference and P ą Q strict preference. We say that a preference
relation ≽ is represented by a functional R : P Ñ R if

P ≽ Qðñ RpP q ď RpQq,

Assume that ≽ satisfies the following axioms:

N1. @P,Q P P : P ≽ Q or Q ≽ P or both. (completeness)

N2. @P,Q, S P P : P ≽ Q, Q ≽ S ñ P ≽ S (transitivity)

N3. @P,Q, S P P : Dα, β P p0, 1q : αP ` p1´ αqS ą Q ą βP ` p1´ βqS (Archimedean)

N4. @P,Q, S P P : @α P p0, 1s : P ą Qñ αP `p1´αqS ą αQ`p1´αqS (independence)

30. For a frequentist interpretation of coherent upper probabilities, see (Walley and Fine, 1982; Fröhlich
et al., 2023). Whereas precise probabilities model converging sequences of relative frequencies, coherent
upper probabilities can be linked to sequences whose relative frequencies diverge within an interval, whose
boundaries are given by the lower and upper probability.
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While the first three axioms are relatively uncontroversial and common to different theories
of rational choice, it is the independence axiom which characterizes the theory. The
independence axiom, essentially equivalent to the sure thing principle in Savage (1954), is
an additivity principle. Intuitively, it means that the common component p1´ αqS does not
matter for the ranking (Al-Najjar and De Castro, 2010). Another way to express it is that
preferences must be separable across mutually exclusive events (Denuit et al., 2006).

Theorem 53. (von Neumann and Morgenstern, 1947). If and only if N1-N4 are satisfied,
the preference relation ≽ allows an affine representation with a loss function ℓ : C Ñ R,
unique up to an affine transformation:

P ≽ Qðñ

ż

C
ℓpωq dP pωq ď

ż

C
ℓpωq dQpωq ðñ EP rℓs ď EQrℓs.

Instead of a utility function u, which is typically used in the literature, we have expressed
the theorem using its mirror image, the loss function ℓpωq “ ´up´ωq.31 Instead of expected
utility maximization, our decision maker aims for expected loss minimization.

The celebrated theories of von Neumann and Morgenstern (1947) and Savage (1954)
have become deeply entrenched in economics and spread into other disciplines in the course
of the 20th century. The crucial ingredient is the independence axiom, which corresponds
to additivity of the representation. The structure of such a representation implies a strict
separation of belief and action (or taste, in the language of Al-Najjar and De Castro (2010)).
Belief is embodied by the probability distribution; action relates to the choice of the loss
function, which specifies the attitude of a decision maker towards outcomes. These two
separate domains are then conjoined using the expectation operator. We remark that this
separability is at the basis of challenges which have been raised against classical expected
utility, such as the Ellsberg’s urns (Ellsberg, 1961) and Allais’ paradox (Allais, 1953). The
non-expected utility theories which we will consider refrain from making the separation to
this extent.

Related is the issue of risk aversion: in expected utility theory, attitudes toward wealth
(outcomes c P C) and probabilities are forever bound together. The standard definition of
(weak) risk aversion is that

@P P P : EP rids ≽ P,

ô ℓ

ˆ
ż

C
ω dP pωq

˙

ď

ż

C
ℓpωq dP pωq,

where id is the identity function and EP rids is a constant lottery which yields the loss EP rids
with probability 1. It is a classical result that risk aversity holds if and only if ℓ is a convex
function, that is, when u is concave. For an expected utility decision maker, risk aversity is
synonymous with diminishing marginal utility of wealth (Denuit et al., 2006), expressed via
the utility function. Diminishing marginal utility is the phenomenon that an increase at
a higher wealth level is valued less than the same increase at a lower wealth level. This is

31. This would correspond to also flipping the gain vs. loss orientation of the ω (see e.g. Rockafellar and
Uryasev (2013)). This presupposes that C supports a “´” operation. An alternative would be to set
ℓpωq “ ´upωq, which would keep the orientation.
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modelled by a concave utility function, which has a convex loss function as its mirror image.
In machine learning, it is customary to employ convex loss functions (with respect to the
predictions, not necessarily the parameters) such as the squared loss. This captures the wish
to increase punishment the farther the prediction is from the ground truth. Thus, one has in
a sense automatically implemented this form of risk aversion. Since there is no sensible unit
of ‘wealth’ in machine learning to establish the analogy to economics, we instead fix a loss
function a priori. Then we consider the loss values as making up the space of consequences
C and apply expected utility theory with the identity id as a “loss function”. In this way,
classical expected utility yields the familiar problem of expected risk minimization.

