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Abstract

Probabilistic predictions can be evaluated through comparisons with observed label frequencies, that is, through

the lens of calibration. Recent scholarship on algorithmic fairness has started to look at a growing variety of

calibration-based objectives under the name of multi-calibration but has still remained fairly restricted. In this paper,

we explore and analyse forms of evaluation through calibration by making explicit the choices involved in design-

ing calibration scores. We organise these into three grouping choices and a choice concerning the agglomeration of

group errors. This provides a framework for comparing previously proposed calibration scores and helps to formulate

novel ones with desirable mathematical properties. In particular, we explore the possibility of grouping datapoints

based on their input features rather than on predictions and formally demonstrate advantages of such approaches. We

also characterise the space of suitable agglomeration functions for group errors, generalising previously proposed

calibration scores. Complementary to such population-level scores, we explore calibration scores at the individual

level and analyse their relationship to choices of grouping. We draw on these insights to introduce and axiomatise

fairness deviation measures for population-level scores. We demonstrate that with appropriate choices of grouping,

these novel global fairness scores can provide notions of (sub-)group or individual fairness.

1 Introduction

Enabled by the now widespread availability of data and compute, many data-driven tasks are increasingly aided by
machine learning systems. Examples of this include the assessment of individual risk, for example for credit default.
This comes with its own risks such as structurally biased data collection (O’Neil, 2017), reinforcement of power struc-
tures (Kasy and Abebe, 2021) or algorithmic monoculture (O’Neil, 2017; Kleinberg and Raghavan, 2021). It does,
however, have the advantage that algorithms can be thoroughly assessed, also with regard to notions of fairness. As
Vredenburgh (2022) argues, fairness is a standard of justice (among others) that can be defined as the requirement of
’respecting people’s claims in proportion to the strength of those claims’. In this work, we concentrate on fair proba-
bilistic predictions in light of given data – in particular, on notions of fairness based on calibration. This is somewhat
restrictive but – contrary to more ’substantive’ notions of fairness (Green, 2022) – something formal approaches are
well suited for; while there is a place for formal work on fairness, it cannot stand alone (Selbst et al., 2019).

The term ’calibration’ can refer to either the agreement of predictions with the frequency of observed labels or
the process of aligning them; we are concerned with and use it in the former sense. Vredenburgh (2022) notes that
’[m]any computer scientists, social scientists, and philosophers favour calibration as the best metric for fairness’.
To sensibly compare predictions with label frequencies, it is necessary to group datapoints together. This is most
commonly done via bins of the prediction space [0,1], with some variations especially in recent years – sometimes in
the context of fairness and then often under the name of multi-calibration (Hébert-Johnson et al., 2018). A step in the
direction of local notions of calibration has been made in (Luo et al., 2022) and (Cabitza, Campagner, and Famiglini,
2022), each proposing a global score with components that can be localised in a learned representation space and in
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prediction space, respectively. An ethical analysis of calibration-based notions of fairness requires an understanding
of the choices involved in arriving at such notions. However, these choices have hardly been explicitly discussed or
analysed in previous literature. In this work, we present a conceptual framework from the ground up with the goal of
generalising previous notions of (multi-)calibration and making relationships between them more explicit. Contrary
to the understanding of calibration on subgroups as a refinement of group calibration, we demonstrate that calibration
originates at a localised level and is then extended to groups.

We elaborate on the emergence of groups as a fundamental aspect of calibration in practice and on the historical
development of its now prevalent understanding in Section 2. A major goal of this work is then to point to the vast
space of possible alternatives and analyse the choices involved. We demonstrate advantages and disadvantages of such
alternatives for assessing prediction quality and fairness. Where possible, we capture salient aspects of these trade-offs
mathematically. We show that calibration allows for both global and local evaluation, that is, both at the population
level and localised to some point in input space. The former involves the additional choice of an agglomeration
function over group calibration errors. The choices involved in global calibration scores as well as the structure of the
present paper are captured in the following diagram:

principle size structure︸ ︷︷ ︸
grouping

agglomeration

Most fundamental is the choice of a general principle according to which datapoints are grouped together. This can
be arbitrary but will usually be some notion of vicinity in input space or prediction space (Section 3.1). Independent
of the grouping principle, there is a trade-off concerning the size of the group between robustness and informativeness
(Section 3.2). The third choice involved in the selection of a grouping concerns its general structure. Here, the options
include bins of fixed size but also overlapping groups of nearest neighbours or kernels (Section 3.3). The remaining
choice involved in a global score is the agglomeration function applied to the group errors. We show that the commonly
used maximum and average of absolute group errors are the two extreme cases of a broader class of functions suitable
for evaluating prediction quality (Section 4). To introduce population-level fairness scores based on calibration, we
then axiomatise a matching class of deviation measures (Section 5.1). Our analysis of the richness of possible choices
culminates in a demonstration that calibration errors on suitable groups, agglomerated by a deviation measure, can
provide scores that capture notions of either individual or (sub-)group fairness (Section 5.2). We summarise our
contributions as follows:

• We show that calibration can be construed more broadly than often assumed, which allows novel approaches to
evaluate probabilistic predictions.

• We organise the space of possible calibration scores through a small number of largely independent choices,
pointing out considerations and trade-offs relevant to these choices. We capture salient aspects of these trade-
offs mathematically.

• To our knowledge, we propose the first provably consistent estimators of individual calibration, based on kernels
and a novel notion of k-nearest neighbour-based groupings.

• We characterise the space of functions suitable for agglomerating calibration errors into global scores of predic-
tion quality, capturing existing notions of calibration.

• We propose and axiomatise agglomeration functions for global calibration-based fairness scores and show that
through suitable choices of grouping, such scores can provide notions of (sub-)group fairness as well as notions
of individual fairness.
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2 Calibration From the Ground Up

A common definition of (perfect) calibration is that for all v ∈ [0,1], among the datapoints which receive the prediction
v, the (expected or observed) frequency of the label ’1’ is equal to v. In this section, we motivate our perspective on
calibration as a notion that actually originates at the individual level and requires choices of grouping in practice.
We also provide a tentative historical explanation for why the understanding of calibration is usually more narrow.
Throughout the paper, we investigate the problem of predicting binary labels {0,1} from inputs in a space X .

2.1 From individuals to groups

Given access to a dataset {(xi,yi)}i∈N with infinite datapoints for each input x ∈ X ,1 a probabilistic predictor p̂ : X →
[0,1] of binary labels would be ’correct’ if it predicts the true probability everywhere, as reflected in the limiting
frequency of the label ’1’.2 Thus, a probabilistic predictor p̂ should satisfy

∀x ∈ X : p̂(x) = lim
n→∞

1
|V n

x |
∑

i∈V n
x

yi with V n
x := {i ≤ n : xi = x}. (1)

In practice, of course, we do not have access to infinite data.
From now on, we assume a finite dataset D := {(xi,yi)}i∈I with I := {1, ...,N} and XD := {xi}i∈I ⊂ X . If we

had lots of data for every input, we could still impose a criterion of perfect point-wise, ’individual’ calibration. Now
based on limited data, this would take the similar form

∀x ∈ XD : p̂(x) =
1
|Vx| ∑

i∈Vx

yi with Vx := {i ∈ I : xi = x}. (2)

The availability of such abundant data would arguably render the deployment of machine learning models superfluous
and suggest that the representation of individuals in the data is too coarse to treat them adequately.

In interesting settings, we have at most a few datapoints per input, and usually no data at all for some inputs. This
is, of course, why we need machine learning algorithms with constrained hypothesis classes and inductive biases in
the first place. To compare label frequencies with predictions ’at x’, we then need to somehow extend the considered
groups from those consisting only of identical inputs Vx to more general groups of datapoints Ix ⊂ I.3 This then leads
to the more general criterion of calibration

∀x ∈ XD :
1
|Ix| ∑

i∈Ix

p̂(xi) =
1
|Ix| ∑

i∈Ix

yi. (3)

Note that, in contrast to (1) and (2), this does not suggest an ’optimal’ value of p̂(x). Instead, it provides a quality
criterion that can be localised to a particular point in input space. As Dawid notes, ’[t]he calibration criterion has
some similarity with the frequency definition of probability, but does not require a background of repeated trials
under constant conditions’ (Dawid, 1982, p. 606). Based on this, we can define the (signed, i.e. positive or negative)
calibration error of a group I ⊂ I to be

c(I) :=
1
|I| ∑i∈I

(p̂(xi)− yi). (4)

1Within this particular paragraph, and only here, we assume X to be countable for ease of presentation.
2Note that in general, such a limit need not exist. While the law of large numbers is often taken to show that such limits exist and do reflect

the true probability with probability one, this depends on the particular measure imposed on the infinite-dimensional space of possible sequences
(Schnorr, 2007, p. 8). We generally do not assume the existence of a true probability distribution in this paper, except where explicitly stated.

3To make the most of the available information and avoid dependence on further sub-selection, it is desirable to always take all datapoints that
instantiate a given input, i.e. Ix =

⋃
z∈Ux Vz for some suitable subset of the input space of Ux ⊂X .
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2.2 Conventional understanding of calibration

A lot of work on calibration can be seen as defining the Ix via pre-defined bins B1, ...,BK forming a partition of [0,1]
(Zadrozny and Elkan, 2001). The most common example of this is the Expected Calibration Error (ECE; Naeini,
Cooper, and Hauskrecht, 2015) defined as

ECE(p̂) =
K

∑
k=1

|Bk|
N

∣∣∣∣∣ ∑
i:p̂(xi)∈Bk

p̂(xi)− yi

∣∣∣∣∣ . (5)

While often assumed to be the way to think about calibration, such prediction-based grouping is only one very specific
choice, and not always suitable. It does have the advantage that it allows for quickly assessing general under- or
overconfidence of predictors, a question that has proven to be particularly relevant for modern neural networks (Guo
et al., 2017). For a formulation of the ECE (and other calibration scores) more in the style of (3), see Appendix A.

