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THE ENGINEER’S VIEW
▸ “an element of a structure which connects it to the ground” — Wikipedia

▸ Abstracting just slightly:   An Interface to the World

▸ And what happens if your interface does  
not respect the properties of the world?

▸ Or if the world changes, and what was  
solid before no longer is…
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LEARNING SYSTEMS
▸ Study the interface of ML systems to the world

▸ Pay attention to what we assume about the world

▸ Like other areas of engineering, learn from failure                                  
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▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use
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MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 
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MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 

▸ Learning (sounds like knowledge…)
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MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 

▸ Learning (sounds like knowledge…)

▸ But what is that? Not certain. Not universal. Not objective. Not eternal.  
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MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 

▸ Learning (sounds like knowledge…)

▸ But what is that? Not certain. Not universal. Not objective. Not eternal.  

▸ Systems - well everything is a system; the name just signals context … to which we should pay more attention  
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MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 

▸ Learning (sounds like knowledge…)

▸ But what is that? Not certain. Not universal. Not objective. Not eternal.  

▸ Systems - well everything is a system; the name just signals context … to which we should pay more attention  

▸ But what do these systems do?
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MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 

▸ Learning (sounds like knowledge…)

▸ But what is that? Not certain. Not universal. Not objective. Not eternal.  

▸ Systems - well everything is a system; the name just signals context … to which we should pay more attention  

▸ But what do these systems do?

▸ On the basis of data (symbolic views of part of the world)…
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MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 

▸ Learning (sounds like knowledge…)

▸ But what is that? Not certain. Not universal. Not objective. Not eternal.  

▸ Systems - well everything is a system; the name just signals context … to which we should pay more attention  

▸ But what do these systems do?

▸ On the basis of data (symbolic views of part of the world)…
which we choose (or take for granted)…
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MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 

▸ Learning (sounds like knowledge…)

▸ But what is that? Not certain. Not universal. Not objective. Not eternal.  

▸ Systems - well everything is a system; the name just signals context … to which we should pay more attention  

▸ But what do these systems do?

▸ On the basis of data (symbolic views of part of the world)…
which we choose (or take for granted)…
they distill the data into a model (an approximation)…

� � � ��� � � � � � � � � �

�η .�,�
η���Ą
ηDĜ�ē͔η�
η ��.�

η�.η ��η*��çη9 � " η�
6
η $.

ηș�η
�
,�����	η �
�.���.η ��
η 
�
�η ��η ��
η )6,�2
η o�
η :�������η
ɠ6D
6.η $.
·η �,,

�η �,
.η ��#
η *��'η G�&η )$�η ċ�,Dη ��
η
�
�������η,�η��
η�6,�ηo�
η��ηk��
.��˼
η�,
.η�
6
η.�,
ηͰ���η
D
���η���

.η J*��.KηGwη��
η h5Ř'η *��.'ηh� η��
η h9η �6
η `,D��η

Ĝ�����η �,r�.'η *��'η hhη �.η ��η $�$.$����η 	�$D.�η .,6�η ,�η
��,$��η Á,Dη �η H
6D��η �
��η �,�ƌη )$�η ���η )6,�2
η o�
η
��,$��.η ��6


η ����η ��η ��η �
���η D�

η ,�η �,,
η ��,�
η±η
,���η ��η ��
η 76,�η o�
η �
6
η ��
�η .�,
η����η D
���η .��6
.η
��#
η*��KηhA'η ÷
,�����	η��
η)6,�2
ηo�
η.�	#�
.η�
6
η$.$����η
D�

η ,�η .
66��

η zˉ���.η D,$��

η �.η .�,��η ��η *��&η h�"η
�ʈ�	�η ��η ��
η ���
6η )6,�2
η %�
η �
6
η .,D
��D
.η 	,̘�

η ��η
D
���η J*��Kη hw4η ��
η6
�$��6��η��η��
η 76,�η%�
η Úk��
.���
4η ±η
*��.Kη A5η ��
η A�η .�,�η `,D��η .�	#�
η ��
η .	���
¬η *��Kη A9η
�η `̍D��η �����,ȃ,#'η Ζη*��Kη AGη �.η ��
η 
�6��
.�η .,6�η ,�η.Ã
ÿ6.η
0$�
η��η:$6,�
η��,$͕η9A5η)K>'¬η����
η*��Kη Ahη�.η`,D��Kη
*��'η AAη 6
�6
.
��.η 
�6��η 76,�η %�
η �,��."η *��Kη A]η �η �
6�η
.D���η �6,�2
η �����η 06ηUʨ�
η D
���η �,6#η Á,Dη ��
η )6���.�η
)6,�2
η%�
¬η*��ëη A�η�η����®D�#
6."η��
η*���η Awη�ηD,�
6�.η
�����η ċ�,Dη `,D��η *6��ȣ
"η��
η *��.'η °5η ��
 ƍη°�η `,D��η
�6,�
�.ëη

���

����4 �4

����4 �4

8^:η :%`_ǢǓ38η 8FFǣ3η

����4 '� 4
�")#4 "2$4 �4 �4 �4

����� ���

!,1/$.%"*4 -,%*04 �4 �4 �4

9Ƥη



MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 

▸ Learning (sounds like knowledge…)

▸ But what is that? Not certain. Not universal. Not objective. Not eternal.  