We find this kind of risk aversion too weak; it does not actually capture a risk-averse
attitude (Buchak, 2013). Aversion to risk in the sense of unpredictability seems prima facie
different from diminishing marginal utility towards wealth, yet in classical expected utility
theory they are conflated. A decision maker who has a diminishing attitude towards the
amount of some commodity even under certainty seems prima facie rational (see Buchak,
2013, for this line of argument). When then uncertainty enters the picture, the decision
maker might display additional risk aversion, a disinclination to take a risky bet on the
commodity of interest, which is not exhausted by the concave utility function. To us, risk
aversion amounts to encoding an attitude towards the probability itself: a decision maker
might prefer a distribution which is less spread-out over a distribution with higher spread,
even given that they have the same mean. Risk aversion is asymmetric, however: unexpected
high gain is not as problematic as unexpected high loss. It is not clear why the only reason
for this preference should arise from diminishing marginal utility instead of from an aversion
to the inherent risk.

Another criticism of classical expected utility is overprecision, the “excessive faith that
you know the truth” (Moore et al., 2015). We alluded to this problem in Section 1.1
and Section 2. Using a single probability measure expresses precise belief, when instead
sometimes a degree of ignorance is warranted by the available evidence. Gilboa et al. (2009)
write: “The Bayesian approach is lacking because it is not rich enough to describe one’s
degree of confidence in one’s assessments”. Here, the Bayesian approach refers to Savage’s
axiomatization. Along similar lines, Keynes observes that “new evidence will sometimes
decrease the probability of an argument, but it will always increase its ‘weight”’ (Keynes,
1921, p. 78). A decision maker following Savage’s axioms has a precise belief concerning
the probability that right now 24 men in Bulgaria are standing on their heads (Schoenfield,
2012), down to arbitrary precision. Furthermore, she would be willing to take bets both
on and against this event, where the betting rate is the specified precise probability. In
contrast to this behaviour, a lack of knowledge rather warrants ambiguity aversion, a certain
pessimism in the face of non-probabilized uncertainty. Hence we now turn to maxmin
expected utility, closely related to imprecise probability.

B.2 Maxmin Expected Utility

An influential generalization of expected utility, maxmin expected utility, has been put
forward by Gilboa and Schmeidler (1989). Following Anscombe and Aumann (1963), they
work with a two-stage model, comprising both objective and subjective probabilities. Let
Ω denote a set of outcomes. Let S denote a set comprising the states of nature and let
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F an algebra of subsets of S closed under finite intersections. By P, we denote the set of
probability distributions on Ω with finite support, i.e. lotteries with objective probabilities:

P “ tP : ΩÑ r0, 1s : P pωq ‰ 0 only for finitely many ω,
ÿ

ωPΩ

P pωq “ 1u.

An act is a function X : S Ñ P belonging to some specified convex set of acts L, which
includes constant functions. We denote the set of constant acts as Lc. Convex combinations of
acts are performed pointwise: letX,Y P L. Then αX`p1´αqY “ ω ÞÑ αXpωq`p1´αqY pωq.
The goal is to obtain a subjective probability about acts, sometimes called horse lotteries by
leveraging the objective probabilities through the preference relation. Gilboa and Schmeidler
(1989) impose the following axioms:

M1. @X,Y P L : X ≽ Y or X ≽ Y or both. (completeness)

M2. @X,Y, Z P L : X ≽ Y , Y ≽ Z ñ X ≽ Z (transitivity)

M3. @X,Y, Z P L: if X ą Y and Y ą Z then Dα, β P p0, 1q :
αX ` p1´ αqZ ą Y and Y ą βX ` p1´ βqZ (continuity)