However, there also seem to be contingent historical reasons for the prevalence of prediction-based grouping for
calibration. The evaluation of probabilistic predictors was primarily researched in the meteorological community and
published in meteorology journals until well into the 70s, the Brier score (Brier et al., 1950) being perhaps the first
notable work. Here, predictions were made by human forecasters – potentially with the help of automated procedures
(Sanders, 1963) – and their evaluations only had access to predictions and observed outcomes, not to the inputs.4

Furthermore, these forecasters only assigned probabilities on a finite scale, such as multiples of 10%, which did not
require to impose bins and, thus, made these groups seem even more ’natural’. Calibration in the sense of (1) - (3) was
often called ’reliability’ or ’validity’, while ’calibration’ was used in relation to over-and under-confidence (Sanders,
1963), closer to the original meaning of the word (regarding the grounding of scales or instruments).

When statisticians subsequently picked up the topic (and seem to have renamed it ’calibration’), they continued
to use weather forecasting as the primary example and modelled the setup as a sequence of forecasts and outcomes.
They also extended the notion of calibration to basically the general setting of (3), speaking of subsequences rather
than groups: Dawid (1982) admits roughly any subsequence that does not take into account the ground-truth labels. In
more recent work, Dawid (2017) suggests that also the information on which predictions are based can be taken into
account for ’H-based’ grouping, but the discussion remains on an abstract level.

Roughly concurrently, work on ’multi-calibration’ has suggested explicitly taking into account input information
for selecting groups: The original paper on multi-calibration (Hébert-Johnson et al., 2018) proposed to look at all
computable groups – a proposal that has also been made in the sequence setting by (Dawid, 1985). But even ap-
proaches based on similarity of learned representations either prescribe that the selected groups have equal predictions
(Burhanpurkar et al., 2021) or apply additional binning in prediction space (Luo et al., 2022).5 Optimisation targets
that omit this additional binning are sometimes referred to as ’multi-accuracy’ (Hébert-Johnson et al., 2018; Kim,
Ghorbani, and Zou, 2019) but we are not aware of a thorough discussion of this choice. We find this name confusing
since a predictor could be very wrong on every datapoint but still ’multi-accurate’ – this seems to not be in line with
established notions of accuracy.6 By taking into account the available structure in the input space, different notions of
vicinity can be used to construct groups Ix ’around x’. Calibration errors of such groups allow to recover a localised
sense of calibration – we return to this in sections 3.3 and 5.2. In the following section, we discuss considerations
concerning the choice of grouping.

4Interestingly, it seems that these forecasters used a strategy of ’sorting all instances into an ordered set of categories of likelihood of occurrence,
and labelling each category with a specific likelihood, or probability, of occurrence’ (Sanders, 1963, p. 200, original emphasis). This fits nicely
with then assessing the prediction quality through calibration based on groups of similar prediction.

5A very recent exception is (Kelly and Smyth, 2022), suggesting to only use ECE-style binning on a single input feature like age.
6Consider a setting where in each group, there are equally many 1s as 0s among the labels and the predictor always predicts p̂(xi) = 1− yi or

always predicts 0.5. In both cases, the average label per group, 0.5, coincides with the average prediction in every group.
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Intuition (Section 2): To assess a predictor p̂ at a point x, we could compare it to the average label at x if we had
an infinite (1) or a large (2) number of datapoints for x. Since we usually do not have many datapoints for a given
x, we can instead take a group of datapoints Ix including it and compare their average prediction to their ratio of
positive labels (3). For partly historical reasons, Ix has almost exclusively been taken to be the group of datapoints
that is similar to x in their predictions.

3 Grouping Choices

Rather than a requirement, assessing calibration on prediction-based bins is only one particular choice. This naturally
leads to the question of what other options there are to group datapoints. In the following, we constrain ourselves
to groupings based on vicinity in the input- or prediction space, that is, based on notions of cohesion and similarity.
One alternative, suggested in (Burhanpurkar et al., 2021), would be to consider all efficiently computable groups.
Vicinity-based groups already give a wide space to explore and make groups and their errors particularly interpretable,
which is helpful both for improving predictors and for questions of fairness. Note that one may also pursue different
approaches simultaneously to gain more insights, given that there is no ’correct’ way of grouping. In the words of
Nelson Goodman, ’similarity is relative and variable, as undependable as indispensable’ (Goodman, 1972, p. 20).

To better understand a large space of possible choices, it is often helpful to consider inherent trade-offs. For the
case of grouping datapoints, these include vicinity in the input space versus in prediction space (Section 3.1) as well
as the size of groups (Section 3.2). The third choice concerns the grouping structure, that is, how a notion of vicinity
is applied to form groups (Section 3.3).

3.1 Vicinity-based grouping principles

Notions of vicinity particularly relevant to grouping datapoints are those of group cohesion and individual similarity.
We formalise cohesion as a property of topological spaces, namely connectedness. Note that we review basic notions
of general topology in Appendix B. Groupings based on similarity make use of distances between points, e.g. through
a metric. In the sense that every metric space induces a topological space and every ball is a connected set in the
induced topology but not vice versa, cohesion is weaker than similarity. Cohesion is usually not sufficient to define
groups, which means that vicinity-based groups generally rely on some notion of similarity.

A choice inherent in building groups based on vicinity is whether to focus on predictions p̂(xi) (as in the ECE)
or input features xi.7 As described in the previous section, the popularity of prediction-based grouping may be partly
due to the roots of calibration in meteorology where no useful structure in the input space was available for evaluating
predictors. Its main advantage is that it facilitates the assessment of over- and under-confidence (in terms of distance
from 0.5), by separating datapoints with high predictions from those with low predictions. On the other hand, grouping
datapoints based on vicinity in X allows evaluating p̂ in specific areas of the input space. This can be desirable, for
example, in the context of fairness where we are interested in the performance of p̂ on groups that are often in some
way local or similar in the input space. Some recent approaches propose to group points based on similarity of
representations learned by some feature extractor (Burhanpurkar et al., 2021; Luo et al., 2022) An advantage of such
approaches is that they implicitly make use of both inputs and predictions while a disadvantage is that they do so in an
opaque way. Especially for fairness applications, this might be difficult to justify since the ethical significance of such
groups is less clear compared to groups defined explicitly in input or prediction space.

7Interestingly, similarity of input and of prediction can, respectively, be approximately mapped to what Campbell (1958) identified as the two
conditions for ’entitativity’ of groups: similarity and common fate.
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One important aspect of choosing a notion of vicinity is the mathematical structure that needs to be assumed.
Approaches to group fairness and multi-calibration mostly assume some set structure, often a partition given by indi-
vidual categorical features (e.g. race intersecting with gender). Relying on X -similarity requires that a sensible notion
of distance such as a metric is available in the input space.8 However, we are not usually given a metric that captures
similarity in a principled way. One option would then be to start with a standard metric (e.g. based on ∥·∥p) and weight
each feature dimension based on its observed variance or range, in an attempt to give each dimension equal relevance
for the assessment of similarity. Note that the exact form of the metric is not as central here as for Lipschitz-based
notions of individual fairness; however, although it here only indirectly influences calibration scores via the grouping,
it still remains a concern. In this sense, X -similarity requires more additional structure than prediction similarity since
the interval [0,1] comes with much less controversy about the choice of metric: All ∥ · ∥p-based metrics induce the
same intervals in [0,1] and there is no issue of balancing multiple dimensions. While there might be contexts where
e.g. distances between points close to 0 or 1 should be elevated as compared to points close to 0.5, the metric |v− v′|
seems generally well-suited to capture prediction similarity. Also note that groupings based on learned representation
implicitly use structure in both X and [0,1], through inductive biases of the extractor.

A trade-off between notions of vicinity arises due to the fact that disconnected areas in the input space may be
mapped to the same predictions (or, analogously, the same representations), leading to different notions coming apart.
We characterise this tension in the language of topology, as motivated in Appendix B. The proofs for all propositions
can be found in Appendix C.

Proposition 1 (Cohesion in domain and codomain).

a) For any continuous function f : X →Z , connectedness in X implies connectedness in Z but not vice versa.

b) For a non-constant predictor p̂ : X → [0,1] with the standard topology on [0,1], there is a topology on X s.t. p̂

is not continuous (and thus connectedness in X does not imply connectedness in [0,1]).

c) If p̂ :X → [0,1] has more than a single local minimum or more than a single local maximum, there exist intervals

in [0,1] whose preimages in X are not connected (in any Hausdorff topology on X ).