▸ Systems - well everything is a system; the name just signals context … to which we should pay more attention  

▸ But what do these systems do?

▸ On the basis of data (symbolic views of part of the world)…
which we choose (or take for granted)…
they distill the data into a model (an approximation)…
in order to predict (which can be turned into an act) …
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MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 

▸ Learning (sounds like knowledge…)

▸ But what is that? Not certain. Not universal. Not objective. Not eternal.  

▸ Systems - well everything is a system; the name just signals context … to which we should pay more attention  

▸ But what do these systems do?

▸ On the basis of data (symbolic views of part of the world)…
which we choose (or take for granted)…
they distill the data into a model (an approximation)…
in order to predict (which can be turned into an act) …
on our (or others) behalf…
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MACHINE LEARNING SYSTEMS
▸ Are everywhere; I hardly need justify interest in them… 

▸ Machine (or tool)?

▸ Tools under our control, and require skill to use

▸ Machines usually ascribed some autonomy 

▸ Learning (sounds like knowledge…)

▸ But what is that? Not certain. Not universal. Not objective. Not eternal.  

▸ Systems - well everything is a system; the name just signals context … to which we should pay more attention  

▸ But what do these systems do?

▸ On the basis of data (symbolic views of part of the world)…
which we choose (or take for granted)…
they distill the data into a model (an approximation)…
in order to predict (which can be turned into an act) …
on our (or others) behalf…
according to goals we (or others) set…
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▸ ML systems: an actuarial technology 
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Insights From Insurance for Fair Machine Learning: 
Responsibility, Performativity and Aggregates
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▸ ML systems are now deployed  in the world, taking Marx’s exhortation to heart…

▸ Not just to understand the world, but to change it

▸ This necessitates a rethinking of what information and statistics are

▸ Especially relevant when the data is about people                              

Information is not just about knowing; it acts upon the world
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▸ Specific goal: find the  that minimises 
the average loss   

h

▸ where  is a function  h 𝒳 → 𝒴

▸ Actually lower our sights; fix a 
hypothesis class  and consider…   ℋ
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unquestioning acceptance of mysterious probabilities may 
have many sources, but the authority and closed appearance of 
Kolmogorov’s framework is surely one of them. 


                                                                  — Glenn Shafer (2015)
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▸ The limit exists, and is, by definition,  “the” probability 

▸ But there’s a catch — I chose the sequence to ensure this!

▸ What about all the other possible sequences?

▸ “Most” of them behave similarly; just count for finite sequences

▸ Then can argue about limits for infinite sequences

▸ But there are many ways of quantifying “most”, and the choice matters!

▸ And what does this say about the sequence you collect in the world?

▸ Nothing!!!!

▸ It presumes some stability (the phenomenon that the averages converge is called “statistical stability”)

▸ Most interesting stuff is not stable (non-equilibrium). Life, Society, Almost Everything!

Strictly Frequentist Imprecise Probability
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MASS PHENOMENA
▸ Probability “mass”…

▸ Imagined to be like sand

▸ Data on people:  
treat people like sand…

▸ But look closely at sand!

▸ What would a theory of 
mass phenomena that 
took account of 
individuals actually look 
like?

Ralph Alger Bagnold size-grading of sand 
by wind, Proc. R. Soc. Lond. A163, 250–
264, 1937
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▸ Starting with the data gives new insight into when something like probability exists

▸ But it does not answer the trickier question: what is the relationship between an 
individual and a probability?

▸ This matters, and is at the core of many people’s anxiety with ML systems

▸ Because statistics deals with aggregates, and ethics concerns the 
individual…
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BEYOND EXPECTATIONS
▸ How to aggregate?

▸ Many more non-linear expectations 
than linear ones!