M4. If @ω P Ω : ω1 ÞÑ Xpωq ≽ ω1 ÞÑ Y pωq then X ≽ Y (monotonicity) [sic]

M5. @X,Y P L, c P Lc, α P p0, 1q : X ą Y ñ αX ` p1 ´ αqc ą αY ` p1 ´ αqc (c-
independence)

M6. @X,Y P L, α P p0, 1q : X „ Y ñ αX ` p1´ αqY ≽ X (ambiguity aversion)

M7. not for all X,Y P L : X ≽ Y (non-degeneracy)

where X „ Y denotes the indifference relation, i.e. X ≽ Y and Y ≽ X, and ą is the
strict part of the relation. Certainty independence (c-independence) is strictly weaker than
independence; it only requires the separability with respect to constants. As a consequence
of this axiom, Gilboa and Schmeidler (1989) obtained the following representation.

Theorem 54. (Gilboa and Schmeidler, 1989). If and only if the preference relation ≽
satisfies M1-M7 then it allows a representation of the form

X ≽ Y ðñ max
QPQ

ż

ℓ ˝X dQ ď max
QPQ

ż

ℓ ˝ Y dQ

for a loss function ℓ : P Ñ R defined at the level of lotteries and a non-empty closed convex
set Q of finitely additivity probability measures on F .

Because of the translation to losses, it would be more appropriate to call it minmax
expected loss in our context. Observe that this is essentially nothing but a two-stage
formulation of Walley’s upper previsions (coherent risk measures) and with a loss function
entering the picture. When the loss function is the identity and the functional RpXq “
maxQPQ

ş

ℓ ˝ X dQ is applied only to acts which yield degenerate constant lotteries, i.e.
Xpsq “ cs P P, we recover an upper prevision (coherent risk measure). Maxmin expected
utility has also recently been formalized in a single-stage subjective setting (Al-Najjar
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and De Castro, 2010). We have chosen to present the two-stage formulation since the
axiomatization is simpler there.

A decision maker who adopts the maxmin axioms takes a worst-case stance towards a
set of probability measures considered as relevant candidates. For this, the crucial axiom
is ambiguity aversion. The intuition behind it is that, in financial terms, hedging against
ambiguity is preferred. Consider some X „ Y , which are both ambiguous, i.e. objective
probabilities are not known. Ambiguity aversion states that then a convex combination
αX ` p1 ´ αqY is weakly preferred over X or Y . Possibly, X acts as a hedge against Y
or vice versa, that is, X tends to yield losses for those states where Y tends to yields
gains. In extreme cases, a convex combination of such acts can even reduce the ambiguous
situation to a risky one with known probabilities (see e.g. (Föllmer and Weber, 2015) or
(Etner et al., 2012) for examples). On the other hand, no hedging is possible when X and Y
are comonotone, since they then share the same rank ordering of outcomes32. Ambiguity
aversion states that, irrespective of the concrete X and Y , hedging can at least never be
strictly worse for the decision maker. The next theory, a close cousin of maxmin expected
utility, takes the idea that comonotonicity prevents hedging seriously.

B.3 Choquet Expected Utility

While maxmin expected utility is closely related to coherent risk measures and upper
previsions, Choquet expected utility contains as important special cases the class of spectral
risk measures. The theory was originally developed by Schmeidler (1989) and like maxmin
expected utility was set in the two stage model of Anscombe and Aumann (1963). However,
for easier exposition we present the single-stage version of Chateauneuf (1994), translated
to losses. This is in contrast to maxmin expected utility, where the single-stage version
is significantly more complicated than the two-stage version. Consider a space Ω and a
σ-algebra F . The preference relation ≽ is defined on the set L of bounded, real-valued
measurable functions on Ω. Chateauneuf (1994) proposes the following axioms (translated
to losses):

CH1. Completeness, transitivity and non-degeneracy

CH2. If @ω P Ω : Y pωq ě Xpωq ñ X ≽ Y (monotonicity)

CH3. Continuity with respect to monotone uniform convergence, see (Chateauneuf, 1994).