Note that a) is not only relevant for predictors p̂ : X → [0,1] but also for the feature extractors discussed above.
Groups of interest for fairness considerations usually depend on input features rather than predictions, such as group-
ings along lines of age, gender, race, and/or socio-economic background. Proposition 1 shows that unless p̂ is very
restricted, prediction-based grouping can lead to common assessment (in terms of a single calibration error) of areas
in X that are not connected. Part c) in particular shows that only very simple predictors, essentially monotonous ones,
avoid that some its approximate level sets (preimages of intervals in [0,1]) are disconnected. A potentially problematic
case in the context of fairness is when a small minority group (assumed to be similar to each other in X ) have predic-
tions similar to another, larger group such that the predictor’s behaviour on the small group is washed out in the error
of the combined group. Another problem, not directly related to topology and relevant beyond the fairness context,
is that of ’stereotyping’, i.e. when predictions are similar in two (potentially adjacent) areas of X in such a way that
p̂ over-predicts in one but under-predicts in the other: this may suggest perfect calibration in the combined group as
its average prediction may still coincide with the average label (cf. Proposition 2). X -based grouping can detect such
stereotyping while prediction-based grouping cannot. Such problems are the reason why scholars have proposed to
test calibration in multiple subgroups – however, this still allows for such effects within these subgroups.

8Strictly speaking, k-nearest neighbour approaches only require a complete and transitive ordering for every datapoint.
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3.2 Group size

The trade-off between vicinity in input space and in prediction space cannot be resolved by arbitrarily intersecting
X -similar with p̂-similar groups. This is one implication of the more obvious trade-off concerning the size of the
groups: Larger groups allow more stable estimates while errors of smaller groups contain more information about
their members.9 We formalise and quantify this in the following.

Proposition 2 (Advantage of smaller groups: More information).
Take two nonempty, disjoint sets of indices I1, I2 ⊂ I = {1, ...,N} and recall the definition of the calibration error in

(4). Then

a) Assume that ∀(i, j)∈ I1×I2 : xi ̸= x j and that not all labels yi, i∈ I1∪I2 are equal. Then a predictor p̂ :X → [0,1]
can be perfectly calibrated on I1 ∪ I2 but neither on I1 nor on I2.

b) For any predictor p̂ : X → [0,1], |c(I1)| ≤ α and |c(I2)| ≤ β entails |c(I1 ∪ I2)| ≤ α·|I1|+β ·|I2|
|I1|+|I2|

. For α = β , this

means |c(I1 ∪ I2)| ≤ α .

Proposition 3 (Advantage of larger groups: Variance).
Let (X1,Y1), ...,(XK ,YK) be pairs of i.i.d. random variables with values in X ×{0,1} and joint distribution P. Take

some p̂ : X → [0,1] and define the Bayes-optimal predictor p(x) := EP[Y |X = x]. Then

VP

[
1
K

K

∑
i=1

p̂(Xi)−Yi

]
=

1
K
EP [p(X1)(1− p(X1))] : (6)

Proposition 2a) shows that finer groups or partitions can detect more problems with the predictor. Relating this
to the above-discussed problem of stereotyping in the fairness context gives an argument for using finer groupings
or partitions. However, while larger groups may overlook more forms of stereotyping, it is also not feasible to go
arbitrarily small: Smaller groups come at the cost of giving more ’unstable’ calibration errors in the sense that a group
of K datapoints drawn independently from a true distribution P has an error variance that is inversely proportional to K

(Proposition 3). Note that the forms of these results also highlight that the group size trade-off cannot be tackled in a
general way as its character strongly depends on the distribution of data.

3.3 Alternative grouping structures

We now turn to the third choice involved in the grouping of datapoints, its general structure. As seen e.g. in the ECE
(5), a popular way to construct groups based on a metric is by using bins. The necessary choice of number and size
of bins is further complicated by the question of whether to make the individual bins equally large or to make them
contain equally many datapoints (or some other scheme).10 Still, bins are but one specific example of a partition and
yet another question is whether to use a partition in the first place. They have the advantage of allowing a natural
hierarchy of groupings since unions of non-intersecting groups are themselves sensible groups. One can also construct
partitions based on input features, e.g. using a multi-dimensional grid instead of one-dimensional bins. We already
discussed advantages of finer input-based partitions over partitions induced by prediction-based bins above. In the
following, we discuss two alternative grouping structures, which can be localised in input space.

One option is to choose overlapping groups around individual points x ∈ X or p̂(x) ∈ [0,1] by selecting their k

nearest neighbours (k-NN) in the dataset according to some notion of distance. In contrast to fixed-size balls, k-NN
9Dawid (2017) mentions a related but slightly different trade-off between robustness and incisiveness w.r.t. the amount of information taken into

account for groups on which to calibrate forecasts.
10Some considerations in the case of prediction-based bins are discussed in (Nixon et al., 2019; Vaicenavicius et al., 2019).
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directly controls the group size, independently of the distribution and size of the dataset. A downside in comparison
to partitions is that some datapoints may be part of many more groups than others.

Proposition 4 (Group overlap for X -based k-NN).
Take X = Rd and the grouping {I j} j∈I based on k-NN of datapoints x1, ...,xN using any Lp-based metric on X with

p ∈ N. Depending on the dataset, it is possible that one datapoint is part of min(N, 2 · d · (k− 1)+ 1) groups while

another datapoint is part of only one group (unless N ≤ k).

When group errors are agglomerated via a function satisfying Translation Equivariace for the purpose of evaluating
prediction quality (Section 4), this may result in an unwanted disproportionate influence of some datapoints compared
to others. However, X -based k-NN not only provides errors that can be localised in input space, it can even be shown
that its finite data estimate of the calibration errors converge to their ’true’ value in the limit of infinite data (assuming
the existence of a true distribution P) when X = Rd . In other words, such groups can provide consistent estimators
of the true individual calibration error p̂(x)−EP[Y |X = x] at each x ∈ X . Note that the existence of a true probability
distribution is a questionable assumption. Still, such theoretical results are always quite a positive sign.

Proposition 5 (Strong consistency of X -based k-NN).
Assume X = Rd , a joint distribution P on random variables (X ,Y ) with values in X ×{0,1} with Bayes-optimal

predictor p(x) := E[Y |X = x], a predictor p̂ : X → [0,1] and a metric dX on X s.t. (X ,dX ) is separable. Then

EP
[∣∣c(IN

X )− (p̂(X)− p(X))
∣∣]→ 0 with probability one as N → ∞, (7)

where IN
x denotes the set of k-NN of x with k → ∞, k

N → 0 for N → ∞.11

The advantage and disadvantage of k-NN over partitions are also shared by kernel-based notions of calibration, to
a degree determined by the chosen bandwidth. Often based on some metric, kernels can be used to weigh the influence
of datapoints in proportion to some notion of distance to x or p̂(x). Luo et al. (2022) propose kernels in a learned
representation space intersecting with prediction bins (see Appendix A), thus interpolating between local calibration
and the standard prediction binning via the bandwidth parameter. They also show that their estimator is consistent, but
with respect to the true group error rather than the individual calibration error. To capture such kernel-based notions,
we generalise calibration errors for discrete groups, defined in (4), to calibration errors for normalised distributions q

on X :
C(q) := Eq[p̂(X)− p(X)]. (8)

It can easily be checked that we can express the calibration error c(I j) of a group I j through C(q j) via the distribution

q j(x) :=
|{i ∈ I j : xi = x}|

|I j|
, (9)

thus generalising the notion of a group to a more abstract entity, a distribution on X . Note that for this, we need to
assume that groups always contain either all datapoints instantiating some x ∈X or none – that is, as a union of groups
Vx from (2), see also footnote 3. There is generally no reason to include only some datapoints instantiating a given
input but not others, especially since equal input also implies equal prediction. This is corroborated by the observation
that all groupings used in established calibration scores, surveyed in Appendix A, satisfy this. We can also prove the
consistency of X -based kernels as estimators of the true calibration error:

11This slightly simplified formulation glosses over technicalities regarding the treatment of ties. For a comprehensive discussion, see (Devroye
et al., 1994). Our proof reduces the problem to k-NN consistency of the variable Z := p̂(X)−Y (see Appendix C).
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Proposition 6 (Strong consistency of X -based kernels).
Assume X = Rd , a joint distribution P on random variables (X ,Y ) with values in X ×{0,1} with Bayes-optimal

predictor p(x) := E[Y |X = x], and a predictor p̂ : X → [0,1]. Then

EP
[∣∣C(qγ

X )− (p̂(X)− p(X))
∣∣]→ 0 with probability one as N → ∞, (10)

where qγ
x(x′) := 1

γ
k(x−x′) · 1

K with K := ∑
N
i=1

1
γ
k(x−xi) denotes the normalised distribution induced by a Borel kernel

k with the bandwidth satisfying γ → 0 and N·γd

logN → ∞ for N → ∞. See Appendix C for the constraints on k.

Note that the bandwidth parameter faces a similar trade-off to that of the group size but interpolates more smoothly.
A general takeaway from this section should be that as for ’p̂ is fair’, the statement ’p̂ is calibrated’ is not a sensible
statement as this is always relative to the chosen grouping. For calibration-based evaluation, a transparent communi-
cation of the grouping choices is therefore crucial.

Intuition (Section 3): The formation of groups that is necessary for evaluating calibration involves a number
of choices. One concerns the notion of vicinity, in particular, whether groups should be based on vicinity in
input space or in prediction space (Proposition 1). A clear trade-off concerns the size of the groups: smaller
groups provide more detailed information (Proposition 2) while larger groups provide a more stable error estimation
(Proposition 3). The third choice concerns the way a grouping is structured, which can be done via partitions or
overlapping localised groups. Prime examples of the former are bins while the latter may use k-NN or kernels, both
of which can provide consistent estimators of individual calibration scores (Propositions 5 and 6).

