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’ SECTION B] THEORY OF ONE APPARENT VARIABLE
¥102. Fi(@).pvozr.=:p.v.(z). ¢z

Dem.

F.%101.%16.JF:.p.v.(2).dpx:D.pVvdy:.
[%10°11] DY) 2P VA8 pB2 D PV DY 5
[%10-12] dbwp.ve(@).dpz:Id.(y).pvdy
F.%10°12. dbi(y)-pvedy.d:ip.v.(x). px
F.(1).(2). DF.Prop.

¥1021. F:(z).pdPz.=:p.D.(2). [*1()'2 %7—)]

This proposition 1s much more used than %10-2.

¥1022. F:i(2).¢pz.Yz.=:(2). pz: (2) .Yz
Dem.
F.%10°1. dF:(2).pr.Px.d.dy.Yy.
[%326] D.dys

[%10°11] Qb (@ :(@)- Pz . Py

[%10°21] db:(z).dpa Y. .(y). by

F.(1).%327. DFzi(a). oz Y. .. Yr:.

[%10°11] DF:(@:(@).-dr.Pz.d Yz,

[%10-21] Dli(z)edpz.Yz.d.(2). V2
F.(2).(8).Comp.DF:i(0).dx.Y2.D:(y) Py :(2). ¥z
F.%10-14:11. DFi()i(@)epri() Y.y .y,
[%10-21] dbFi(@).pz:(@).Yz:Id.(y)-dy-¥y (5)
F.@4).(5). D F . Prop

The above proposition is true whenever it is significant; but, as was
pointed out in connexion with %10'14, it is not always significant when

“(2) « ¢ : (z) . Yx” is significant.

%10:221. If ¢z contains a constituent x (2, ¥, 2, ...) and yrz contains a con-
stituent v (2, u, v, ...), where  is an elementary function and y, 2, ... %, v, ...
are either constants or apparent variables, then ¢Z and Y& take arguments
of the same type. This can be proved in each particular case, though not
generally, provided that, in obtaining ¢ and 4 from y,  is only submitted
to negations, disjunctions and generalizations. The process may be illustrated
by an example. Suppose ¢z is (y).x (2, ¥).D.0z, and Yz 1s fo. I.(y) . x (2, ¥)-
By the definitions of %9, ¢z is (q¥).~x (z, y) v Oz, and Yz is (y).~fzvx (2, ¥).
Hence since the primitive ideas (z). Fz and (57z) . Fz only apply to functions,
there are functions ~y (&, §) v 62, ~y2v x (£, §). Hence there is a proposi-
tion ~vy (a, b)v Ba. Hence, since “pvq” and “~p” are only significant
10—2
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THE ENGINEER'S VIEW

» “an element of a structure which connects it to the ground” — Wikipedia
» Abstracting just slightly:  An Interface to the World

» And what happens if your intertace does
not respect the properties of the world?

» Or it the world changes, and what was
solid before no longeriis...
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TO ENGINEER
FOUNDATIONS OF MACHINE IS HUMAN

LEARNING SYSTEMS ok e o Bttt

Study the interface of ML systems to the world
» Pay attention to what we assume about the worla

» Like other areas of engineering, learn from failure

author

“Serious, amusing, probing,

sometimes frightening

and always literate.”

—Los Angeles Times

HENRY PETROSKI

Author of THE EVOLUTION OF USEFUL THINGS
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» Are everywhere; | hardly need justity interest in them...

» Machine (or tool)?

» Tools under our control, and require skill to use
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MACHINE LEARNING SYSTEMS

> everywhere
» Machine
4
4
» Learning
4
» Systems
> ofe

» On the basis of data (symbolic views of part of the world)...

which we choose (or take for granted)...

they distill the data into a model (an approximation)...
in order to predict (which can be turned into an act) ...
on our (or others) behalf...

according to goals we (or others) set...

context ...
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» Two styles of reasoning with data: direct, and actuarial

/3

638

63

58

53

48 o

43 - :
1 2 3 4 5 6 / 8 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7

» Statistical Mechanics as an exemplar
» ML systems: an actuarial technology

} (W h |Ch mMmeans we can ‘ earn fro m | Nsurance | ) Insights From Insurance for Fair Machine Learning:

Responsibility, Performativity and Aggregates
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FROM KNOWING TO INTERVENING

» ML systems are now deployed in the world, taking Marx’s exhortation to heart...
» Not just to understand the world, but to change it

» This necessitates a rethinking of what information and statistics are

» Especially relevant when the data is about people |J\

Information is not just about knowing; it acts upon the world
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FORMALISING ML: MINIMISE "EXPECTED RISK"

» The world gives us X, Y
» Goal: predict Y from X
» Using an hypothesis h

» X,Y are governed (drawn from)

some tixed joint distribution Py

» The loss function £ judges how close
h(X) isto Y; smalleris better

» Take the of the loss with
respect to Pyy

arg min (Y, h(X))
r XY

he ¥+

» Specitic goal: find the /i that minimises
the loss

» where his afunction X — ¥

» Actually lower our sights; fix a
hypothesis class # and consider...

argmin £ £(Y, h(X))
he#x
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)

)

H

argmin £ 2(Y, h(X))

hE% implies an underlying

. . probability space (2, &, u)
the "model class” — the focus of much ML research

arg min algorithms to optimise — the focus of most of the remainder

h

4

the hypothesis — focus of "explainability”

the loss tunction, how performance is judged The geometry and calculus offosses
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WHATTO STUDY? argmin £ (Y, 1(X))

hE% implies an underlying
probability space (€2, &, 1)

y & the loss function, how performance is jJudged The geometry and caleulus of losses

) expectation to aggregate individual losses / encode fairness

y & the set system (usually a 6-algebra) — the set of measurable events

» Y, X our real model of the world — (X, Y)) as iid "samples from a distribution”
arg min (Y, h(X))

he#H
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Considering what happens when

If something is a fact, then it What | chose not to question, o resiesms o
is incontrovertible, and thus and treat as incontrovertible,
is not to be questioned. | call a fact.

} I_abe‘ nO|Se - Change the ‘OSS A General Framework for Learning

under Corruption: Label Noise,
Attribute Noise, and Beyond

» Attribute noise - change the model class

» What about non-stochastic corruptions (who says the corruption process needs to be
probabilistic?)

» Selection bias — the stupidity of “big” data”:
» Facebook survey on covid vaccine uptake.

} S a m p ‘ e S i Ze 2 5 O / O O O Valerie C.Bradley, Shiro Kuriwaki, Michael

Isakov, Dino Sejdinovic, Xiao-Li Meng, and Seth
Flaxman. "Unrepresentative big surveys
significantly overestimated US vaccine uptake."

» Effective sample size due to selection bias: 10 Netrs 600 - 7890 (2021695700

» Open question: how to model selection bias?
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The assumption that a definite probability ... in fact exists for a
given event under given conditions is a hypothesis which must
be verified or justified in each individual case.
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be verified or justified in each individual case.

Therefore, we should have distinguished between randomness proper

(as absence of any regularity) and stochastic randomness (which is
1951 the subject of the probability theory).
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