CH4. @X,Y, Z P L : If X and Z are comonotone, Y and Z are comonotone and X „ Y ,
then X ` Z „ Y ` Z (comonotonic independence),

Compared to maxmin expected utility, certainty independence has here been strengthened
to comonotonic independence and uncertainty aversion has been dropped. Recall again that
two functions X and Y are comonotone if

pXpωq ´Xpω1qqpY pωq ´ Y pω1qq ě 0 @ω, ω1 P Ω

32. We here rely on the intuitive understanding of perfect rank correlation. For the definition of comonotonicity
when outcomes are lotteries see (Schmeidler, 1989).
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A constant function is comonotone with any other function and therefore comonotonic inde-
pendence implies certainty independence. In the words of Chateauneuf (1994), “comonotonic
independence requires the direction of preference to be retained under adding payments,
provided hedging is not involved”. When X and Y are comonotone, neither can work as a
hedge against the other due to perfect rank correlation. As a consequence, the ambiguity
cannot be reduced in favor of risk. Chateauneuf (1994) obtains the following representation
result. Recall that a capacity is a set function with µpHq “ 0 and µpΩq “ 1,33 which is
monotone.

Theorem 55. (Chateauneuf, 1994). If and only if ≽ satisfies the above axioms, there exists
a capacity µ on F such that

X ≽ Y ðñ

ż

X dµ ď

ż

Y dµ,

where the Choquet integral with respect to the capacity µ is defined as

ż

X dµ :“

ż 0

´8

rµptX ě xuq ´ 1s dx`

ż 8

0
µptX ě xuq dx.

Remark 56. In this single-stage formulation, no loss/utility function has entered the picture.
Typically, Choquet expected utility refers to representations of the form

ş

u ˝X dµ with a
utility function u. For instance, cf. the axiomatization of Schmeidler (1989). To us, this is
not a relevant difference since in our machine learning setup the random variable X directly
represents a loss.

Compare this to (6), where the capacity is given as the composition of a concave function
and a probability measure. The capacity then determines whether the decision maker is
ambiguity-averse, -neutral or -loving. Consider the uncertainy aversion axiom

CH5. @X,Y, Z P L : If X „ Y and Y and Z are comonotone, then X ` Z ≽ Y ` Z

The intuition is that Z cannot act as a hedge against Y , but it could possibly hedge against
X, so the direction of preference turns at least weakly in favor of X ` Z. This axiom is in
some sense a combination of comonotonic independence and uncertainty aversion.

Theorem 57. (Chateauneuf, 1994). If and only if ≽ satisfies CH1-CH3 and CH5, then the
representation of Theorem 55 holds and the capacity µ is furthermore submodular, that is:

µpAYBq ` µpAXBq ď µpAq ` µpBq.

To get an intuition for the Choquet integral, let us consider a finite space Ω “ tω1, .., ωnu.
Assume X is a step function which takes on the values x1 ď x2 ď .. ď xn. Let x0 “ 0. Then
the Choquet integral can be written as

ż

X dµ “
n
ÿ

i

pxi ´ xi´1qµptX ě xiuq.

33. The normalization µpHq “ 0 is required for any capacity. Capacities with µpΩq “ 1 are also called
normalized capacities. We impose µpΩq “ 1 throughout, however, and simply call it a capacity.
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If the capacity is a probability measure, this reduces to the usual expectation. The decision
maker starts with the lowest loss value x1 and then successively adds up the increments
xi ´ xi´1, but weighted with the capacity. In particular a capacity need not be additive for
disjoint events, which allows to model interaction effects such as hedging against ambiguity.

Consider the special case of a submodular capacity, which represents uncertainty aversion.
For finite Ω, submodularity is equivalent to this property of diminishing marginal returns:

@A Ď B Ă Ω, c R B : µpAY tcuq ´ µpAq ě µpB Y tcuq ´ µpBq.