4 Global Calibration Scores

Thus far, we have only considered group-wise calibration errors. In order to evaluate predictors or to provide an
objective that can be optimised, it is often helpful to condense an evaluation into a single score. In this section,
we analyse the space of sensible agglomeration functions turning group errors into a global, population-level score.
The motivation for exploring the space of sensible functions is threefold: First, situating established agglomeration
functions in this space can provide a deeper understanding of their character. Second, it may inspire the use of
alternative agglomeration functions from this space. Third, it allows connecting the grounding of global fairness
scores (Section 5.1) in this more familiar setting, both implicitly by building intuition for agglomeration functions and
explicitly by establishing mathematical connections.

In Appendix A, we survey established calibration scores and show how our framework captures them, thereby
allowing direct comparisons between them in terms of the choices discussed in this work. Two observations relating
to this survey are that all the scores agglomerate absolute calibration errors |c(I j)| via the average or the maximum.
In line with these and all other calibration scores that we are aware of, we only consider the agglomeration of ab-
solute calibration errors in this section, thereby taking over- and under-prediction to be equally undesirable. In the
following, we assume a set of absolute calibration errors indexed by a set J on which we impose a uniform probability
measure. One could instead simply consider agglomeration functions on finite index sets, that is, on tuples of errors,
but we decided to work in this more general setting that also allows working with a non-uniform measure, such as the
probability P on X in case J = X . It also allows to leverage theoretical machinery applicable to uncountable sets.

Definition 7 (Agglomeration Function).
For a measure space J, an agglomeration function is a function R : L2(J)→ R.
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L2(J) denotes the space of real-valued random variables on the index set J with finite second moment; that is,
elements of L2(J) assign to every index j ∈ J a real number, which should here be thought of as the absolute calibration
error of the group IJ or q j. We use the term ’agglomeration function’ rather than ’aggregation function’ since the latter
is often defined in a more specific way (Grabisch et al., 2009).

Similar to the case of losses discussed in (Williamson and Menon, 2019), we suggest that for any C,C′ ∈ L2(J)

and any α ∈ R, an agglomeration function R should satisfy the following axioms:
A1 Monotonicity R(C)≤ R(C′) if C ≤C′ almost surely.
A2 Translation Equivariance ∀α ∈ R : R(C+α) = R(C)+α .
A3 Positive Homogeneity R(0) = 0 and ∀µ > 0 : R(µC) = µR(C).
A4 Subadditivity R(C+C′)≤ R(C)+R(C′).
A5 Law Invariance R(C) = R(C′) if C and C′ have the same distribution of values.

A1 is the requirement that larger errors should lead to larger global scores. A2 and A3 are desirable properties for
agglomerating group-wise calibration errors into global calibration scores as they preserve the naturally interpretable
scale of the group-wise errors. While being less interpretable, scores that do not satisfy these axioms might still be
useful as objective functions. A4 is a particularly intuitive requirement when C and C′ are the restrictions of some
D ∈ L2(J) to some partition {J0,J1}: The sum of the scores on J0 and J1 should not be smaller than the score of D

(see also Appendix D). Also note that A4 is equivalent to Convexity12 under A3 (Artzner et al., 1999) which makes R
an easier optimisation target. A5 ensures that all groups are treated equally and is sometimes also called Anonymity.
Note that we may still weight groups according to their size by choosing a grouping that includes groups multiple
times, as shown for the ECE in Appendix A (an alternative is discussed in Appendix D). It turns out that these axioms
are central to the theory of risk measures, which allows to draw on insights from this rich literature.

Definition 8 (Coherent Risk Measure; Artzner et al., 1999).
An agglomeration function satisfying A1-A4 is called coherent risk measure (CRM).

Definition 9 (Conditional Value at Risk; Artzner et al., 1999).
Let QC(α) := sup{µ ≥ 0 : P(C ≥ µ) < α} denote the quantile function for C ∈ L2(J), α ∈ [0,1]. The conditional
value at risk is defined as CVaRα(C) := E[C | C >QC(α)] for α ∈ [0,1].13

Any law-invariant CRM R – and thus any agglomeration function satisfying A1-A5 – can be built from CVaRα via

R(C) = sup
ν∈Λ

∫ 1

0
CVaRα(C) dν(α) (11)

for some set Λ of probability measures over [0,1] (Kusuoka, 2001). As {CVaRα}α∈[0,1] interpolates between the
expectation and the maximum (attained for α = 0 and 1, respectively), law-invariant CRMs as a whole populate the
space between expectation and maximum. In this sense, all previously proposed calibration scores are extreme cases
of sensible calibration scores. For global scores based on CVaRα , the choice of α (between 0 and 1) determines how
much attention is paid to the highest errors, or, to what extent the lowest errors are ignored.

As we have divided the design of global calibration errors into grouping and agglomeration, it is interesting to
ask whether one can be reduced to the other, that is, whether choices for one of them can be ’simulated’ by choices
of the other. First, note that they take into account different kinds of information. The grouping looks at inputs

12Convexity is the condition that ∀λ ∈ (0,1) : R((1−λ )C+λC′)≤ (1−λ )R(C)+λR(C′).
13This definition of CVaRα shows nicely that it measures the expectation of the largest α% of errors but requires that C has a continuous

distribution which is not satisfied in practice, with finite data and groupings. Such a setting requires an alternative definition as CVaRα (C) =
1

1−α

∫ 1
α
QC(t)dt. A subclass of law-invariant CRMs that subsumes CVaR and is intuitive enough to have been independently ’discovered’ by

multiple disciplines are the Supremum Risk Measures (Acerbi, 2002; Fröhlich and Williamson, 2022).
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and predictions without considering the resulting group errors while the agglomeration only looks at the resulting
group errors. An example where the grouping already determines the global score is when all groups have the same
error: Any agglomeration function satisfying A2 & A3 will then return the same score. Conversely, the choice of
agglomeration can also not be simulated by sensible groupings, as the maximum and the expectation generally behave
very differently. These observations suggest that the proposed organisation into grouping and agglomeration is not
further reducible.

Intuition (Section 4): By suggesting axioms that functions for agglomerating group calibration errors should
satisfy, we characterise them as the class of law-invariant coherent risk measures. These can be seen as interpolating
between the average and the maximum, which seem to be the only previously suggested agglomeration functions.

5 Calibration-based Notions of Fairness

Having laid out a general framework for designing calibration scores which assess the overall quality of probabilistic
predictions, we now turn to questions of fairness. Formal scholarship on algorithmic fairness has largely focused
on two types of approaches: individual and group fairness. The demand that similar individuals be treated similarly
has been proposed as a criterion for individual fairness (Dwork et al., 2012). While similar treatment seems to be
interpretable as similar predictions, the first ’similar’ does all the work here while remaining entirely opaque. An
analogous observation has also led some legal scholars to argue that the classic formulation of such a principle in
the Western tradition, Aristotle’s assertion that like cases should be treated alike, is empty (Westen, 1982). Another
problem with such a notion of individual fairness is that it does not take into account the available data in a principled
way – it does not use it at all unless the similarity metric is constructed from it. Group fairness usually describes the
comparison of summary statistics between selected groups, e.g. based on race or gender. One problem with this is that
group-level statistics have little to say about the fair treatment of individuals and that they can overlook discrimination
across division lines that are unaccounted for. In particular, it reduces individuals to their membership in one particular
group that the individual is thought to belong to. One such group-level statistic, proposed in (Kleinberg, Mullainathan,
and Raghavan, 2016), is calibration, usually evaluated using pre-determined prediction space bins. More recently,
scholars have started to bridge the gap from group to individual fairness by considering multitudes of potentially
overlapping groups simultaneously, under the name of subgroup fairness (Kearns et al., 2018) or multi-calibration
(Hébert-Johnson et al., 2018). An open question is the formation of such groups, with the suggestions including all
easily computable groups (Hébert-Johnson et al., 2018) or groupings based on similarity of learned representations
(Burhanpurkar et al., 2021). Any such grouping is usually subdivided through some prediction-based binning; this is
slightly generalised in (Gopalan et al., 2022).

In this section, we connect the richness of calibration laid out in previous sections to the debate on algorithmic
fairness. We draw on our characterisation of agglomeration functions for scores of prediction quality in Section 4
to propose and axiomatise agglomeration functions for global fairness scores in Section 5.1. In Section 5.2, we
demonstrate the applicability of global calibration scores based on partitions and localised groups to notions of group
and individual fairness, respectively.

5.1 Global fairness scores

Previous work on calibration for fairness has tended to not discuss global fairness scores, which would allow a direct
comparison between algorithms as well as provide an objective to optimise. The original papers (Kleinberg, Mul-
lainathan, and Raghavan, 2016; Chouldechova, 2017) only considered bin-wise errors without agglomerating them,
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while the algorithm proposed in (Hébert-Johnson et al., 2018) runs until the absolute calibration error on every group-
bin-combination is below a fixed value, thus implicitly enforcing a constraint on the maximum of all absolute errors.
Global fairness scores would need to take into account the signed errors, as we often care much more about whether p̂

over- or under-predicts: When c(G1) = µ and c(G2) = −µ for some µ > 0, the absolute errors of groups G1 and G2

are equal but this is not necessarily fair: When under-prediction of risk is positive from the individuals’ perspective,
over-prediction is often negative and vice versa. While not every application may have this aspect, it should be possi-
ble to distinguish between under- and over-prediction. Furthermore, while adding some constant to all errors changes
the quality of the predictor, it does not affect the inequality between the groups.