▸ Turns out the sensible ones are 
combinations of expectations

▸ Very nice convex geometry

▸ Structure and stratification

▸ Useful for imposing fairness, 
robustness to perturbations, and 
controlling sensitivity to outliers

Risk Measures and Upper Probabilities: 
Coherence and Stratification

Tailoring to the Tails: Risk Measures 
for Fine-Grained Tail Sensitivity

Aggregating data in ways other 
than the average, and the 
connection to the earlier points

R(X) = sup
P∈𝒫

𝔼P(X)
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5.   Rearrangement invariant norms

6.   de Finetti with a bid-ask spread

7.   Set systems for probability (Ω, 𝒮, μ)

8.   Generalised frequentism (von Mises)

All these approaches lead to same 
object: nonlinear generalised 
expectation:


 
R(X) = sup

P∈𝒫
𝔼P(X)

And they have already been used in ML 
(e.g. SVM via CVaR


 
The upshot: multiple compelling  
reasons to go “beyond expectations”

Fairness Risk Measures

Strictly Frequentist Imprecise Probability

Systems of Precision: Coherent Probabilities on Pre-Dynkin 
Systems and Coherent Previsions on Linear Subspaces

Risk Measures and Upper Probabilities: Coherence and Stratification
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▸ How to reliably perform actuarial reasoning on data without assuming “iid”?

▸ How to model (and mitigate) various corruptions of data (including insidious ones)?

▸ How to think ethically about data (especially about people) which are not “drawn 
from a distribution” or are non-ergodic / non-equilibrium?

▸ What is information in a non-equilibrium situation?

▸ How to reason about the effects of data (e.g. performativity) sans stochasticity?

▸ How to make better rhetorical practices when reasoning actuarially?

SIX KEY QUESTIONS I WOULD LIKE TO ANSWER
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▸ All knowledge is relational  —  so focus on the glue, not the wood

▸ Foundations are an interface to the world  —  so pay attention to the world

▸ Revolutions require creative destruction  — so be explicit about what to tear down

▸ Much baggage is old and hidden  —  so follow problems to their roots 

▸ Seeking novelty leads to trivia   —  so seek to understand and take novelty as a gift

▸ One-way or approximate results are ephemeral — so seek exact characterisations

▸ A professor’s largest legacy is in people  —  so focus upon helping them grow

It ain’t what you do but the way that you do it — that’s what gets results!
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▸ Formal (“courses”)

▸ Informal (“tapas”)
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▸ Data is given, and it represents the facts 
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EIGHT THINGS I DISAGREE WITH
▸ Data is given, and it represents the facts 

of the world, and is incontrovertible

▸ ML algorithms are black boxes, and they 
thus need opening & explaining

▸ AI systems “make decisions” and are 
autonomous (and that’s ethically bad)

▸ We (thus) need to regulate the 
technology of Machine Learning

▸ The more data the better, and with 
enough data we don’t need to think

▸ There is “the probability” for every event, 
and thus “the probability distribution”

▸ There is one notion of information, and it 
only concerns knowing 

▸ ML is not rhetorical; it is objective (it is 
“data driven” … and data is fact)
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 There is nothing more deceptive than an obvious fact. 
     — Arthur Conan Doyle, The Boscombe Valley Mystery 

▸ “Data as fact”

▸  The foundation of the “discipline” of statistics:

▸  The prospectus of the Statistical Society of London (1838) stated  
“The Statistical Society will consider it the first and most essential rule of  
its conduct to exclude carefully opinions from transactions and publications.” 
[page 47 of The Exclusion of Opinions, The London and Westminster Review, April-August 1838]

▸ Their motto was  aliis exterendum —  “to be threshed out by others”

▸ The wanted to sever any connection between the data and its use

▸ Nowadays: “benchmark data sets” ; but what gets lost in this view of data?
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FROM INGESTING TO STUDYING DATA

▸ Particular focus: failure of usual models of data

▸ Need to pay attention to the data itself …

▸ ML perspective: Data is “drawn iid from some distribution” 
                     



JOHN VENN ▸ Grouping into “natural kinds” underpins 
statistical regularity (cf. the “reference class 
problem”!) 
 
“Such regularity as we trace in nature is owing, 
much more than is often suspected, to the 
arrangement of things in natural kinds, each of 
them containing a large number of individuals.  
…    
 
A large number of objects in the class, together 
with that general similarity which entitles the 
objects to be fairly comprised in one class, seem 
to be important conditions for the applicability 
of the theory of Probability to any phenomenon.”  
 
John Venn, The logic of chance (3rd edition), MacMillan and Co., 1888, pages 55-56
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THE (NEW) CATEGORICAL IMPERATIVE

▸ No matter how “big” your data, the classificatory problem remains

▸ You are not “representing the world”. 

▸ At best you are representing how you represent the world…

▸ A more significant problem: 

▸ You build a complex statistical model; it “works well”

▸ What does this say about an individual?
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DATA AS “RANDOM VARIABLES”
▸ The canonical model of “data”

▸ Two small difficulties from a mathematical perspective:


▸ They are not “random” ; they do not “vary”  


▸ Because they are simply (measurable) functions!

▸ Interpreting “random” and “variable” is hard!