This expresses that adding an element to a smaller set results in a greater increase in decision
weight. Consequently, large losses (where µptX ě xuq is small) are emphasized. Whereas
risk aversion is expressed by a concave utility function in (von Neumann and Morgenstern,
1947), ambiguity aversion is a submodular attitude towards probability itself. Submodular
capacities are also called concave, since they exhibit a similar diminishing marginal returns
property as concave functions. Furthermore, recall that if the capacity is given as the
composition of an increasing function and a probability measure, the capacity is submodular
if and only if the function is concave (Section 3.6).

Choquet expected utility is closely related to maxmin expected utility. If and only if
the capacity is submodular, then the Choquet integral is convex (Alfonsi, 2015) and the
representation takes a maxmin form (minmax, in loss-based formulation), where the envelope
is given by the core of the capacity

corepµq “ tP : P pAq ď µpAq @A P F , P finitely additive probability measureu

ż

X dµ “ sup
PPcorepµq

"
ż 8

´8

X dP

*

.

The ambiguity aversion is directly related to the convexity of the functional. The close
relationship between maxmin expected utility (MMEU) and Choquet expected utility (CEU)
has been concisely summarized by Klibanoff (2001):

Fundamentally, CEU decision makers view uncertainty in terms of (roughly)
how states are ordered by an act’s utility payoff. Given a set of acts which all
induce the same ordering, a CEU decision maker acts exactly like an expected
utility (and thus uncertainty neutral) decision maker. MMEU decision makers,
in contrast, may view uncertainty not only in terms of ordering of states, but
also in terms of how much better the payoff is in one state as opposed to another.

Both MMEU and CEU are theories about uncertainty in the sense of ambiguity. A
capacity in CEU contains both a component of belief and action (Diecidue and Wakker,
2001), where action refers to a decision attitude. However, for a general capacity, these
components cannot be separated. This intertwining empowers Choquet expected utility to
tackle problems of ambiguity in a broad sense; yet it also renders it somewhat impractical.
Revisiting Ellsberg’s urns (Section 1.1), CEU can indeed describe the ambiguity-averse
preferences which most decision makers exhibit in this scenario (Schmeidler, 1989). Ellsberg’s
urns are challenging because they not only violate expected utility, but also probabilistic
sophistication (Etner et al., 2012; Machina and Schmeidler, 1992). A probabilistically
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sophisticated decision maker acts in accordance with a belief which can be captured by a
probability measure, but uses it in a manner that can extend beyond classsical expected
utility. Hence belief and action are still intertwined to some degree. For instance, a risk-averse
decision maker might express beliefs with an underlying probability measure but decides in
a way so as to put more weight on worse outcomes. In the setting of CEU, probabilistic
sophistication implies that the capacity is given by a composition µ “ ϕ ˝ P of an increasing
function and a probability measure. Indeed, we may equate probabilistic sophistication with
law invariance (rearrangement invariance). If a probabilistically sophisticated CEU decision
maker satisfies CH5, then ϕ is concave and the Choquet integral is therefore a spectral risk
measure. However, the typical preference behaviour in Ellsberg’s urns cannot be modelled
by such a functional (Schmeidler, 1989). Some authors therefore identify probabilistic
sophistication with ambiguity neutrality (Epstein, 1999). We think that this goes too far:
for instance, a law-invariant spectral risk measure expresses risk aversion by aversion to
hallucinated ambiguity. There is still the assumption of a base measure, on which belief
rests, but the action component constructs an ambiguity set around this base measure.
This amounts to blurring the line between risk aversion and ambiguity aversion. Under law
invariance, their mathematical form is equivalent and we may interpret risk aversion as a form
of ambiguity aversion with respect to an artificially constructed (‘hallucinated’) ambiguity
set. We emphasize that we do not claim that risk and ambiguity are equivalent, but rather
that risk aversion can be modelled via aversion to hallucinated ambiguity. Furthermore, in
light of the Kusuoka representation, any coherent risk measure is a combination of the two,
since it can be described as an ambiguity set over a risk spectrum.