Caring not about the average calibration error of the groups but about the disparity between them requires measures
of deviation rather than risk.14 However, as we show in Proposition 11, there is a close connection between the two.
Furthermore, as explained above, we now take ’raw’ signed calibration errors as inputs rather than their absolute
values. In addition to A3-A5, we suggest that agglomeration functions D for global fairness scores should satisfy the
following axiom for C ∈ L2(J):

A6 Normalisation D(C)≥ 0 and D(C) = 0 ⇔C is constant.
Normalisation ensures that the score is positive if and only if there is some inequality in terms of calibration errors.
A3-A5 are again desirable for the reasons discussed in Section 4. We now introduce a new class of functions.

Definition 10 (Fairness Deviation Measures).
A fairness deviation measure (FDM) is an agglomeration function satisfying A3-A6.

We can gain some insights into this class by exploiting a handy connection to the law-invariant coherent risk
measures discussed in the previous section. This connection is characterised by the following result which is basically
a corollary of the Quadrangle Theorem in (Rockafellar and Uryasev, 2013).15 It allows the construction of FDMs from
CRMs and vice versa, shedding light on the relationship between quality and fairness scores.

Proposition 11 (Relation between CRMs and FDMs).

a) Agglomeration functions D satisfying A3-A6 stand in a one-to-one relationship with agglomeration functions R

satisfying A2-A5 and Aversity (the property that R(C)> E[C] if C ∈ L2(J) is not constant) via

R(C) = E[C]+D(C). (12)

b) A law-invariant CRM induces an FDM via (12) iff it is averse.

c) An FDM induces a law-invariant CRM via (12) iff it satisfies D(C)≤ supC−E[C] ∀C ∈ L2(J).

Example 12 (Fairness Deviation Measures).

1. Superquantile deviation: D(C) = CVaRα(C−E[C]) for α > 0

2. Standard deviation: D(C) = σ(C)

3. Range deviation16: D(C) = supC− infC
14A strand of research that is in some ways similar is that of inequality measures, which have also been proposed for evaluating inequality of

losses (Speicher et al., 2018). In our setting where calibration errors can be positive or negative and have a fixed scale, inequality measures seem
less suitable. Williamson and Menon (2019) propose deviation measures on losses for capturing fairness and relate them to inequality measures. In
settings when we need not distinguish under- from over-prediction, their framework is also applicable to calibration.

15Strictly speaking, the measures must also satisfy that for all α ∈ R, {C ∈ L2(J) : R(C) ≤ α} is closed. This is included as a further axiom in
(Rockafellar and Uryasev, 2013) but we do not dwell on this since it is automatically satisfied for convex finite measures on finite J, which is always
the case in practice.

16This is not an unfamiliar score for other fairness metrics: Wang, Ramaswamy, and Russakovsky (2022) discuss it under the more intuitive
notion of a ’maximum difference [...] of a performance metric [...] between two groups’.
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The superquantile deviation is induced by CVaRα via (12). Standard deviation and range deviation do not induce
CRMs as they do not satisfy D(C)≤ supC−E[C] ∀C ∈ L2(J). More examples of risk-deviation-pairs can be found in
(Rockafellar and Uryasev, 2013). Recall, however, that the coherent risk measures in the previous section are assumed
to take absolute calibration errors as inputs while the fairness deviation measures take the ’raw’ signed errors.

5.2 Group fairness and individual fairness

In the remainder of this section, we show that global calibration scores based on different choices of grouping structure
(Section 3.3) can reflect different notions of fairness. As mentioned above, previous work on calibration and fairness
did not provide such population-level scores but largely aimed to compare or minimise absolute group-level errors.
The use of global scores based on deviation measures allows a more comprehensive assessment of fairness than pre-
vious approaches which compare bin-wise calibration errors between groups of interest. In cases where comparisons
between prespecified, non-overlapping groups are desired, partitions may be the most suitable structure for evaluat-
ing calibration as they can provide strict boundaries along such group lines. Calibration can, thus, provide a notion
(sub-)group fairness when based on some form of partition; this observation is also in accordance with much of the
previous literature on calibration-based fairness.

In Sections 2 and 3.1, we pointed to the availability of alternatives to prediction-based grouping. While prediction-
based bins for calibration have been suggested as a way to assess whether probabilities in different groups ’mean
the same thing’ (Kleinberg, Mullainathan, and Raghavan, 2016), they are at odds with finer partitions based on input
features due to constraints on the group sizes (Section 3.2). Finer input-based groups, however, allow to detect more
forms of stereotyping and should, thus, be considered at least as a complementary basis for sub-group fairness evalu-
ations. A downside of prespecified groups forming a partition is that each individual is only considered as a member
of one particular (possibly intersectional) group, which is, after all, a form of pigeonholing. In what follows, we argue
that calibration also allows for notions of individual fairness.

A problem with previous (Lipschitz-based) notions of individual fairness is that they do not require what Vre-
denburgh (2022), following (Broome, 1990), takes to be the essence of fairness, namely ’respecting people’s claims in
proportion to the strength of those claims’. Failure to take into account data is also criticised by Selbst et al. (2019,
p. 60) who argue that ’[w]ithin the algorithmic frame, any notion of ”fairness” cannot even be defined’. Calibration
can offer a principled solution to this by automatically comparing probabilistic predictions with the available data. If
we assumed the existence of and access to a true probability distribution P(Y |X) (both of which are problematic), this
would provide a measure for the strength of people’s claims: One could see the true probability (e.g. of credit default)
to provide grounds for a proportional claim to a particular treatment (e.g. prioritisation in granting loans). Equality of
the true calibration error p̂(x)−EP[Y |X = x] across the population would ensure that the strengths of these claims are
respected (although other justice-related claims may not be). However, the theoretical notion of the true calibration
error cannot provide a notion of individual fairness in practice. We now argue that in practice, calibration on localised
groups can provide such a notion by grounding fairness claims in available data.

As shown in Section 2, a ’natural’ way to construct groups for calibration is as extensions around an individual
x, in order to make up for limited data at x. Furthermore, as established in Propositions 5 and 6, we can get consis-
tent estimators for the individual calibration error at given points in input space through suitable choices of grouping.
Calibration errors of such cohesive groups (or kernels) that can be localised to a particular point in input space and
take into account the surrounding datapoints, hence, provide a practical and quantifiable notion of respecting people’s
claims that is also theoretically appealing. Now recall that the fairness calibration measures introduced above assess
the deviation between group-wise calibration errors. This also means that that presence in multiple or even all groups
(Proposition 4) does not necessarily imply greater influence on global fairness scores, quite on the contrary: Member-
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ship in all groups implies that a datapoint has no influence at all on the global score for a deviation measure like the
standard deviation. In sum, global calibration scores for suitable localised groups (e.g. based on k-NN or kernels) can
allow to assess whether individuals receive risk scores in proportion to the data available for them which, we posit,
is a notion of individual fairness – this is also in line with Broome (1991, p. 199) noting that his particular notion of
unfairness ’is plainly an individual harm’.

Intuition (Section 5): Previous literature has discussed different notions of fairness, notably group and individual
fairness. Although calibration is seen as a promising approach to (sub-)group fairness, there is no established metric
for it. Potential calibration-based global fairness scores need to take into account the signed errors and focus more
on their disparity. While this implies that they are quite different to the scores discussed in the previous section,
they are closely connected. Depending on the grouping structure, global calibration-based fairness scores using
deviation measures can provide notions of individual or subgroup fairness.

6 Conclusion and Future Work

By tracing its roots and investigating implicit choices, we have provided a general framework capturing the richness
of calibration from the ground up. We paid particular attention to groupings based on the input space and motivated
groups that can be localised there. We showed that different ways of evaluating calibration correspond to different
notions of fairness, demonstrating the close relationship between calibration and fairness. In the same way as assertions
about fairness always need to specify the ’with regard to what?’, calibration depends on choices of grouping. For a
more solid understanding of this relationship, further formal and conceptual investigations will be necessary. While
we made some first steps to analyse the trade-offs inherent in choices of grouping, we see much potential for more
comprehensive results. Likewise, while we show a connection between the agglomeration functions suitable for
assessing prediction quality on the one hand and fairness on the other, further research on this is required to characterise
the prospects of their joint optimisation. To mitigate the dependence on the chosen grouping, it may be beneficial to use
multiple different groupings, such as a sequence of increasingly fine partitions; frameworks for utilising such partially
redundant information also seem a worthwhile endeavour. In general, we envision our work as a fertile ground for
further research on calibration and its role in fairness in particular. We conclude by again stressing that calibration
can only be one element in the just deployment of algorithms in society, given that ’accurate modelling within unjust
institutions can replicate and further injustice’ (Vredenburgh, 2022).
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A Established Calibration Scores

Recall our setting of datapoints {(xi,yi)}i∈I with I = {1, ...,N}. In (4), we defined the calibration error of a group
I ⊂ I as

c(I) :=
1
|I| ∑i∈I

p̂(xi)− yi. (13)

We now demonstrate how different notions of calibration can be seen as some form of grouping combined with some
form of agglomeration of errors. For this, it is useful to think in terms of a parametrised set of groups {I j} j∈J for
some index set J which can take different forms. As a first example, we can write the ECE described in (5) for bins
B1, ...,BK of [0,1] as