▸ Bertrand Russell reckoned the notion of a “variable” 
to be “one of the most difficult to understand” 
notions in mathematics

▸ Deep learning researchers are of little help…

▸ But we have a well accepted mathematical theory of 
probability.  Surely the answer is known?

▸ Indeed! Based upon the Kolmogorov’s axiomatisation.  
So what does he have to say?



KOLMOGOROV’S ADVICE:



BEYOND DATA
Considering what happens when 
we do not take data for granted



BEYOND DATA

▸ “Data” means that which is given

Considering what happens when 
we do not take data for granted



BEYOND DATA

▸ “Data” means that which is given

▸ “Convenience samples” — data you found lying around somewhere

Considering what happens when 
we do not take data for granted



BEYOND DATA

▸ “Data” means that which is given

▸ “Convenience samples” — data you found lying around somewhere

▸ How good a “representation” of the world is it?

Considering what happens when 
we do not take data for granted



BEYOND DATA

▸ “Data” means that which is given

▸ “Convenience samples” — data you found lying around somewhere

▸ How good a “representation” of the world is it?

▸ You can not answer this by just looking at your data!

Considering what happens when 
we do not take data for granted



BEYOND DATA

▸ “Data” means that which is given

▸ “Convenience samples” — data you found lying around somewhere

▸ How good a “representation” of the world is it?

▸ You can not answer this by just looking at your data!

▸ What to do? 

Considering what happens when 
we do not take data for granted



BEYOND DATA

▸ “Data” means that which is given

▸ “Convenience samples” — data you found lying around somewhere

▸ How good a “representation” of the world is it?

▸ You can not answer this by just looking at your data!

▸ What to do? 

▸ First: think of Data (given), Capta (taken), Constructa (made)

Considering what happens when 
we do not take data for granted



BEYOND DATA

▸ “Data” means that which is given

▸ “Convenience samples” — data you found lying around somewhere

▸ How good a “representation” of the world is it?

▸ You can not answer this by just looking at your data!

▸ What to do? 

▸ First: think of Data (given), Capta (taken), Constructa (made)

▸ Another possibility: study the multitude of ways data can be corrupted

Considering what happens when 
we do not take data for granted



BEYOND DATA

▸ “Data” means that which is given

▸ “Convenience samples” — data you found lying around somewhere

▸ How good a “representation” of the world is it?

▸ You can not answer this by just looking at your data!

▸ What to do? 

▸ First: think of Data (given), Capta (taken), Constructa (made)

▸ Another possibility: study the multitude of ways data can be corrupted

▸ Seek to understand the effects; not to just “fix” the problem

Considering what happens when 
we do not take data for granted
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BEYOND INFORMATION
▸ There is a nice story relating 

loss functions to information

▸ Based on classical 
expectations  𝔼

▸ What do you get when 
using generalised 
expectations?

▸ Can this give analogous 
insights in situations where 
distributions are not stable 
(non-equilibrium)? 
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FAIR DYNKIN!

▸ Fairness as an actuarial problem

▸ Fairness = Independence

▸ Independence = Intersections

▸ Intersectionality = Dynkin systems

▸ Hence “Fair Dynkin”

▸ Also: Independence = Randomness

▸ And randomness inherently pluralistic or relative

▸ Thus too for fairness (no surprise there really)
Fairness and Randomness in Machine Learning: Statistical Independence and Relativization
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INTERSECTIONALITY AND IMPRECISION

▸ Failure of intersectionality means the system of events is no longer an “algebra”

▸ Only closed under disjoint unions - a “Dynkin System”

▸ Measure theory is not a technical annoyance to avoid by an incantation

▸ But a crucial part of one’s modelling of the world

Systems of Precision: Coherent Probabilities on Pre-Dynkin 
Systems and Coherent Previsions on Linear Subspaces

When posing problems in probability calculus, it should be required 
to indicate for which events the probabilities are assumed to exist.   
Andrei Nikolaevich Kolmogorov. The general theory of measure and probability calculus. Collected Works of the Mathematical Section, Communist Academy, Section for Natural and 
Exact Sciences, 1:8–21, 1927/1929. In Russian. Translated to English in A.N. Shiryayev (Editor), Selected Works of A.N. Kolmogorov, Volume II Probability and Mathematical Statistics, 
pages 48–59, Springer 1992.  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WHEN RELATIVE FREQUENCIES DON’T CONVERGE

▸ “Non-stochastic randomness”


▸ Start with sequences (the data)


▸ Compute relative frequencies 


▸ Von Mises assumes they converge to a limit — “the” probability 


▸ What happens when they don’t? (And no, there is no “law” that says they do)


▸ Multiple “cluster points” — generalisation of the mathematical limit


▸ Every sequence generates a sequence of relative frequencies with a set of cluster points


▸ Any connected set is the set of cluster points of the relative frequencies of some 
sequence

Strictly Frequentist Imprecise Probability