In summary, we advocate thinking of a direct relation between risk aversion and ambiguity:
at one extreme of the spectrum, where the supremum risk measure embodies maximal risk
aversion, it has the corresponding interpretation of the maximal ambiguity set, consisting
of all34 probability measures. At the other extreme, the expectation is risk neutral and is
represented by the singleton ambiguity set t1u. Hence, whether a law invariant coherent
risk measure should be seen as modelling risk or ambiguity depends on the context and
the modelling intentions of the decision maker. Therefore we will now examine Choquet
expected utility under probabilistic sophistication (law invariance), where the capacity can
be decomposed into a belief and action attitude. In the concave case, this yields the class of
spectral risk measures.

B.4 Rank Dependent Expected Utility

The crucial difference between CEU and rank dependent expected utility (RDEU) is the addi-
tional requirement of law invariance (probabilistic sophistication, rearrangement invariance).
Therefore, RDEU is typically viewed as CEU under risk. We pointed out, however, that this
can also be viewed as theory of hallucinated ambiguity. Different authors have arrived at
variants of RDEU (Yaari, 1987; Wang, 1995; Quiggin, 2012; Buchak, 2013), which turned out
to approximately coincide. RDEU represents preferences by law invariant Choquet integrals:

X ≽ Y ðñ

ż

ℓ ˝X dpϕ ˝ P q ď

ż

ℓ ˝ Y dpϕ ˝ P q,

34. Probability measures which are absolutely continuous with respect to a base measure.
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with a loss function ℓ and where the capacity is specialized as the composition of an increasing
function ϕ and a probability measure P . Hence, risk aversion (submodularity) of the capacity
is equivalent to the concavity of ϕ (cf. Section 3.6). If the loss function is the identity, as we
take it in machine learning35, then we recover exactly the class of spectral risk measures.

RDEU is rank dependent, since the weight of a certain outcome in the decision not only
depends on its probability via P , but also on how it is ranked with respect to other outcomes.
This enables the decision maker to express a desire for distributional objectives (Lopes, 1984).
Given a fixed mean, decision makers may prefer a less spread-out distribution as compared
to a more spread-out one. The exact nature of this tradeoff is encoded in the function ϕ,
which can be considered a risk aversion profile. In the context of machine learning, it allows
us to emphasize the largest losses to increase robustness.

Of particular interest to us is the rank dependent account of Buchak (2013), which is
called risk weighted expected utility. Buchak (2013) aims to provide argumentative ground
for why risk attitudes via rank dependence are normatively permissible, instead of only
empirically adequate. Other authors are less clear on this issue or take a different stance.
For instance, a slight variant of RDEU, prospect theory, is only defended as a descriptive
theory (Tversky and Kahneman, 1992). Furthermore, Buchak (2017) has also considered
the theory in the setting of social choice, which is relevant to fair machine learning. The
possible application of rank dependence in this context has been hinted at by other authors
(Schmeidler, 1989; Quiggin, 2012), but not elaborated.

B.5 Rational and Social Choice with Spectral Risk Measures

Rational choice is about an individual decision maker in a context where the decision affects
only that individual. This can be modelled with a state space Ω, where each ω P Ω represents
a possible state of the world. A gamble X : ΩÑ R assigns to each state a resulting loss to
the decision maker, given that this state is realized. In classical probability, such a gamble
is evaluated via the expectation. This is the standard ML problem, where the engineer aims
to minimize loss. By contrast, social choice concerns collective decision by a combination
of individual preferences. This is closer to the model for a fair ML problem, where the
individuals are salient subgroups. However, in ML the engineer chooses the loss function for
everyone, whereas in the “real world” setting, individuals might have different loss functions.

The structural analogy is that a state ω in a rational choice problem corresponds to an
individual (subgroup) in social choice (Buchak, 2017) and a gamble then describes a social
arrangement (“who gets what”). Expected utility theories ask the question how should an
individual value a gamble? and the classical theory gives the expectation as the unique
answer, whereas we have demonstrated that there exists a variety of interesting alternatives.
Social choice theory asks: which social arrangements are to be preferred (or fair)? Due
to the structural analogy, it is not surprising that similar answers have been given. Most
prominently, expected utility theory in rational choice has average utilitarianism as its
social counterpart (Buchak, 2017). The analogy also yields an interesting interpretation for
probability: an individual considers its possible “future selves”, which would result from each
outcome, which makes the question of how to value the gamble equivalent to the problem of
finding a fair distribution among those future selves.