ECE(p̂) =
1
N

N

∑
j=1

|c(I j)|, I j := {i ∈ I : p̂(xi) ∈ Bk( j)}, (14)

with Bk( j) denoting the bin in which p̂(x j) falls. Note that the weighting by the size of the bins is now done implicitly
by adding one term for each datapoint, rather than one term per bin. We could avoid this implicit weighting by
choosing a different grouping which nevertheless includes the same groups, just in different multiplicities. A score
that weights each bin equally, we may call it average calibration error (ACE), is given by

ACE(p̂) =
1
K

K

∑
k=1

|c(Ik)|, Ik := {i ∈ I : p̂(xi) ∈ Bk}. (15)

Using the same groups Ik, we can also define the sometimes invoked maximum calibration error (MCE; Naeini,
Cooper, and Hauskrecht, 2015) in this framework as

MCE(p̂) = max
k

|c(Ik)|. (16)

Interestingly, the well-known Brier score is also equivalent to a function over calibration errors for a suitable
grouping. As shown in (Sanders, 1963) for a finite prediction space, the Brier score can be decomposed into two terms
corresponding to notions of calibration and refinement/sharpness, respectively:

1
N

N

∑
i=1

[p̂(xi)− yi]
2 = ∑

v∈YD

P̂(v)[p̃(v)− v]2 + ∑
v∈YD

P̂(v)p̃(v)(1− p̃(v)) (17)

where YD := {p̂(xi) : i ∈ I} is the set of predictions on the observed datapoints, P̂(X ,Y, p̂(X)) denotes the empirical
distribution on X ×{0,1}× [0,1], and p̃(v) := P̂(Y = 1|p̂(X) = v) denotes the observed ratio of positive labels for
datapoints where p̂ predicts v. This can be seen as grouping by level sets of p̂. Instead grouping the datapoints by
inputs allows the decomposition

1
N

N

∑
i=1

(p̂(xi)− yi)
2 = ∑

x∈XD

P(x)
[
(p̂(x)−1)2 p(x)+(p̂(x)−0)2(1− p(x))

]
(18)

= ∑
x∈XD

P(x)
[
p̂(x)2 p(x)−2p̂(x)p(x)+ p(x)+ p̂(x)2 − p̂(x)2 p(x)

]
(19)

= ∑
x∈XD

P(x)
[
p̂(x)2 −2 p̂(x)p(x)+ p(x)2 − p(x)2 + p(x)

]
(20)

= ∑
x∈XD

P(x)[p̂(x)− p(x)]2 + ∑
x∈XD

P(x)p(x)[1− p(x)] (21)
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with P(X ,Y ) denoting the empirical distribution on X ×{0,1} and p(x) := EP(Y |X = x). Note the second term of
(21) is independent of the predictor p̂, implying that minimising the Brier score is equivalent to minimising the first
term.17 This first term can be seen as a function of calibration errors:

1
N

N

∑
i=1

c(Ii)
2, Ii := {i ∈ I : xi = x}. (22)

The average-of-squares does not satisfy A2 and A3 (Section 4), which may have contributed to the observation that
’still there is no clear consensus on how to interpret the Brier score’ (Cabitza, Campagner, and Famiglini, 2022, p. 85).

As suggested in Section 3.3, we can capture notions of calibration that invoke kernels through the generalised
calibration error defined for distributions q on X as

C(q) := Eq[p̂(X)− p(X)]. (23)

Kernels have been proposed on the prediction space (Kumar, Sarawagi, and Jain, 2018) and on a learned representation
space intersected with bins in the prediction space (Luo et al., 2022). The maximum local calibration error (MLCE)
proposed in (Luo et al., 2022), which we briefly discussed in Section 3.3, can in our framework be defined as

MLCE= max
x∈XD

C(qx) for qx(x′) ∝ kγ(x,x′) ·1p̂(x′)∈Bk(x)
(x′) (24)

where kγ is some kernel on a learned representation space with bandwidth γ and Bk(x) denoting the bin (within a pre-
defined partition of [0,1]) into which p̂(x) falls. Their local calibration error (LCE) is simply the generalised group
calibration error C(qx).

B On Group Cohesion and Topology

While criteria of group selection have received some attention within Fair-ML in recent years, they have largely
ignored the group cohesion – probably partly because typical groups are cohesive by default: Groups defined by a
particular value or interval of a feature such as gender, race or age – or an intersection thereof – are automatically
cohesive; they are even convex, as any point that, in input space, lies between two points belonging to some such
group will also belong to that same group. Intuitively, cohesion is even weaker than that as it only requires that a
group’s region in input space is not disconnected. Another reason why cohesion is usually not discussed may be that it
is only defined in terms of the mathematical input space rather than the datapoints themselves, thus requiring a further
abstraction. In the context of calibration, groups of interest tend to be particularly small and often not defined by hand
but, for example, through approximate level sets of the predictor (that is, bins); this implies that group cohesion cannot
be taken for granted anymore, as shown in Proposition 1. However, cohesion seems to be a necessary condition for a
group to be interpretable and perhaps to be considered ethically relevant – although cohesion is not sufficient, as one
can cook up all sorts of gerrymandered cohesive groups in multiple dimensions.

In the present paper, we aim to highlight the topic of group coherence – also beyond the fairness context and
particularly relating to prediction-based groups – and motivate further discussion. With the qualification that too
much abstraction can sometimes distract from concrete ethical problems, it seems that topology would be the natural
mathematical language for this. This is the study of geometric properties such as continuity and connectedness in

17This tells us that the Brier score cannot reduce to zero even for the Bayes optimal predictor p̂ = p, unless ∀x ∈ X : p(x) ∈ {0,1}. This makes
sense since the terms (p̂(xi)− yi)

2 can only be all zero if no x is observed with both labels, i.e. EP(Y |X = x) only takes values in {0,1}. A
comparison with (38) reveals that the second term is the calibration error variance of a point drawn randomly from the empirical distribution!
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most general terms. The basic mathematical object is a topological space, which is a set equipped with a particular set
structure. The choice of set structure, the topology, is fairly straightforward in Rd (see Example 15) but less so when
categorical features are involved. While there are some obvious directions using product topologies or embeddings
in continuous dimensions, such questions are left open in this work. In the following, we introduce the basic notions
needed for Proposition 1.

Definition 13 (Topology, Topological space, Open set, Neighbourhood).
A topology on a set X is a collection of subsets T ⊂ 2X satisfying

• X , /0 ∈ T .

• Any union of elements in T is also in T .

• Any finite intersection of elements in T is also in T .

The tuple (X ,T ) (sometimes just X ) is then called a topological space. The elements of T (which are sets in X ) are

called open sets. A set that includes an open set containing x ∈ X is called a neighbourhood of x.

Example 14 (Trivial topology).
For any set X , the trivial topology is given by {X , /0}.

Example 15 (Induced topology, Standard topology on Rd).
For any space X equipped with a metric d, the topology induced by d is the topology generated by all balls Bε(x) with

x ∈ X , ε > 0. That is, it contains all sets generated by unions and finite intersections of such balls as well as /0 and

X . In the case of X = Rd , all Lp-based metrics induce the same topology which is called the standard topology. For

X = R in particular, open sets in this topology are exactly the open intervals plus their unions and /0.

Definition 16 (Hausdorff space).
A topological space (X ,T ) is called a Hausdorff space if any two points have non-intersecting neighbourhoods.

Any metric space is Hausdorff under the induced topology while any space with at least two points is not Hausdorff
when equipped with the trivial topology.

Definition 17 (Topological continuity).
A function between two topological spaces is continuous if the preimage of each open set is an open set.

This topological notion of continuity coincides with the better-known ε-δ -notion of continuity when the topologies
are induced by metrics.
An important notion in general topology and also in the present work is that of connectedness.

Definition 18 (Connectedness).
A set in a topological space is connected if it is not the union of two disjoint nonempty open sets.

A perhaps more intuitive notion of cohesion is path-connectedness.

Definition 19 (Path-connectedness).
A path from a point x to a point x′ in a topological space X is a continuous function γ : [0,1]→X with γ(0) = x and

γ(1) = x′. A set in a topological space is path-connected if for any two points in it there is a path between them.

Path-connectedness is weaker than connectedness: Every path-connected set is connected but not every connected
set is path-connected. We do not provide a proof here as this is a standard result. Intuitively, path-connectedness
requires a path while connectedness only requires the absence of an open partition. Sometimes you can neither
construct two open, separating sets nor a path, in which case we have connectedness but not path-connectedness.
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C Proofs

Proposition 1 (Cohesion in domain and codomain).

a) For any continuous function f : X →Z , connectedness in X implies connectedness in Z but not vice versa.

b) For a non-constant predictor p̂ : X → [0,1] with the standard topology on [0,1], there is a topology on X s.t. p̂

is not continuous (and thus connectedness in X does not imply connectedness in [0,1]).

c) If p̂ :X → [0,1] has more than a single local minimum or more than a single local maximum, there exist intervals
in [0,1] whose preimages in X are not connected (in any Hausdorff topology on X ).