35. Note again that in our machine learning setup Xpωq already corresponds to a loss value.
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Relevant to this discussion is the distinction between aggregate (or groupist) and individual
risk (Dawid, 2017). The former is what we know well from probability theory: statements
about relative frequencies are aggregate statements. When tossing a fair coin, on what
basis do we assign the probability p “ 0.5 that it will land heads? Typically, the reasoning
proceeds from the aggregate to the individual here. A frequentist explanation is that we
have observed many coin tosses and the relative frequency of heads stabilized around 0.5
(although such a statement can only be made in the limit of infinitely many tosses, which
itself is problematic). A Bayesian may appeal to a symmetry principle, because there is no
reason to favour either heads or tails for a fair coin, one should assign the degree of belief
0.5 that it will land heads. Such a notion might strike one as individualistic. In practice,
however, Bayesian inference is typically with respect to an exchangeable information base –
an aggregate. The Bayesian might have flipped the coin many times, considered the sequence
exchangeable (de Finetti, 1974/2017), updated their beliefs accordingly and hence arrived at
a probability of 0.5. Similarly, if the Bayesian used prior knowledge from other fair coins,
which they had experience with, this has an ‘aggregate flavour’. Dawid (2017) concludes by
stating that the group to individual inference direction remains problematic and elusive.

While the above example of a coin seems innocent, it is problematized in ethical contexts,
where the individual coin toss is replaced by an event that concerns a human. A fair ML
problem can be phrased as distributing loss (in the ML sense) over individuals or subgroups
of ethically fungible individuals. Such a subgroup (e.g. men, women), according to the
designer, is then viewed as an individual in the given context. One possibility of expressing
imperfect fairness in this context is that we demand that subgroup losses are commensurate,
i.e. they should not differ much. Under the assumption of mutual disinterest, an individual
(subgroup) is concerned only with its own risk. When the aggregate risk is low, i.e. the
average individual risk is low, this is no consolation for any individual, who does not care
for the average. When an inference is based on an aggregate, how can we control individual
risk? Classical probability, firmly based on an aggregate conception due to its ‘casino origin’,
is of no help.

As a corollary, we find that the concept of individual risk has mirror images in rational
and social choice. On the one hand, inequality aversion can be understood as risk aversion,
as it is a focus on the worse outcomes. On the other hand, a risk-averse individual is one that
is inequality-averse with respect to future selves. In essence, this means that the individual
is concerned with its own individual risk, instead of merely its aggregate risk of future selves.
A decision maker who uses the expectation is risk-neutral and cares only about aggregate
risk; here, the aggregate is to be understood as formed from the possible outcomes for that
single individual. This is reasonable, when an experiment is repeated under stable conditions
indefinitely and the possibility of a catastrophic event (e.g. going bankrupt) is excluded.
However, in real ML problems, this is not the case and often individuals only have a single
shot, for instance at getting a loan. When choosing between a sure gain of c or a lottery
which yields 2c with probability 0.5 and 0 otherwise, almost all individuals choose the sure
gain (Cappelen et al., 2013). Our interpretation of this robust pattern is that they care
about their individual risk and adopt a pessimistic attitude. Standard expected utility
theory would model this via a concave attitude towards wealth. But even if c would already
be in units of loss, as is the case in ML, we are inclined to think that it is still preferable to
have less spread: because we care about individual risk.

89
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Figure 9: PCA* results on adult. Top row: CVarα curves of test losses for CVarα risk
measures (left) with different α and RIMs risk measures (right) with different β,
indicated by subscript, where α “ 0.7. For better visibility of the differences, we
cut off α at 0.98. Bottom row: Lorenz curves of test losses for CVarα (left) and
RIMs (right) with α “ 0.7 and different β.