Proof.

a) It is a standard result in general topology that the image of a connected set under a continuous map is also
connected. A counterexample to the inverse direction is X = [−1,1], Z = [0,1] and f : x 7→ x2 with the stan-
dard topologies on [−1,1] and [0,1]: the preimage of the connected set [ 1

4 ,1] is [−1,− 1
2 ]∪ [ 1

2 ,1] which is not
connected.

b) Take the trivial topology T = { /0,X} on X , take two distinct values v1,v2 ∈ [0,1] that p̂ realises on X . Then
take any open interval I around v1 which does not contain v2 (which is possible since v1 ̸= v2 and [0,1] with
the standard topology is Hausdorff). Its preimage p̂−1[I] is neither /0 nor X , so not open in the trivial topology.
Hence, p̂ is not continuous.

c) Assume p̂ has two (distinct) local maxima at xa and xb, with p̂(xa) ≤ p̂(xb) (the proof for two minima is
analogous). We operationalise the notion of a local maximum xa in a Hausdorff space as the property that
any connected, non-singleton neighbourhood of xa contains a point x such that p̂(x)< p̂(xa). Now consider the
interval I := [p̂(xa), p̂(xb)]⊂ [0,1] under p̂. If its preimage were connected, there would be a point x ∈ p̂−1[I] s.t.
p̂(x)< p̂(xa) since it contains the local maximum xa (which is distinct from xb ∈ p−1[I] by assumption). Being
the preimage of I, this would mean that x ∈ [xa,xb] and thus p̂(x) ≥ p̂(xa) which is a contradiction. Therefore,
p−1[I] cannot be connected.

Proposition 2 (Advantage of smaller groups: More information).
Take two nonempty, disjoint sets of indices I1, I2 ⊂ I = {1, ...,N} and recall the definition of the calibration error in
(4). Then

a) Assume that ∀(i, j)∈ I1× I2 : xi ̸= x j and that not all labels yi, i∈ I1∪ I2 are equal. Then a predictor p̂ :X → [0,1]
can be perfectly calibrated on I1 ∪ I2 but neither on I1 nor on I2.

b) For any predictor p̂ : X → [0,1], |c(I1)| ≤ α and |c(I2)| ≤ β entails |c(I1 ∪ I2)| ≤ α·|I1|+β ·|I2|
|I1|+|I2|

. For α = β , this
means |c(I1 ∪ I2)| ≤ α .

Proof.

a) For j ∈ {1,2}, let z j := 1
|I j | ∑i∈I j yi be the average label in I j. Note that this implies ∑i∈I j z j − yi = 0 (∗).

If z1 ̸= z2, then the constant predictor defined by

p̂(x) :=
1

|I1|+ |I2| ∑
i∈I1∪I2

yi (25)
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is perfectly calibrated on the union but not on the individual sets. So from now on now assume z1 = z2.
Then by assumption, 0 < z1 < 1 (as otherwise, all labels would be equal).
So there exists ε > 0 s.t. 0 < z1 − ε < z1 + ε < 1.
Define X j := {xi : i ∈ I j} ⊂ X for j ∈ {1,2} and choose a p̂ such that

p̂(x) :=

z1 +
|I2|

|I1|+|I2|
ε if x ∈ X1

z1 − |I1|
|I1|+|I2|

ε if x ∈ X2.
(26)

Then

1
|I1 ∪ I2|

(
∑

i∈I1∪I2

p̂(xi)− yi

)
(27)

=
1

|I1|+ |I2|

(
∑
i∈I1

[
z1 +

|I2|
|I1|+ |I2|

ε − yi

]
+ ∑

i∈I2

[
z1 −

|I1|
|I1|+ |I2|

ε − yi

])
(28)

=
1

|I1|+ |I2|

(
|I1| ·

|I2|
|I1|+ |I2|

ε −|I2| ·
|I1|

|I1|+ |I2|
ε

)
= 0, (29)

using (∗) whereas for j ∈ {1,2},

1
|I j|

∣∣∣∣∣∑i∈I j

p̂(xi)− yi

∣∣∣∣∣= 1
|I j|

∣∣∣∣± |I1| · |I2|
|I1|+ |I2|

ε

∣∣∣∣> 0. (30)

b) Assume |c(I1)|= 1
|I1|
∣∣∑i∈I1 p̂(xi)− yi

∣∣≤ α and |c(I2)|= 1
|I2|
∣∣∑i∈I2 p̂(xi)− yi

∣∣≤ β . Then,

|c(I1 ∪ I2)|=
1

|I1 ∪ I2|

∣∣∣∣∣ ∑
i∈I1∪I2

p̂(xi)− yi

∣∣∣∣∣ (31)

=
1

|I1|+ |I2|

∣∣∣∣∣∑i∈I1

[p̂(xi)− yi]+ ∑
i∈I2

[p̂(xi)− yi]

∣∣∣∣∣ (32)

≤ 1
|I1|+ |I2|

(∣∣∣∣∣∑i∈I1

[p̂(xi)− yi]

∣∣∣∣∣+
∣∣∣∣∣∑i∈I2

[p̂(xi)− yi]

∣∣∣∣∣
)

(33)

≤ α · |I1|+β · |I2|
|I1|+ |I2|

. (34)

Proposition 3 (Advantage of larger groups: Variance).
Let (X1,Y1), ...,(XK ,YK) be pairs of i.i.d. random variables with values in X ×{0,1} and joint distribution P. Take
some p̂ : X → [0,1] and define the Bayes-optimal predictor p(x) := EP[Y |X = x]. Then

VP

[
1
K

K

∑
i=1

p̂(Xi)−Yi

]
=

1
K
EP [p(X1)(1− p(X1))] : (35)

Proof.
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For a specified point x ∈ X , we get

EP(Y |X=x)[p̂(x)−Y ] = [p̂(x)−1]p(x)+ p̂(x)[1− p(x)] = p̂(x)− p(x) (36)

and, with the same steps as in derivation (18)-(21),

EP(Y |X=x)[(p̂(x)−Y )2] = [p̂(x)− p(x)]2 + p(x)[1− p(x)]. (37)

This gives

VP[p̂(X1)−Y1] = EP[(p̂(X1)−Y1)
2]−EP[p̂(X1)−Y1]

2 = EP[p(X1)(1− p(X1))]. (38)

Now since the (X1,Y1), ...,(XK ,YK) are i.i.d., we can compute

VP

[
1
K

K

∑
i=1

p̂(Xi)−Yi

]
=

1
K
VP[p̂(X1)−Y1] =

1
K
EP[p(X1)(1− p(X1))]. (39)

Proposition 4 (Group overlap for X -based k-NN).
Take X = Rd and the grouping {I j} j∈I based on k-NN of datapoints x1, ...,xN using any Lp-based metric on X with
p ∈ N. Depending on the dataset, it is possible that one datapoint is part of min(N, 2 · d · (k− 1)+ 1) groups while
another datapoint is part of only one group (unless N ≤ k).

Proof.

First assume the case N = 2 ·d · (k−1)+1.
We construct a dataset x1, ...xN ∈ Rd s.t. for each dimension s ∈ {1, ...,d}, there are (k−1) points between 0 and ±es

(with es denoting the standard unit vector of Rd along dimension s), except that in dimension 1, one point is at 3 · e1

(cf. Figure 1):
For s ∈ {1, ...,d} and (s−1) ·(k−1)< i ≤ s ·(k−1), let xi := µ ·es (except x1) and xi+d·(k−1) :=−µ ·es for any choice
or choices of µ ∈ (0,1). Now let x1 := 3 · e1 and xN := 0.
Then the point xN is among the k nearest points for every point xi, i ∈ {1, ...,N} (as ∥xN −xi∥p = ∥xi∥p ) whereas x1 is
among the k nearest points only of itself.
For the case N < 2 ·d · (k−1)+1, we assign less than 2 ·d · (k−1)−1 points x2, ...,xN−1 between 0 and ±es, such

that xN is still part of all groups while x1 is still furthest from all points.
For the case N > 2 ·d ·(k−1)+1, we assign the additional points x2·d·(k−1)+1, ...,xN−1 to −2 ·e1 which changes neither
that xN is among the k-nearest points of all x2, ...,x2·d·(k−1), nor that x1 is furthest from all points.

Proposition 5 (Strong consistency of X -based k-NN).
Assume X = Rd , a joint distribution P on random variables (X ,Y ) with values in X ×{0,1} with Bayes-optimal
predictor p(x) := E[Y |X = x], a predictor p̂ : X → [0,1] and a metric dX on X s.t. (X ,dX ) is separable. Then

EP
[∣∣c(IN

X )− (p̂(X)− p(X))
∣∣]→ 0 with probability one as N → ∞, (40)

where IN
x denotes the set of k-NN of x with k → ∞, k

N → 0 for N → ∞.
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Figure 1: Proof of Proposition 4, case N = 2 ·d · (k−1)+1 for d = 2 and k = 2.

Proof.

We can reduce our problem to the consistency of k-NN estimators; in the following we adapt notation used in (Devroye
et al., 1994):
For fixed p̂, define Z := p̂(X)−Y . Then Z is bounded and we get a joint distribution (X ,Z), a true calibration error
m(x) = E[Z|X = x] = p̂(X)− p(x) and an estimator mN(x) := c(Ik

x ) =
1
k ∑i∈Ik

x
zi with zi = p̂(xi)− yi.

Then by Theorem 1 from (Devroye et al., 1994), we get E [|mN(x)−m(x)|]→ 0 with probability 1 as N → ∞, which
is our desired result.18

Proposition 6 (Strong consistency of X -based kernels).
Assume X = Rd , a joint distribution P on random variables (X ,Y ) with values in X ×{0,1} with Bayes-optimal
predictor p(x) := E[Y |X = x], and a predictor p̂ : X → [0,1]. Then

EP
[∣∣C(qγ

X )− (p̂(X)− p(X))
∣∣]→ 0 with probability one as N → ∞, (41)

where qγ
x(x′) := 1

γ
k(x−x′) · 1

K with K := ∑
N
i=1

1
γ
k(x−xi) denotes the normalised distribution induced by a Borel kernel

k with the bandwidth satisfying γ → 0 and N·γd

logN → ∞ for N → ∞.