Spectral risk measures, provide a partial resolution to this conflict between aggregate and
individual, between average utilitarianism and subgroup fairness. The extreme points of the
family of spectral risk measures are CVarα. Here, α “ 0 recovers the risk (inequality) neutral
expectation. On the other hand, α “ 1 embodies the maximally risk (inequality)-averse
attitude. In distributive justice, the corresponding theory is the Rawlsian maximin principle
(Rawls, 1971), where only the position of the worst-off counts. The parameter α offers a
smooth interpolation between these two ends of the spectrum. The behaviour CVarα is
extreme in the sense that it neglects all outcomes below the 1 ´ α tail of losses. Finer
control is possible by employing any spectral risk measure, where the tradeoff aggregate vs.
individual is encoded in the shape of the fundamental function ϕ.

Appendix C. Experiments

Here we report additional results, not shown in the main paper. See Figures 9, 10, 11.

90



Risk Measures and Upper Probabilities: Coherence and Stratification

E CVar0.2 CVar0.4 CVar0.6 CVar0.8

name

0.14

0.16

0.18

0.20

0.22
G

in
i

E RIM0.8 RIM0.6 RIM0.4 RIM0.2

name

0.16

0.17

0.18

0.19

0.20

0.21

0.22

G
in

i

E CVar0.2 CVar0.4 CVar0.6 CVar0.8

name

0.350

0.375

0.400

0.425

0.450

0.475

0.500

G
in

i

E RIM0.8 RIM0.6 RIM0.4 RIM0.2

name

0.38

0.40

0.42

0.44

0.46

0.48

0.50

G
in

i

Figure 10: PCA* Gini coefficients for MNIST (top) and adult (bottom) over 25 runs.
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Figure 11: Class frequencies of imbalanced MNIST. Before each iteration, the assignments of
digit class to frequency are randomly shuffled.
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Jöran Bergh and Jörgen Löfström. Interpolation Spaces: An Introduction. Springer, 1976.

Seamus Bradley. Imprecise Probabilities. In Edward N. Zalta, editor, The Stanford Encyclo-
pedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2019 edition,
2019.

Yurii Abramovich Brudnyi, Selim Grigor’evich Krein, and Evgenii Mikhailovich Semenov.
Interpolation of linear operators. Itogi Nauki i Tekhniki, Seriya Matematicheskii Analiz,
24:3–163, 1986. English translation in Journal of Soviet Mathematics, 42(6), 2009–2113,
September 1988.

Yuri A. Brudny̆ı and Natan Ya. Krugljak. Interpolation Functors and Interpolation Spaces,
volume 1. North-Holland, 1991.

92



Risk Measures and Upper Probabilities: Coherence and Stratification

Lara Buchak. Risk and rationality. Oxford University Press, 2013.

Lara Buchak. Taking risks behind the veil of ignorance. Ethics, 127(3):610–644, 2017.

Alexander W. Cappelen, James Konow, Erik Ø. Sørensen, and Bertil Tungodden. Just luck:
An experimental study of risk-taking and fairness. American Economic Review, 103(4):
1398–1413, 2013.

Alain Chateauneuf. Modeling attitudes towards uncertainty and risk through the use of
Choquet integral. Annals of Operations Research, 52(1):1–20, 1994.

Alexander Cherny and Dilip Madan. New measures for performance evaluation. The Review
of Financial Studies, 22(7):2571–2606, 2009.

Fernado Cobos and Joaquim Mart́ın. On interpolation of function spaces by methods defined
by means of polygons. Journal of Approximation Theory, 132(2):182–203, 2005.

Fernando Cobos and Luz M. Fernández-Cabrera. The fundamental function of certain
interpolation spaces generated by n-tuples of rearrangement-invariant spaces. In Pankaj
Jain and Hans-Jürgen Schmeisser, editors, Function Spaces and Inequalities, pages 1–14.
Springer, 2017.

Sebastian Curi, Kfir Y. Levy, Stefanie Jegelka, and Andreas Krause. Adaptive sampling for
stochastic risk-averse learning. In Advances in Neural Information Processing Systems,
volume 33, pages 1036–1047, 2020.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks
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