Proof.

We can reduce this problem to the consistency of kernel estimators; in the following, we adapt the notation used in
(Greblicki, Krzyżak, and Pawlak, 1984), analogously to the proof of Proposition 5:
For fixed p̂, define Z := p̂(X)−Y . Then Z is bounded and we get a joint distribution (X ,Z), a true calibration error
m(x) = E[Z|X = x] = p̂(x)− p(x) and an estimator mN(x) :=C(qγ

x) = ∑
N
i=1 qγ

x(xi) · zi with zi = p̂(xi)− yi.
Additional constraints on k are that

c1 ·H(∥x∥s)≤ k(x)≤ c2 ·H(∥x∥) and c3 ·1∥x∥≤r(x)≤ k(x) (42)

for c1,c2,c3,r positive constants, and H a bounded decreasing Borel function in [0,∞) such that tdH(t)→ 0 as t → ∞.
Then by Corollary 1 from (Greblicki, Krzyżak, and Pawlak, 1984), we get E [|mN(x)−m(x)|]→ 0 with probability 1
as N → ∞, which is our desired result.

For Proposition 11 (restated below), we need some prerequisites.
18Note that we are glossing over the details of tie-breaking, as the expectation is also an expectation over a supporting variable Z.
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The Quadrangle Theorem of (Rockafellar and Uryasev, 2013) is stated in terms of two classes of agglomeration
functions, for which we require the following further axiom for agglomeration functions R and C ∈ L2(J):

A7 Agreement C = α ∈ R constant ⇒ R(C) = α .

Definition 20 (Regular Risk Measures).
A regular risk measure (RRM) is an agglomeration function satisfying A7, Aversity and Convexity (cf. footnotes 12

and 15).

Definition 21 (Regular Deviation Measures).
A regular deviation measure (RDM) is an agglomeration function satisfying A6 and Convexity.

Now Rockafellar and Uryasev (2013) establish that

(A) A convex agglomeration function satisfies A2 if and only if it satisfies A7.

(B) Regular deviation measures D stand in a one-to-one relationship with regular risk measures R via

R(C) = E[C]+D(C). (43)

(C) R satisfies A3 if and only D does.

(D) R satisfies A1 if and only if D satisfies D(C)≤ supC−E[C] ∀C ∈ L2(J).

Furthermore, Artzner et al. (1999) establish that

(E) An agglomeration satisfying A3 is convex if and only if it satisfies A4.

Lastly, it is easy to see that

(F) For an RRM R and its corresponding RDM D, if one is law-invariant, then so is the other.

Proposition 11 (Relation between CRMs and FDMs).

a) Agglomeration functions D satisfying A3-A6 stand in a one-to-one relationship with agglomeration functions R
satisfying A2-A5 and Aversity (the property that R(C)> E[C] if C ∈ L2(J) is not constant) via

R(C) = E[C]+D(C). (44)

b) A law-invariant CRM induces an FDM via (44) iff it is averse.

c) An FDM induces a law-invariant CRM via (44) iff it satisfies D(C)≤ supC−E[C] ∀C ∈ L2(J).

Proof.

a) An agglomeration function D satisfying A3-A6 satisfies Convexity by (E) and is thus an RDM. An agglomer-
ation function R satisfying A2-A5 and Aversity satisfies A7 by (A) and Convexity by (E) and is thus an RRM.
The result follows from (B), (C), and (F).

b) This result follows directly from a) via the definitions of CRMs and FDMs.

c) This result follows from a) and (D).
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D Partitions with Measures

For groupings based on partitions, we may use a different way to take group size into account, compared to that in
Sections 4 & 5.1 and Appendix A: Instead of counting groups multiple times in a grouping (as in (14) for the ECE),
we may make use of the measure on the measure space J, call it µ , that we have so far assumed to be uniform and
thus left implicit (see the paragraph above Definition 7). This alternative formalisation, which stores the information
about group weights in the measure rather than in the multiplicities of the groups, has the advantage that we can treat
partition-based groupings as partitions of the dataset since each datapoint is then a member of exactly one element
of the grouping. Having suggested this alternative encoding of group weights, we now apply it in providing an
additional result that strengthens the choice of axioms in Sections 4 and 5.1, in particular Convexity (cf. footnote 12)
which, as discussed, is closely related to Subadditivity. In particular, we show that the proposed global scores cannot
decrease when making partitions finer, that is, when further subdividing the groups (Definition 22 below). This extends
Proposition 2 by taking into account properties of the considered agglomeration functions.

Definition 22 (Refinement, Finer, Coarser).
For two partitions P1,P2 of some set I, the former is finer than or a refinement of the latter if every element of P1 is

a subset of some element of P2. This is equivalent to saying that P2 is coarser than P1.

Proposition 23 (Finer partitions have higher scores).
Take some p̂ : X → [0,1], an agglomeration function R, and a dataset {(xi,yi)}i∈I with I := {1, ...,N}.

a) If R is law-invariant and convex, plus if µ is given by the empirical distribution (that is, group errors are

weighted by the size of the groups), then finer partitions cannot have lower global scores of raw (signed) errors

than coarser ones.

b) If R is monotonic, law-invariant and convex, plus if µ is given by the empirical distribution, then finer partitions

cannot have lower global scores of absolute errors than coarser ones.

Proof.

a) Take two partitions P1,P2 of I s.t. they contain the same sets except for some I ∈ P1 and Ik, Il ∈ P2 with
I = Ik ∪ Il . That means that P2 is (slightly) finer than P1 since I ∈ P1 is further subdivided. Now let J1 and
J2 denote the index sets of the partitions P1 and P2, equipped with the measure µ given by the empirical data
distribution – this means ∀ j ∈ Ji, i ∈ {1,2} : µ( j) = |I j |

|I| . We slightly abuse notation by overloading µ and R to
denote the measures and agglomeration functions, respectively, on both J1 and J2.19

Let C1,C2 ∈ L2(J1),L2(J2) denote the raw calibration errors of p̂ under P1,P2, respectively. Then

µ(Ik)

µ(I)
c(Ik)+

µ(Il)

µ(A)
c(Il) = c(I) (45)

by definition of c(·) and µ (given I = Ik ∪ Il , similar to Proposition 2b).

Now let C̃1 ∈ L2(J2) be equal to C2 except that for k, l ∈ J2 (corresponding to Ik, Il), C̃1(k) = C̃1(l) = c(I).
That is, C̃1 is defined on the same space as C2 (namely J2) while having the same distribution as C1, given that
|I|
|I| =

|Ik|+|Il |
|I| . Thus, by LI, R(C1) = R(C̃1) (cf. footnote 19).

19Since µ is defined through the empirical distribution, the measure on J1 and the one on J2 are in some sense ’the same’ even though they operate
on different spaces. To compare global scores on different partitions, we need some principle to identify agglomeration functions R operating on
different measure spaces. In the literature on inequality indices, this is done explicitly or implicitly through a shared functional form of inequality
measures that can be applied to different population sizes. Here, this is even more natural since agglomeration functions satisfying Law Invariance
only depend on the distribution of errors, not on the particularities of the measure spaces. Therefore, we can identify agglomeration functions on J1
and on J2 with each other, denoting them jointly as R, and understand LI as a property extending to cases of distinct measure spaces.
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To prove R(C1)≤ R(C2), it remains to be shown that R(C̃1)≤ R(C2).

By (Bellini et al., 2021) Proposition 5.6, if R is LI and convex then it is dilatation monotone, that is,

R(E[C2 | G ])≤ R(C2) (46)

for any sub-σ -algebra G . This is precisely the property that we need, essentially meaning that by making a
partition coarser, the agglomerated score may only decrease.

Since in our case, C1 ad C2 are identical except that the former combines Ik and Il into I by averaging their scores
as stated in (45), we have C̃1 = E[C2 | G ] for G denoting the σ -algebra induced by the (coarser) partition P1.
Therefore, by Dilatation Monotonicity, R(C̃1)≤ R(C2).

Since we can represent any refinement of a partition on a finite set through steps where one set is split into two
(as done here for I = Ik ∪ Il), the result holds for any two partitions where one is finer than the other.

b) Take the same P1,P2, I, Ik, Il ,µ as above.

Now let C1,C2 ∈ L2(J1),L2(J2) denote the absolute calibration errors of p̂ under P1,P2, respectively.
As in Proposition 2b), introducing | · | to (45) yields

µ(Ik)

µ(I)
|c(Ik)|+

µ(Il)

µ(I)
|c(Il)| ≥ |c(A)|. (47)

Define C̃1 as above except that, given that we now consider absolute errors, C̃1(k) = C̃1(l) = |c(I)|. Then C̃1

again has the same distribution as C1 and thus, by LI, R(C1) = R(C̃1).

For the case of equality in (47), we can show R(C̃1)≤ R(C2) as in part a).

For the case of strict inequality, define C3 ∈ L2(J2) to be equal to C2 except that C3(k) < C2(k) s.t. Eµ [C3] =

Eµ [C̃1]. Then R(C̃1)≤ R(C3) by Dilatation Monotonicity as in part a) and R(C3)≤ R(C2) by Monotonicity.

Thus, we again get R(C1)≤ R(C2) in either case which proves the result.
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